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1 Introduction

Interaction of water waves with a large vertical cylindes leeen widely investi-
gated both numerically and experimentally due to its this@akand practical im-
portance, especially to ocean engineers. Havelock [1]ldped the theory initially
for the special case of infinite water depth, and it was latezredled by MacCamy
and Fuchs [2] to apply in finite water depth. The analyticduson for linear
plane waves diffracted by a large vertical circular cylindeintermediate water
depths was later validated by Chakrakarti and Tam’s exp@riri8]. Chakrabarti
and Tam [3] revealed that the linear diffraction solutiomeasonably accurate at
least forH/h < 0.25 (H is wave height and is water depth) and a range bé

(k is wave number and is cylinder radius) between 0 and 3. On the basis of the
linearised long-wave approximation, Chen and Mei [4] pnése an exact solution
of wave forces on an elliptical cylinder via Mathieu funct Their solution was

later compared by Williams using two approximate methodls [5

For a cylinder with cross-sections other than a circle apsd, however, no analyti-
cal solution has been reported. Thus, numerical approlomeg mainly resorted to
investigate the wave run-ups and forces on the cylindedbeghysical model ex-
periments. Most of the previous numerical studies weredasdhe two versatile
numerical schemes: finite-element method (FEM) (e.qg., 6% boundary-element
method (BEM) (e.g., [7, 8]). Although FEM has achieved rekabie successes in
structural mechanics and fluid mechanics with its great atdge of a wide variety
of element types, absorbing boundary condition or infilgeent technique has to

be introduced for wave-structure interaction in unboundehain. For short inci-
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dent waves especially in three-dimensional problems, tin@evcomputation work
is enormous. BEM, on the other hand, has the inherent adyafaawave-structure
interaction in unbounded domain with the property of redgdhe spatial dimen-
sion by one. However, fundamental solutions are requiredsamgular integrals
exist. Futhermore, it may suffer from the problems causerbgular frequencies

and sharp corner.

Recently, the scaled boundary finite-element method (SBf-Bkginally devel-
oped to solve soil-structure interaction problems (e%]), has been successfully
applied to water wave diffraction, in which the radiatiomddion at infinity is re-
quired to be satisfied by the scattered waves. Tao et al. [iflieal the SBFEM to
solve short-crested waves interaction with a circularndgir. Instead of using an
algebraic series, Tao et al. [10] chose Hankel function beesthe Helmholtz equa-
tion in the unbounded domain. The radial differential egurais solved fully ana-
lytically in all frequency ranges. Without relying on anyhet numerical schemes,
the semi-analytical model for the wave diffraction by a alex cylinder is shown
to reproduce the analytical solution for all the physicalperties including wave
run-ups, effective inertia and drag coefficients, and timade very accurately and

at very low computational cost.

Most of the approximate theories for simple structure geaes as well as the nu-
merical solutions for the two-dimensional structures ofwiar cross section pro-
vide an important step in understanding the effects of waffeadtion on large
bodies. The solutions have a wide range of applicationsabeitlimited by the
special geometry and are generally not applicable to laftghare structures of
general geometry. Hence, it becomes necessary to take waskeeof cylindrical
structures of arbitrary cross section in order to deal Withvariety and complexity

of design configurations encountered in modern offshotesires.
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In this paper, the SBFEM model is further extended to solvemaaves interaction
with: 1) a single cylindrical structure of arbitrary shaggémultiple structures sys-
tem. The present approach applied domain decomposititmicpee by introduc-
ing a porous circular cylinder surrounding a single or nmléticylinders of arbitrary
cross section. The fluid domain is therefore divided into @imawnded sub-domain
and several bounded sub-domains. For the outer unbountlediosoain, a semi-
analytical solution is obtained by employing a base soluiticterms of the Hankel
function of the first kind which satisfies the radiation boandcondition at infinity,
while for the bounded sub-domains, the semi-analyticaltgmis are given by ma-
trix power series. Detailed numerical results on wave feered run-ups over broad

range of incident wave parameters as well as structure aoatigns are presented.

2 Mathematical model and numerical implementation

2.1 Boundary value problem

Consider a monochromatic wave train propagating at an ahglgh positive =
axis. A structure system consisting of several verticaincigrs extends from the

sea bottom to above the free surface of the ocean al@xis (see Fig. 1).

