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Periodic wave solution of a second order
nonlinear ordinary differential equation by

Homotopy analysis method
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Abstract

The periodic wave solution of a second order nonlinear ordinary
differential equation is obtained by the homotopy analysis method,
an analytical, totally explicit mathematical technique. By choosing a
proper auxiliary parameter, the new series solution converges very fast.
The method provides us with a simple way to adjust the convergence
region. Furthermore, a significant improvement of the convergence
rate and region is achieved by applying Homotopy-Padé approximants.
Three examples demonstrate the excellent computation accuracy and
efficiency of the present ham approach. The present method could be
extended for more complicated wave equations.

Contents

1 Introduction C110

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2434

gives this article, c© Austral. Mathematical Soc. 2010. Published April 20, 2010. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2434


1 Introduction C110

2 Theoretical consideration C111

3 Result and discussion C115

4 Conclusion C122

References C122

1 Introduction

Nonlinear problems are of interest to many scientists and engineers because
most physical systems in the real world are inherently nonlinear in nature.
There are many analytical techniques for decomposing a nonlinear equa-
tion into a set of linear equations, such as perturbation method, Lyapunov’s
artificial small parameter method, the δ-expansion method and Adomian’s
decomposition method. However, most of these analytical techniques cannot
provide us with a convenient way to control and adjust the convergence re-
gion and rate of solution series. For some strong nonlinear problems, these
analytical approaches may break down. Recently, an analytical technique,
namely homotopy analysis method (ham) has seen rapid development. It
has many successful applications in nonlinear problems and logically con-
tains Lyapunov’s small parameter method, the δ-expansion method, and
Adomian’s decomposition method [3]. The ham does not depend on a small
parameter such as in a perturbation approach, and has great flexibility in the
selection of a proper set of base functions for the solution. The method also
provides a simple way to control the convergence rate and region. The ham
was first applied to the fluid mechanics problem by Liao [2] and has been sys-
tematically described by Liao [3]. Liao and Cheung [4] successfully applied
ham to nonlinear waves propagating in deep water and the ham solution in
finite water depth was later obtained by Tao et al. [5]. Abbasbandy [1] and
Wang et al. [6], also obtained periodic wave solutions by ham technique for
third-order shallow water wave equations.
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The ham is applied to solve a second order nonlinear differential equa-
tion with periodic boundary conditions. The equation has some physical
prototypes, such as Drinfeld–Sokolov–Wilson wave equation and modified
Zakharov–Kuznetsov equation. Multiple periodic wave solutions are ob-
tained by different sets of base functions. Explicit solutions are presented
and conditions for the existence of the periodic wave solutions are given.
Very accurate solutions are obtained with only the first few terms of the
series, demonstrating the high efficiency of ham.

2 Theoretical consideration

Consider a second order nonlinear ordinary differential equation with periodic
boundary conditions in the following form

w ′′(x) + αw(x) + βw3(x) = 0 , w(0) = w(L) = 0 , (1)

where x is a spatial variable, w(x) is a real function of x, and the prime
denotes the differentiation. For Drinfeld–Sokolov–Wilson wave equation, α >
0 and β < 0 , whilst for modified Zakharov–Kuznetsov equation, α < 0

and β > 0 .

Under the transformation

x = (L/π)τ , ε = (L/π)2, v(τ) = w(x) , (2)

equation (1) becomes

v ′′(τ) + εαv(τ) + εβv3(τ) = 0 , v(0) = v(π) = 0 . (3)

Supposing A = v(π/2κ) is the amplitude of the wave and κ is a positive
integer, we define a new function

u(τ) = v(τ)/A , u(π/2κ) = 1 . (4)
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Equation (1) then finally becomes

u ′′(τ) + ε
[
αu(τ) +A2βu3(τ)

]
= 0, u(0) = u(π) = 0 . (5)

Equation (5) has multiple solutions. It is natural to express periodic wave
solution of u(τ) by the set of base functions

