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Basha [1999] has developed an interesting approach for 
steady infiltration when the soil-water conductivity obeys the' 
relation 

1 

K = 1 + ½n' (1) 
In this comment, Basha's notations are followed; K is a re- 
duced conductivity so that K = 1 for ½ = 0, and the matric 
potential is also made dimensionless using some characteristic 
potential. Note that as a result, ½ > 0 for unsaturated soil. In 
general, the governing equation is 

K(d•/dz + 1) = Q, (2) 

where Q is the dimensionless flux and z, positive downward, is 
a dimensionless distance. To integrate (2), an additional 
boundary condition is used: 

½ = z = (3) 

Basha [1999] then uses an ingenious expansion to solve the 
problem, assuming n to be sufficiently large. 

Basha's [1999, equation (5)] approximation yields 

1 1 
½= 1 In(a)+ [ln(a)+• n - 1 (n - 1)2 • In 2 (a)], (4) 
when zt, -• c•, whereas the exact solution is [see Basha, 1999, 
equation (52)] 

xIl = (1/0l) TM, (5) 

with 

a=Q/(1 -Q). (6) 

Basha adds that his "Equation (51) compares well with the 
exact limit... especially for relatively high n values. The rela- 
tive error ranges from 5% for n = 3 to less than 1% for higher 
n values." This cannot be true for all values of a. For instance, 
for a given n if a >> 1, that is, Q = 1, ½ = 0 (see (5)), whereas 
(4) gives ½ >> 1. Although less striking, the error is also large 
for a << 1. As an illustration, if we write a = exp ( - An), then 
(5) yields ½ = exp (X), whereas (4) gives for n >> 1, ½ = 1 + 
X + X2/2, that is, the beginning of the expansion of exp X, so 
that the result is good for small X only. 

It is clear that it would be preferable if the approximate 
solution reduced to (5) when % >> 1. This is satisfied in the 
following. To do so, (2) is approximated by replacing K/(K - 
Q) = 1 + Q/(K- Q) using 
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K- Q = C exp [--a(Zb -- Z)]. (7) 

This type of approximation has been used in the past and 
becomes exact when K is of the form prescribed by Gardner 
[1958] and it was used in the present context by Wartick [1974]. 
The same approach was also used by Parlange [1982] in a 
drainage problem. Here (7) is only an approximation, and C 
and a are two positive constants to be determined later. We 
note in passing that as Zb -• c•, (7) yields K = Q, that is, the 
exact solution. Plugging the approximation into (2) yields by 
integration 

(Q+C) exp[-a(½-½b)]-Q=C exp[-a(zb-z)], (8) 

which is identical to the approximation of (7) when K = (Q + 
C) exp [-a(½ - ½b)], that is, a Gardner-type behavior. For 
a different K, (8) should usually be more accurate than (7) 
since it results from one iteration. Here ½b is defined as the 
value of ½ where z = Z b, and C = K b - Q, where Kb is the 
value of K at ½ = ½b. 

We are now going to apply the above results to the two 
examples discussed by Basha. The first example follows the 
cases in Figure 1 of Basha, that is, n = 3 and 7 and Q - 0.1 
and 0.01, with ½b = 1 and Zb = 2. Thus we know everything 
in (8) except a which has to be obtained judiciously. It is 
important to reiterate that this being a "comment" on Basha's 
work, the determination of a pertains to his examples. A more 
general theory based on the present approach will be published 
later. In particular, we are limiting ourselves to the case where 
K obeys (1) exactly. Hence K b = 1/2. Equation (8) now 
becomes 

1 1 (2 Z)]. (9) j exp [-a(½- 1)] = Q + (j- Q) exp [-a - 

To find a, (9) can be forced to satisfy (1) and (2) at some point. 
It already satisfies ½ - 1 at z = 2. An obvious choice is the 
point z = 0, where ½ = ½o. Then 

1 

(• - Q) exp (-2a) + Q = 1/(1 + •) = • exp (-a(½0 - 1)], 
(10) 

which provides two equations and thus yields a (and ½o). It is 
easy to solve (10) by iteration. Starting with a = n/2 (the value 
obtained by crudely fitting (9) near z = 2), the left-hand side 
of (10) is used to obtain ½o. The right-hand side of (10) then 
provides a new a. Convergence is rapid, and the calculation 
easy. Figure 1 then repeats the four cases of Basha's Figure 1. 
Obviously, the results are very good by comparison with the 
exact solution of Basha. The accuracy of the present approxi- 
mation is similar to that of Basha's, but the analytical form of 
(9) is neatly simpler than Basha's approximation. 
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Figure 1. Pressure distribution obtained from the exact solution (crosses), as given by Basha [1999], and the 
present approximation (solid curve) as given by equation (9). The four cases from the left to the right 
correspond ton = 7, Q = 0.1;n = 3, Q = 0.1;n = 7, Q = 0.01; andn = 3, Q = 0.01. The values 
of a as given by equation (10) are a - 4.373, 1.513, 4.215, and 1.352, respectively. 

The second case considered by Basha is with root uptake for 
z < D, so that Q in the right-hand side of (2) is replaced by 
Q - P, with 

F = Qz/D, z -< D. (11) 

For 2 > z > D, (9) applies for Q = 0 or, exactly, 

½- 1 = 2 - z, z -> D. (12) 

A similar result to (9) is now obtained for z < D or, since ½ = 
3 - D atz = D from(12), 
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Figure 2. Pressure distribution for n = 5, Q = 0.1 corresponding to three rooting depths, D = 2, D = 
1, and D = 0.5, from left to right. The present approximation (solid curve) is given by equation (12) for z -> 
D and by equation (15) for z -< D. Values of a given by equation (16) are a = 2.888, 2.364, and 1.971, 
respectively. The numerical solution (crosses) is the same as given by Basha [1999]. 
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Kz> exp [-a(½ - ½•)] - Q = (Kz> - Q + A) exp [-a(D - z)], 

where Kz> = 1/[1 + (3 - D) n] and 

D A = -a P(x) exp [a(D - x)] dx, (•4) 

and from (11), 

1 1 

1 + (3 --D) n exp [-a(½- 3 + D)] = 1 + (3- D) n 

exp [- a(D - z)] + Q 1 D + • exp [- a(D - z)]. 

Once again a has to be obtained. In this case it is easy to match 
(15) when d½/dz = 0 at ½ = ½* or 

[ aD/Q ] 1 1 Q----ln 1 + = = 
aD 1 + (3- D) n 1 "• ½,n 1 + (3- D) n 

ß exp [-a(½* + D - 3)]. (16) 

As with (10), we can start with a = n/2 to calculate the left 
side of (16). Then the midterm gives an estimate of ½*, and the 
right side gives a new value of a to be used for reiteration. 
Rapid convergence results. Figure 2 shows the results for D = 

2, 1, 0.5; n = 5; and Q = 0.1, reproducing Basha's Figure 
2. Again the approximation of (15) is remarkably accurate by 
comparison with a numerical solution. For this example the 
analytical approximation is not only simpler than Basha's but, 
in addition, neatly more accurate. 

In conclusion, using a very simple exponential approxima- 
tion, we were able to provide simple and accurate results for 
Basha's examples. A general theory will be given later. 
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