Tao et al. [10] showed that the solution process can be signifly simplified by
choosing the Hankel function as a base function for waveatition by a circular
cylinder. However, it is no longer valid for a cylinder withogtrary cross section. In
order to preserve the accuracy and efficiency of the SBFEMetrextd overcome
the convergence problem associated with the algebraiesskease function, an ar-
tificial porous circular cylinderI{.) enclosing the structure system consisting of

several vertical cylinders is introduced. The origin isgeld at the centre of the ex-
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Fig. 1. A sketch of the water wave diffraction by multiple fesl

terior circular cylinder on the mean water surface (Fig.Thie whole fluid region

is then divided into two regions, the interior bounded regamd the unbounded
region outside of the cylinde$,. The interior region is further divided intpsub-
domains,S;, Ss, . . ., S,. The following notation have been used in the pager:=
total velocity potential iyth sub-domaind! = velocity potential of incident wave
in Sy, ®; = velocity potential of scattered wave 8, k = total wave number,
k., = wave number irx direction,k, = wave number iry direction,.w = wave fre-
guency,h = water depthA = amplitude of incident wave; = the characteristic
length of the interior cylinders; = the radius of the porous circular cylinder=
time, p = mass density of water, and= gravitational acceleration. The subscripts

j(7=0,1,2,...,q) denote the physical parameters in the solution sub-doain

The velocity potentials can be decomposed by separatingettieal variable: and

the timet from each component as



O©CO~NOOOTA~AWNPE

112

113

114

115

116

117

119

120

121

122

123

D;(z,y,2,t) = ¢j(z,y)Z(z)e ™ in S, 1)
Ol (7,y,2,t) = ¢h(z,y) Z(z)e ™ in Sy, ()
Y (z,y, 2,t) = ¢ (x,y) Z(2)e™™"  in Sy, 3)
where
_ coshk(z +h)

2= "ol @

leading to the seabed boundary condition being satisfied.dlffraction problem
in Sy is then governed by Helmholtz equation with the boundaryd@dwn at the

porous interfacé’., and the radiation condition at infinity:

V25 +k2¢5 =0 in S, (5)
gbg,n + ¢é,n = _¢adj,n = _ZG0k<¢adJ - ng - ¢(I)) on FC? (6)
lim (kr)'/? (67, —ikéy) =0 on T, 7)

whereG is a measure of the porous effect [11] afgl = 0, co represent a solid
wall and a transparent boundary respectivelig the radial axis; = /—1 is the
imaginary unity denotes the normal to the boundary, “adj” in the subscripbties
the physical quantities in the adjacent sub-domain, andntanm the subscript

designates the partial derivative with respect to the Valhg variable.

The functiong,(z,y) (j = 1,2,---,¢) in the interior region is governed by the
Helmholtz equation with the boundary conditions at therfiatze of the sub-domains

I’y andI’., and body boundary,:
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Vi, +k*¢; =0 in S, (8)

¢j = dadj on T (9)

Gjn = _¢adj,n on I, (20)

Gjm = —Pom — 0 = iGok(¢; — &5 — ) on T, (12)
$jn=0 on I} (12)

According to Mei [12], the linear incident plane wave can Rpressed by the real

part of

0
b; = —LEZ ()il thw—et), (13)
w

and the relationship of total velocity potential, scatteveave, and incident wave

velocity potentials are

Dy = ) + D5,  ¢o = ¢p + by (14)

Egs (5)-(12) constitute two sets of the governing equati@hl@oundary conditions
for the diffraction of plane waves by a cylindrical struawsystem with a porous
surrounding circular cylinder, corresponding to boundeaatyie problems in several
bounded sub-domains and an unbounded sub-domain regbgeciilie boundary
condition on the porous interface is eliminated by matchhmgunbounded sub-
domain solution and bounded sub-domain solution§ greorresponding té-, =

oo. After obtaining®; by solving the above boundary-value problems, the velpcity

free surface elevation and the dynamic pressure can bdai@duespectively from
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nj = —9oj, (16)
g

pj = —pPje. (17)

2.2 Scaled boundary finite-element transformation

In this sectiong; and ¢35 will both be denoted as for brevity, and the regiors;

will be denoted a$. If the velocity boundary is defined Hy,, we have

¢,n = Up, on Fva (18)

where the overbar denotes a prescribed value.