{sin[(2m+ 1)κτ] | m, κ = 1, 2, 3, . . .} , (6)

in the form

u(τ) =

+∞∑
m=1

bm sin[(2m+ 1)κτ] , (7)

where bm are coefficients to be determined.

ham is based on a continuous variation from an initial trial to the exact
solution. By constructing the homotopic mapping u(τ) −→ U(τ;q), we have
the following homotopy

(1− q)L[U(τ;q) − u0(τ;q)] = qh̄N [U(τ;q),A(q)] , (8)

subject to the boundary conditions

U(0;q) = U(π;q) = U(π/2κ;q) = 0 . (9)

where U(τ;q) is differentiable with respect to the embedding parameter q,
A(q) is the mapping function of A, u0(τ) is an initial estimate of u(τ), h̄ is
a nonzero auxiliary parameter, N is a nonlinear operator, and L is a linear
auxiliary operator with the property L[0] = 0 .

When q = 0 and q = 1 , then

U(τ; 0) = u0(τ) , (10)

N[U(τ; 1)] = 0 , (11)

respectively. Therefore, as the embedding parameter q varies from 0 to 1,
U(τ;q) maps continuously from the initial estimate u0(τ) to the exact solu-
tion u(τ).
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Equation (8) is named the zeroth order deformation equation in ham. In this
article, the nonlinear operator N is chosen as

N [U(τ;q),A(q)] =
∂2U(τ;q)

∂τ2
+ κ

[
αU(τ;q) + βA2(q)U3(τ;q)

]
. (12)

The linear operator L is a linear auxiliary operator with the property L[0] =
0 , which is chosen as

L [U(τ;q)] =

(
∂2

∂τ2
+ κ2

)
U(τ;q) , (13)

with the property

L [C1 sin(κτ) + C2 cos(κτ)] = 0 , (14)

where C1 and C2 are coefficients.

According to the boundary condition (5) and the rule of solution expres-
sion (7), the initial guess is chosen as

u0(τ) = sin(κτ) . (15)

Expand U(τ;q) and A(q) in Taylor series with respect to q, we have

U(τ;q) = u0(τ) +

+∞∑
m=1

um(τ)q
m , (16)

A(q) = a0 +

+∞∑
m=1

amq
m , (17)

where

um(τ) =
1

m!

∂mU(τ;q)

∂qm

∣∣∣∣
q=0

, (18)

am =
1

m!

∂mA(q)

∂qm

∣∣∣∣
q=0

. (19)
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If the series (16) converges at q = 1 , we have the solution

U(τ) = u0(τ) +

+∞∑
m=1

um(τ) . (20)

For brevity, we define

~um = {u0,u1,u2, . . . ,um}, (21)

~am = {a0,a1,a2, . . . ,am} . (22)

Differentiating equations (8) and (9) m times with respect to q at q = 0 ,
and then dividing them by m!, the mth order deformation equation is

L[um(τ) − χmum−1(τ)] = h̄Rm(~um−1, ~am−1) , (23)

subject to the boundary conditions

um(0) = um(π) = um(π/2κ) = 0 , (24)

where

Rm(~um−1, ~am−1) =
1

(m− 1)!

∂m−1N[U(τ;q)]

∂qm−1

∣∣∣∣
q=0

= u ′′
m−1(τ) + εαum−1(τ)

+ εβ

m−1∑
n=0

n∑
i=0

aian−i

[
m−1−n∑
j=0

uj(τ)

m−1−n−j∑
r=0

ur(τ)um−1−n−j−r(τ)

]
. (25)

and

χm =

{
0, m 6 1 ,

1, m > 1 ,
(26)

The right-hand side of equation (23) is expressed as

h̄Rm(~φm−1, ~am−1) =

µm∑
n=0

bm,n(~am−1) sin[(2n+ 1)κτ] , (27)
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where bm,n(~am−1) is a coefficient depending on terms up to (m− 1)th order
and µm is a positive integer.

The term bm,0(~am−1) must be zero, otherwise the solution of equation (23)
contains the term τ sin(κτ), which disobeys the rule of solution expression (7).
This provide us an equation to determine am−1.