The finite-element method requires the weighted residualseogoverning equa-
tion to be zero. Hence Egs. (5), (8) and (18) are multiplied lyeighting function
w and integrated over the flow domain and the boundary. Peifigrmtegration by

parts, the resulting equation becomes

/Q VWV édQ) — /Q wh2dQ — jé wondl = 0. (19)

SBFEM defines the domain by scaling a single piecewise-smooth cus/eela-
tive to a scaling centréry, yo), Which is chosen at the centre of the porous cylinder
in this case (see Fig. 2). The circumferential coordinate anticlockwise along
the curveS and the normalised radial coordindtés a scaling factor, defined as 1

at curveS and 0O at the scaling centre. The whole solution dontaisiin the range
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Fig. 2. The coordinate definition of SBFEM
of § < € < & andsy < s < s;. The two straight sections = sy ands = s;

are called side-faces. They coincide, if the cusvis closed. For bounded domain,
& = 0and¢; = 1; whereas, for unbounded domagn,= 1 and¢; = oco. Therefore
the Cartesian coordinates are transformed to the scaletbogcoordinaté and

s with the scaling equations

=10+ &x,(s), Y=o+ EyYs(s). (20)

By employing SBFEM, an approximate solutiong®@fs sought as

@€, s) = N(s)a(¢), (21)
whereN(s) is the shape function, the vectaf¢) is analogous to the nodal values
same as in FEM. The radial functian(¢) represents the variation of the scattered
wave potential in the radial axi§ at each nodg, and the shape functioN(s)

interpolates between the nodal potential values in theigiferential axiss.

By performing scaled boundary transformation, the operst@an be expressed
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V= b<>§£+§bz<>(9

whereb, (s) andb,(s) are dependent only on the boundary definition

1 ys(s),s 1 _ys(s)
[J] ’ N

—24(5) s xs(s)

bi(s) =

and|J| is the Jacobian at the boundary

|J| = xs(s)yS(S),s - ys(s)xs(s),&

From Egs. (15) and (22), the approximate velocity can beesgad as

va(§,5) = Bi(s)a(§) ¢ + =Ba(s)a(§),

where

(22)

(23)

(24)

(25)

(26)

Applying the Galerkin approach, the weighting functiorcan be formulated using

the same shape function as in Eq. (21)

Substituting Egs. (21), (22), (26) and (27) into Eq. (19)uttssin

10

(27)
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l/[sm‘><@g+—1ax> ] [Birae + (Batsae) o
3 3 (28)

- / k2w )N (s)a(€)ds) — 75 w(€)TN(s)T5,dl" = 0,

T

s Where the incremental volume is [9]

= |J|¢d€ds. (29)

1 For convenience, coefficient matrices are introduced here a

a—/B )| J|ds. (30)
E = / B, (s)7By(s)|Jds, (31)
E, = / B, ()7 Ba(s)| J|ds, (32)
MOI/SN(S) N(s)|J|ds, (33)
Fs(€) = N(s0)" (=0n(&, 50)) | (s0)| + N(s1)" (=0,(€, 51))] T (1)) (34)

170 The above integrals Egs. (30)-(33) can be computed elenyeakelment and as-
i1 Sembled together for the entire boundary. Expanding EQ. 486 integrating the

12 terms containingv(¢) ¢ by parts with respect t9 using Green’s theorem leads to

11
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w(e)" [Enialéo) e + ENa) = [ NG (3a(€,5))éuds

(&) |Eogoaléo) e + EValéo) + [ N(s) (3a(6o. 5))éods]

&1

— [ w(g)" [Eofa(é)@g +(Eo+E] —Epa(é) ¢ — E21 (&) + K*EMoa(é) — Fy(&) | d

—a
o 5
=0.

(35)

To satisfy all sets of weighting functiow(¢), the following conditions must be

satisfied:

Q) = [N ({61, 9)rds (36)
Q(60) = = [ N ({60, 9))ads, 37)

Eo&*a() ¢ + (Eo + E] — E1)éa(§) ¢ — E2a(§) + K*EMoa(é) = EF,(€), (38)

where

q(€) = Eoga(§) ¢ + Efa(s). (39)

Eq. (38) is the so-called scaled boundary finite-elemenatagp. By introducing
the shape function, the Helmholtz equation has been wedkenke circumferen-
tial direction, so that the governing partial differenggjuation is transformed to an
ordinary matrix differential equation in radial directiofihe rank of matrice&,,
E;, E2, My and vector(¢) is m (wherem is the number of nodes in the curgg.

In the present study, the side-faces either coincide ormapeimeable so that the

termF,(¢) vanishes. Therefore, the final governing equation, Eq. (3& homo-

12
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geneous second-order ordinary matrix differential equmaiin terms of matrix of

rankm.

Boundary conditions, Eqs. (6) and (7) or Egs. (12) and (10} },(are weakened in
the form of Eqgs. (37) and (36) respectively, indicating thlationship between the
integrated nodal flow on the boundary and the velocity paénof the nodes. For
the wave diffraction problem in the unbounded regtané, = 1 on the boundary of
exterior porous cylinder angl = +oc at infinity. For the boundary-value problem

in the bounded regiofi;(j # 0), {, = 0 and; = 1.
2.3 Solution procedure

2.3.1 Solution for unbounded sub-domain

For the exterior porous circular cylinder, we have

xs(s) = ccos(s/c), ys(s) = csin(s/c). (40)

From Egs. (20), (23), (24), (26) and (30)-(33),(s) s, ys(s).s, b1(s), ba(s), |J],
Bi(s), Ba(s), Eo, E1, E2, andM, can be calculated accordingly. The following

relationships hold:

E,=0-1, E;j'Mgy=¢, (41)

Eo— L /S N(s)"N(s)ds, (42)

C
wherel is the identity matrix of rankn.

Using Eg. (41), pre-multiplying both sides of Eq. (38) By’ and simplifying, we

13
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have

¢*a(¢) «c +¢al¢) c — Ey'Era(¢) + ¢*a(¢) =0, (43)

where

¢ = ket. (44)

Eq. (43) is the matrix form of Bessel's differential equati€onsidering the Som-
merfeld radiation condition Eq. (7), itis logical to selétt (¢)T; as a base solution

of Eq. (43) in regionS.

The solution forgy(¢) is then expressed in the series form:

3 (C) = 3 ¢, (OT; = TH(Q)C, (45)
j=1
whereT ; are vectors of rank, c; are coefficientsi?, (¢) are the Hankel functions

of the first kind, and

T= [T17T27"' 7T7TI]7 (46)
C=lci, ey em)t, 47
H (g) = diag[Hm(kCS)v Hm(kcg)v e ,Hm,L(k'Cf)], (48)

where “diag” denotes a diagonal matrix with the elementiéstguare brackets on

the main diagonal.

Substituting Eq. (45) into Eq. (43), and using the followjprgperties of Hankel

function

14
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C2H7/"/] (C) = _C2H7'j (C) + CHrj—i-l(C) - ,erTj (C) + T?Hrj (C)? (49)
CH;J (C) = _CHTJ'+1(C> + TjHTj (C)? (50)

where the prime and the double prime denote the first and dedenivatives with

respect to the argumedtrespectively, we have

m

Z o 'Eo— )T, - ¢;H, (¢) = 0. (51)

For anyc; H,,(¢), Eq. (51) yields

(Ey'Eq — )T, = 0. (52)

J

Let \; be the eigenvalues &, 'E,, thenr; = \/)\7 andT; are the eigenvectors of

E, 'Es.

Since the Sommerfeld radiation condition (7) has beenfeatiby the Hankel func-

tions, we now only consider the boundary condition (37) ef¢hrcular cylinder.

qg(k‘c) = Eokcich,f,_(kc)Tj = — {/ N(S)TN(S)ds] Vgn, (53)
=1 s

wherev; is the vector of nodal normal velocity of scattered wavéd pn

Using Eq.(45), the boundary condition 6p can be written as

qS (ke) = keEgTHpT 188 (ke) = — [ /S N(S)TN(s)ds} Vs (54)

where

15
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Hy, = diagH,, (ke)' /H,, (kc), - , H.. (ke)/H,, (kc)].

2.3.2 Solution for bounded sub-domdin(j = 1,2,--- ,q)

Define

Eq. (38) can be written as

CX(Q).c = —ZX(C) = C*MX,

where
¢ = kag,
00
1
M - ? y
Mgy 0
and
E,'El -E;!

—E, + E\E;'ET —EE;!

16

(55)

(56)

(57)

(58)

(59)

(60)
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According to Wolf [9], the Hamiltonian matriX of rankm consists of two groups
with opposite sign eigenvalued,, and —A,, where the real parts of eigenvalues

in A, are all nonnegative and sorted in descending order.