The solution of equation (23) is

um(τ) = χmum−1(τ)

µm∑
n=1

bm,n

1− (2n+ 1)2κ2
sin[(2n+ 1)κτ]

+ C1 sin(κτ) + C2 cos(κτ) , (28)

According to the boundary condition (24) and rule of solution expression (7),
we have

C2 = 0 , (29)

and C1 is determined by the equation um(π/2κ) = 0 .

3 Result and discussion

From the equation b1,0(~a0) = 0 , we have the solution

a0 = 2

√
κ2 − αε

3βε
, (30)

So for different values of α and β the periodic wave solution exists only at
κ >
√
αε , if α > 0 and β > 0 ,

any κ, if α < 0 and β > 0 ,

κ 6
√
αε , if α > 0 and β < 0 ,

no κ, if α < 0 and β < 0 .

(31)
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Figure 1: The 5th, 10th, 15th and 20th order approximations of A versus h̄.

The convergence region and rate are controlled by the auxiliary parameter h̄
in ham. For different values of h̄, A converges to the same value—the approx-
imation of the exact solution. As shown in Figure 1, the nearly horizontal line
segments of A-h̄ curves correspond to the convergence regions of the h̄ val-
ues. Figure 1 clearly shows that the ham approximations of the amplitude A
converge in a region around h̄ ∈ [−1/2,−1/5]. Therefore, the auxiliary pa-
rameter is chosen as h̄ = −1/2 for all the ham solutions presented in this
section.

The zeroth, first and second order approximations of u(τ) and A are

U0(τ) = sin(κτ) , (32)
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U1(τ) =

[
1+

1

24
h̄ −

h̄αε

24κ2

]
sin(κτ) +

[
1

24
h̄ −

h̄αε

24κ2

]
sin(3κτ) , (33)

U2(τ) =

[
1+

1

12
h̄ +

11

288
h̄2 −

h̄2α2ε2

288κ4
−

h̄αε

12κ2
−
5h̄2αε

144κ2

]
sin(κτ)

+

[
1

12
h̄ +

23

576
h̄2 −

h̄2α2ε2

576κ4
−

h̄αε

12κ2
−
11h̄2αε

288κ2

]
sin(3κτ)

+

[
1

576
h̄2 +

h̄2α2ε2

576κ4
−

h̄2αε

288κ2

]
sin(5κτ) , (34)

A0 =2

√
κ2 − αε

3βε
, (35)

A1 =

[
2h̄αεκ2 − h̄α2ε2 − h̄κ4

24 (κ2 − αε)
+ 2

]√
κ2 − αε

3βε
, (36)

A2 =

[
384h̄αεκ4 + 171h̄2αεκ4 − 7h̄2α3ε3 − 192h̄α2ε2κ2 − 75h̄2α2ε2κ2

2304κ4 (κ2 − αε)

−
192h̄κ6 + 89h̄2κ6

2304κ4 (κ2 − αε)
+ 2

]√
κ2 − αε

3βε
. (37)

Choosing the first three terms of series (16) and (17) respectively and using
the built-in function PadeApproximant in Mathematica 6, the [1, 1] homotopy-
Padé (hp) approximation of u(τ) is

U[1,1](τ) = −

√
κ2 − αε

288κ4
√
3βε

sin(κτ)
[
h̄αε− (h̄ − 48)κ2

]
×
[
h̄αε− (12+ h̄)κ2 + h̄

(
αε− κ2

)
cos(2κτ)

]
. (38)

The first 2mth order solutions and [m,m] homotopy-Padé approximations
of A are shown in Table 1. The series converges very quickly, especially
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Table 1: The 2mth order solutions and [m,m] homotopy-Padé approxima-
tions of A for α = 2 , β = −1 , ε = 5 and κ = 2 .

Order A [m,m] A

2 1.23635 [1, 1] 1.22928
4 1.23095 [2, 2] 1.22993
6 1.23005 [3, 3] 1.22992
8 1.22993 [4, 4] 1.22992
10 1.22992 [5, 5] 1.22992

for the homotopy-Padé approximation. The [2, 2] hp approximation gives
the same result as the eighth order solution, a clear demonstration of the
excellent convergence rate in the present homotopy-Padé technique.