The eigenvalue problem is formulated as

ZV = —VA. (61)
where
Ay O
A = ) (62)
0 —Ay

Usually there is one zero eigenvalueA (marked as\,, = 0), indicating a con-
stant velocity potential component in the solution domainis behaviour, how-
ever, leads to two linearly dependant eigenvectory ifV,, andV,, 1), making

the matrix of eigenvectorg irreversible.

Solving the eigenvalue problem of

Z>W = —WA, (63)

and marking the eigenvector corresponding to the zero eaaa asW,,,, a re-

versible Jordan matrix is constructed as

V; 1<j<m or m+1<j<2m,

=0 -zW, j=m, (64)

with the property of
ZJ = —-JA, (65)
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where

01

>
Il

(66)
00

_AO

2z andA, is an diagonal matrix with all the eigenvalues/of except zero on the main

232 diagonal.

255 Similar to [9], the analytical solution of Eq. (57) can be exgsed as

X(¢) = IR(¢)¢™¢"D, (67)
236 WhereU is an upper-triangular matrix with zeros on the diagoBak a coefficient

237 vector, and

R(C) =1+ C*Ri+ 'Ry + -+ (R +-- - (68)

28 Writing Y (¢) = ¢Y andK (¢) = JR(¢), and partitioning all the matrices into block
230 matrix withm xm dimensions and block vector with x 1 dimensions respectively,

20 EQ. (67) becomes

K Kz | [ ¢% 0 Yi Yio D,
X(¢) = : (69)
Ko Kag 0 (Ao 0 Yoo D,

21 The value at = 0 should be finite, thub, = 0.

18
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Define

A(C) =K ()¢™ Y1 (), (70)

Q(¢) = Kot (€)¢™Y11(¢), (71)
then

a(¢) = A(¢)Dx, (72)

q(¢) = Q(¢)D. (73)

Eliminating the constant vect@,, we have

a(¢) = QIOAT (¢)a(¢) = Kar (K (¢)alq). (74)

Assembling the matrices in all the sub-domains and notiadptundary conditions

(6) and (9)-(11), the whole problem can then be solved.

All the other physical properties of engineering interestuding velocity, surface
elevation, and pressure can now be determined based onltio&ty@otentials by
Egs. (15)-(17). The total wave force can then be obtainedtegrating the pressure

along the body boundary of the cylinder.

The following point is worth noting regarding the use of drént base solutions,
i.e. Hankel function for unbounded sub-domain and poweeséor bounded sub-
domains. Similar to the approach of Wolf [9] in obtaining dusion for soil-
structure interaction, here a power series is adopted irattme (>5° C,,,£™) in
bounded sub-domains. The solutions are obtained as sepassons to limited
radial distanced), and the computation has revealed that the solution ptoead
very accurate and efficient. However, in the unbounded subagh, the solution in

the form of algebraic series1;° C,,£~™) would involve sums to infinity. For large

19
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280

values of¢ the series approaches the exact solution rapidly and ordyadrms
in the series need to be computed. However, this is only tee aaithe cylinder
boundary § = kc) for high frequency waves. For low frequency waves, theeseri
hardly converges to the exact solution. The Hankel fun¢tionthe other hand, is
a perfect choice in unbounded domain to ensure the radiatindition at infinity

being satisfied.

3 Model validation and applications

In this section, the SBFEM model is first validated by compaits semi-analytical
predictions with analytical solutions and published resuking other numerical
methods or experiments for special cases such as wavectlifinaby a circular
cylinder and a square cylinder. Then the model is furthetiagppo more compli-
cated interaction problems between waves and one and teangrdar cylindrical

structures with variable wave parameters and structurggroations.

3.1 Wave diffraction by a circular cylindeti, = 0)

When the porous effect paramet@y = 0, the external circular cylinder is im-
permeable, leading to the limiting case of wave diffractigna circular cylinder.
For this special case, there is only an unbounded solutiomadoand the prob-
lem of wave diffraction by a circular cylinder can be solveglecitly by matching
the no-slip condition on the cylinder boundary. Due to thesyetry of the phys-
ical problem, only half of the circumference needs to berdissed. Three-noded

guadratic elements are used in the circumferential doeas shown in Fig. 3.

Accurate evaluation of the wave run-up and the wave excitirges are of paramount
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importance in the analysis of dynamic responses of an afésstoucture. Fig. 4 is

a comparison of wave run-ups on a circular cylinder betwbemptesent SBFEM
results and the analytical solutions given in [12]. As shawhRig. 4, for smallka

(= 0.5), i.e., in the range proposed by [12] where the theory ancedperiments
have good agreement, the SBFEM results given by even twoeslsnagree well
with the analytical solutions. Asa increases from 0.5 to 5.0, the convergence of
the SBFEM scheme is clearly evident as the number of eleneimisreased. Even
at ka = 5.0, accurate numerical results were obtained when merely r@egits

were used for the SBFEM computation.

Fig. 5 is a comparison of wave run-ups computed by the SBFEEMEind the
analytical solutions of [12] foka = 2.0. Forty @0) constant boundary elements
are used in BEM. As can be seen in Fig. 5, the SBFEM resultsredatavith only
4 elements are almost identical to the analytical solutiartdear demonstration of

its superior to traditional BEM.

The relationship betweeln and the required element number for computation of

wave forces on a circular cylinder are shown in Fig. 6. Exarglicomputational
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Fig. 5. Wave run-ups on a circular cylindéta(= 2.0).

efficiency and accuracy of the present SBFEM scheme aresfuldmonstrated by
examining the hydrodynamic forces. It is seen that the tesfithe SBFEM model
using 8 elements is valid unfik = 10, and the model returns to satisfactory results
in the entire linear rang® 2 < ka < 0.65) by even using 2 elements. This clearly

demonstrates the efficiency of the present SBFEM model.
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Fig. 6. The relationship betweém and the required elements number for wave forces on

a circular cylinder.

3.2 Wave diffraction by a cylindrical structure system otitv@n a circular cylin-

der

The accuracy and efficiency of the present SBFEM model is dstrated by the
above wave diffraction problem. However, the case of wateraction with a cir-
cular cylinder is relatively simple, the analytical sotrtiexists and accurate nu-
merical results can be easily obtained by traditional nitaémethods. As a key
element of the present SBFEM model, the introduction ofvineial cylinder to
decompose the solution domain into bounded and unbounded®uains and ap-
ply different strategies in solution techniques in thededomains, will be further

demonstrated by the following limiting cases.

For the porous effect parametéy = oo, the external circular cylinder is trans-
parent, corresponding to wave diffraction by structurethaninterior region sur-

rounded by thevirtual circular cylinder. Here we apply the SBFEM model to solve
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the wave diffraction by a single and multiple cylindricatusttures other than a
circular cylinder, in which no fundamental solutions exighe solution domain is
then divided into one unbounded sub-domain outside theaalidircular cylinder
and several bounded sub-domains inside the circular atiasishown in Fig. 1. By
matching the boundary conditions on the virtual circuldimgler due toG, = oo,

the solutions of the bounded and unbounded sub-domainslaetiseparately.

3.2.1 Wave diffraction by a single square cylinder

For a cylinder with sharp corners, the scaling centre in g®oeated bounded
sub-domain is chosen at the corner. The discretisatiorgalom interfaces of the
sub-domains with three-node quadratic elements are showigi 7, whereu is
the half width of the cylinder i direction and is the half length of the cylinder
in y direction. For square cylindeb, = a. If the physical problem is symmetric
(e.g. incident wave anglé = 0, +x/2, ), only half of the sub-domains need to
be discretised. In the following validatiofi,= 0 is chosen so the total elements

number are reduced to half and the wave forcegdirection are equal to zero.

Node

Scaling centre for bounded domain

o
[ ]
@

——  Side face for bounded domain

Scaling centre for unbounded domain

Fig. 7. Scaled boundary finite-element mesh for a squaradspi
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Fig. 8. Comparisons of the nondimensional wave forces omarsgylinder from SBFEM,

experiments [13] and BEM.

Mogridge and Jamieson [13] measured the wave forces on @ $ajgare caisson.
Two square caissons were tested individually in the expartmOne is 12 in. by
12 in., the other is 2 ft. by 2 ft.. Monochromatic waves wer@agated in five
water depths ranging from 9.7 to 29 in. and nine wave perioeleiested from
0.77 to 2.58 s. A number of wave heights were generated fdr eater depth
and period tested [13]. Fig. 8 is a comparison of wave foroesputed using the
present SBFEM model, experimental data of [13] and BEM smhgt The meshes
of the SBFEM solution are shown in Fig. 7, whéye is the element number in one
of the interfaces of the interior sub-domains a¥idis the element number in one
of the interfaces of an interior sub-domain and exteriorgaimain. Convergence
test plotted in Fig. 8 shows that the wave forces convergillsaps the number
of elements increases. Even the very coarse m&sh=( 1 and N, = 3) achieves

excellent results, while the BEM requires finer mesh for ih@lar accuracy.