Figure 2, 3 and 4 are three examples of v(τ) (= Au(τ)) for different types of
combinations of the three parameters:

Figure 2 α = 2 , β = −1 and ε = 5 ;

Figure 3 α = −1 , β = 2 and ε = 2 ;

Figure 4 α = 2 , β = 2 and ε = 4 .

For the first example, there are only three periodic wave solutions, that is,
κ = 1 , κ = 2 and κ = 3 . As the parameter κ increases, the amplitude
of the waves decrease and the crest of the wave becomes sharper. For the
second example, the number of the periodic wave solutions is infinite and the
parameter κ can be any positive integer. In contrast to the first example,
the amplitude of the periodic waves increase as the parameter κ rises. For
the third example, the number of the periodic wave solutions is infinite as
well. However, parameter κ must be greater than two. The amplitude of the
periodic waves is also a monotonically increasing function of the parameter κ
as in the second example.
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Figure 2: The tenth order solution of v(τ) for α = 2 , β = −1 and ε = 5 .
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Figure 3: The tenth order solution of v(τ) for α = −1 , β = 2 and ε = 2 .
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Figure 4: The tenth order solution of v(τ) for α = 2 , β = 2 and ε = 4 .
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4 Conclusion

Explicit periodic wave solutions of a second order nonlinear ordinary differen-
tial equation with arbitrary parameters were solved by the homotopy analysis
method. Multiple solutions were given by different sets of base functions and
the bifurcation points were found. The convergence region is controlled by the
non-zero parameter h̄, providing us with a simple way to adjust convergence.
Furthermore, a significant improvement of the convergence rate and region is
achieved by applying homotopy-Padé techniques. The present method could
be extended to provide periodic wave solutions for more complicated wave
equations.

Acknowledgement The first author is grateful for the postdoctoral fel-
lowship from Griffith University to support this research.

References

[1] Abbasbandy, S., Homotopy analysis method for generalized
Benjamin–Bona–Mahony equation, Z. angew. Math. Phys., 59, 2008,
51–62. doi:10.1007/s00033-007-6115-x C110

[2] Liao, S. J., An approximate solution technique not depending on small
parameters: a special example, Int. J. Nonlinear Mech., 30, 1995,
371–380. doi:10.1016/0020-7462(94)00054-E C110

[3] Liao, S. J., Beyond Perturbation: Introduction to the Homotopy
Analysis Method. Chapman & Hall/CRC, Florida, 2004. C110

[4] Liao, S. J. and Cheung, K. F., Homotopy analysis of nonlinear
progressive waves in deep water, J. Eng. Math., 45, 2003, 105–116.
doi:10.1023/A:1022189509293 C110

http://dx.doi.org/10.1007/s00033-007-6115-x
http://dx.doi.org/10.1016/0020-7462(94)00054-E
http://dx.doi.org/10.1023/A:1022189509293


References C123

[5] Tao, L., Song, H. and Chakrabarti, S., Nonlinear progressive waves in
water of finite depth–an analytic approximation, Coast. Eng., 54,
2007, 825–834. doi:10.1016/j.coastaleng.2007.05.008 C110

[6] Wang, C., Wu, Y. and Wu, W., Solving the nonlinear periodic wave
problems with the Homotopy Analysis Method, Wave Motion, 41,
2005, 329–337. doi:10.1016/j.wavemoti.2004.08.002 C110

Author addresses

1. H. Song, Griffith School of Engineering, Griffith University,
Queensland 4222, australia.
mailto:h.song@griffith.edu.au

2. L. Tao, School of Marine Science and Technology, Newcastle
University, ne1 7ru, England, uk.

http://dx.doi.org/10.1016/j.coastaleng.2007.05.008
http://dx.doi.org/10.1016/j.wavemoti.2004.08.002
mailto:h.song@griffith.edu.au

	Introduction
	Theoretical consideration
	Result and discussion
	Conclusion
	References