Fig. 9 shows the nondimensional wave forces computed usagresent SBFEM
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Fig. 9. Comparisons of the nondimensional wave forces oruarsccylinder: SBFEM vs

BEM.
model and conventional BEM. 16 three-node quadratic elésnare used in the

BEM solution and a very coarse mesN;(= 1 and N, = 2) is chosen in the
SBFEM computation. It is seen in Fig. 9 that BEM is unable tovate accurate
result aroundca = 3.5 where the irregular frequency occurs. However, the satutio
given by the present SBFEM model using a very coarse mesterstsegproduce
very accurate results without suffering the irregular érexacy, a clear demonstra-

tion of the superiority of the present SBFEM model.

3.2.2 Wave diffraction by a rectangular cylinder

For wave diffraction by a rectangular cylinder, the solntpgyocess is very similar
to the process in Section 3.2.1. However, as the side leragthso longer equal
(b # ain Fig. 7), the maximum wave forces is different from the &swon the
square cylinder. Fig. 10 shows the effect of incident wavgl@f on the nondi-
mensional total wave forces’|/4pgAa” tanh(kh). It is seen in the figure that the

maximum wave force on a rectangular cylinder occurs whenrntident wave is
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normal to the longer sidg/(= 0° or 90°), while the maximum wave force on a
square cylinder always occurs as the incident wave is gatalthe diagonal of the
square f = 45°). The minimum wave force, however, is not only dependent on
the incident wave direction, but also related to the nondsi@nal incident wave
numberka. For smallka, the minimum wave force arises as the incident wave is
normal to the shorter side, while for large, it appears that minimum force can be
resulted from two varying incident angles depending on thdiguration and inci-
dent wave number. Thus, detailed calculation should beéechaut before design

to fully optimise the structure configuration according lhe dominant incoming

wave direction.

The effect of the nondimensional side lengthsand kb on the nondimensional
wave forceq Fr|/4pgAb? tanh(kh) and |Fr|/4pgAa® tanh(kh) for 6 = 0 are ex-
amined in Figs. 11 and 12 respectively. Asis the nondimensional length of the
side normal to the incident wave, a similar trend of incnegsivave forces with
different slope as:b increases for all differenta values is observed (Fig. 12).
However, as can be seen in Fig. 11, increagiadgincoming wave direction) may

increase or reduce the wave forces on the cylinder depewditige value ofb.

3.3 Wave diffraction by two adjacent rectangular cylinders

For water wave diffraction by multiple bodies as sketchelign 13, the interaction
of the scattered waves of the multiple structures is notigigdg. In this section,
a cylindrical structure system consists of two rectangeyéinders placed close to
each other in a wave field is computed using the present SBFEd&MThe results
of the nondimensional wave forcgB| (| P| = | F..|/4pgAah[tanh(kh)/kh]) on the

two cylinders are compared with BEM solutions for differennfigurationsi/L
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Fig. 10. Variation of nondimensional wave forces on theaegtilar cylindews. incident

wave angle).

(L = 2a, B = 2b). P, and Py represent wave force on left cylinder (upstream)

and right cylinder (downstream) respectively. As can be sed-ig. 14, excellent

agreement is achieved between the SBFEM solutions and BEMtsefor cases

of relative spacing between the two cylinders fraffy. = 0.1 to 0.5. However,

it is worth pointing out that the SBFEM computation is basedwerely total 14

elements discretised along the cylinder boundaries aedates.

Fig. 15 is a plot of wave forces on two cylinders against retaspacing. Wave

forces on both cylinders is seen to have a brief increase iwitteasing spacing
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lar cylinderwvs. side lengthkb.

between the cylidners at very small gap. Such a brief ineréagollowed by a
steady decrease in wave forces on both cylinders as thengpaireases until
reaches their respectively minimum at approximatgly, = 1.0 for this particular
incident wave kL = 2). Beyond this value, wave forces on both cylinders tend

to increase again a&/' L continue to increase. It is interesting to note that for the
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given incident wave, the upstream cylinder tends to expeedarger wave force
than downstream one when the spacing is small. Howeverjnétliange of the
spacing close to the side length of the rectangle crososgdl), the wave force on
the downstream cylinder appears to be slightly larger tteaumgstream counterpart.
When the spacing continue to increase, the wave force onpgbgaam cylinder
increases in a more rapid path and tends to be greater thizexiperienced by the

cylinder in the downstream.

Fig. 16 shows the influence of the gap between the two cylswiethe wave forces
on the two cylinders respectively for given wave conditifns = 0.1, 0.5, 1.0, 1.5).

In general, the upstream cylinder appears to experiengerlarave force than the
cylinder placed in the downstream. The oscillatory behawfuihe wave forces,
dependent on the gap, experienced by the two cylinders areléar evidence of
the impact on the hydrodynamics due to the existence of diredey to another. By
identifying the peak values of the wave forces associatéd @ach configuration,
this important characteristic in the forces can be effetyiapplied in a design to

reduce the wave impact on coastal and offshore structures.

Similar to the wave diffraction by a single rectangular oger, Fig. 17(a) shows
an initial decrease of wave force on the upstream cylindiemat L, followed by a

sharp increase &gl increases. For the configuration calculated with relatpacs

ing d/L = 0.25 to 1.5, however, the cylinder in the down stream experiences in-

creasing wave force dg increases even at very small Iaw (Fig. 17(b)). Since
the flow region in the wake immediate downstream of the lelindgr has been
significant altered due the its existence, the cylinder e dbwnstream interact
with a flow field different with the incident wave from far fielgsulting differ-
ent hydrodynamic behaviour. Increasing the gap furthevéen the two cylinders,

however, the hydrodynamics of the downstream cylinder kh@aassemble its up-
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stream counterpart as the interference between the twodeyk becomes very
weak. It is seen in Fig. 17 that wave forces on both cylindeasin their respective
maximums akL = 1.0 ~ 2.0 depending on the gap, then rapidly decreasklas

continue to increase.

It is worth noting that the SBFEM model can be applied to maeegal complex
structure system by assigning realistic porous effectmpaterGG,. Example appli-
cations in coastal and offshore engineering include rdt#dfporous breakwaters
outside harbors, and porous outer protective structurgsstive main structures in

its interior, such as the Ekofisk gravity offshore structuarthe North Sea.

) IB
PR —

L d L

Fig. 13. The sketch of wave diffraction by a cylindrical stiwre system of twin cylinders

4 Conclusions

A new semi-analytical scaled boundary FEM model is devaldpesimulate the
interaction of linear waves with cylindrical structuresarbitrary cross-sectional
shapes. Several techniques are applied to ensure thatth&BEEM model is
capable of solving wave interaction with single or multipteuctures of complex
configuration while achieving overall high efficiency ancca@cy. The solution
domain is partitioned by the introduction ofvatual porous circular cylindesur-
roundingthe structures. A set of the boundary-value problems in dounded
sub-domain and several bounded sub-domains are then sawaehnalytically by

using different base solutions. Computations of diffexges of complex config-
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Fig. 14. Comparison of the nondimensional wave foridés/4pgAah[tanh(kh)/kh] on

the twin cylindersvs. ka.

uration have demonstrated significant advantages exdilitde present SBFEM
model including a reduction of one in the spatial dimenseacdhieved with the
solution procedure as the governing equations are solhagtarally in the radial

direction; the new technique requires no help from any fumelatal solutions as
required by conventional boundary element method; chditesobase solution in
the form of Hankel function of the first kind for the unboundad-domain while

applying the power series for the bounded sub-domains toduimprove the com-
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Fig. 16. Variation of nondimensional wave fordé% |/ pgAL? tanh(kh) on the twin cylin-

dersws. distanced/ L.

putational accuracy and efficiency.

The newly developed semi-analytical method is shown toogyce the analytical
solutions and other published results for all the physicapprties including wave

run-ups and wave forces very accurately for wave interaciih simple struc-
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tures. Furthermore, in solving the linear wave interactioth multiple complex

structures, the SBFEM model is seen to provide solutionis @xtellent accuracy

at very low computational cost. The method holds promiseiwviisg more practi-

cal ocean engineering problems with increased complexity.
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