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Abstract7

This paper describes the development of an efficient numerical model, namely scaled bound-8

ary finite-element method (SBFEM) for linear waves interaction with cylindrical structures9

of arbitrary shapes. The two-dimensional Helmholtz equation is firstly weakened in the cir-10

cumferential direction, so that the governing partial differential equation is transformed to11

an ordinary matrix differential equation in radial direction, and is solved fully analytically.12

As a key element, a virtual porous circular cylinder surrounding the cylindrical structures is13

introduced so that the entire computational domain is partitioned along the virtual cylinder14

into an unbounded and several bounded sub-domains with common interfaces. The princi-15

ple innovation is that, the present SBFEM model chooses Hankel function as a base solution16

for the unbounded sub-domain, while a power series is used for the internal bounded sub-17

domains. The approach discretises only the common interfaces of the sub-domains with18

surface finite-elements, and fewer elements are required toobtain very accurate results.19

Numerical simulations show that the new SBFEM model offers aconsiderable improve-20

ment by far in its numerical performance, as well as in the range of physical phenomena21

that is capable of simulating. The wave forces and run-ups are presented for a single and22

multiple cylindrical structures of different cross sectional shapes. Influences of the incident23

wave parameters and structural configurations on the hydrodynamics are examined.24
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cylindrical structure26
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1 Introduction27

Interaction of water waves with a large vertical cylinder has been widely investi-28

gated both numerically and experimentally due to its theoretical and practical im-29

portance, especially to ocean engineers. Havelock [1] developed the theory initially30

for the special case of infinite water depth, and it was later extended by MacCamy31

and Fuchs [2] to apply in finite water depth. The analytical solution for linear32

plane waves diffracted by a large vertical circular cylinder in intermediate water33

depths was later validated by Chakrakarti and Tam’s experiment [3]. Chakrabarti34

and Tam [3] revealed that the linear diffraction solution isreasonably accurate at35

least forH/h ≤ 0.25 (H is wave height andh is water depth) and a range ofka36

(k is wave number anda is cylinder radius) between 0 and 3. On the basis of the37

linearised long-wave approximation, Chen and Mei [4] presented an exact solution38

of wave forces on an elliptical cylinder via Mathieu functions. Their solution was39

later compared by Williams using two approximate methods [5].40

For a cylinder with cross-sections other than a circle or ellipse, however, no analyti-41

cal solution has been reported. Thus, numerical approximation is mainly resorted to42

investigate the wave run-ups and forces on the cylinder besides physical model ex-43

periments. Most of the previous numerical studies were based on the two versatile44

numerical schemes: finite-element method (FEM) (e.g., [6])and boundary-element45

method (BEM) (e.g., [7, 8]). Although FEM has achieved remarkable successes in46

structural mechanics and fluid mechanics with its great advantage of a wide variety47

of element types, absorbing boundary condition or infinite element technique has to48

be introduced for wave-structure interaction in unboundeddomain. For short inci-49

∗ Corresponding author. Tel.: +44 (0)191 222 6670; fax: +44 (0)191 222 5491.

Email address:L.Tao@ncl.ac.uk (Longbin Tao2).
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dent waves especially in three-dimensional problems, the whole computation work50

is enormous. BEM, on the other hand, has the inherent advantage for wave-structure51

interaction in unbounded domain with the property of reducing the spatial dimen-52

sion by one. However, fundamental solutions are required and singular integrals53

exist. Futhermore, it may suffer from the problems caused byirregular frequencies54

and sharp corner.55

Recently, the scaled boundary finite-element method (SBFEM), originally devel-56

oped to solve soil-structure interaction problems (e.g., [9]), has been successfully57

applied to water wave diffraction, in which the radiation condition at infinity is re-58

quired to be satisfied by the scattered waves. Tao et al. [10] applied the SBFEM to59

solve short-crested waves interaction with a circular cylinder. Instead of using an60

algebraic series, Tao et al. [10] chose Hankel function to solve the Helmholtz equa-61

tion in the unbounded domain. The radial differential equation is solved fully ana-62

lytically in all frequency ranges. Without relying on any other numerical schemes,63

the semi-analytical model for the wave diffraction by a circular cylinder is shown64

to reproduce the analytical solution for all the physical properties including wave65

run-ups, effective inertia and drag coefficients, and totalforce very accurately and66

at very low computational cost.67

Most of the approximate theories for simple structure geometries, as well as the nu-68

merical solutions for the two-dimensional structures of circular cross section pro-69

vide an important step in understanding the effects of wave diffraction on large70

bodies. The solutions have a wide range of applications, butare limited by the71

special geometry and are generally not applicable to large offshore structures of72

general geometry. Hence, it becomes necessary to take up thecase of cylindrical73

structures of arbitrary cross section in order to deal with the variety and complexity74

of design configurations encountered in modern offshore structures.75

3
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In this paper, the SBFEM model is further extended to solve water waves interaction76

with: 1) a single cylindrical structure of arbitrary shape;2) multiple structures sys-77

tem. The present approach applied domain decomposition technique by introduc-78

ing a porous circular cylinder surrounding a single or multiple cylinders of arbitrary79

cross section. The fluid domain is therefore divided into an unbounded sub-domain80

and several bounded sub-domains. For the outer unbounded sub-domain, a semi-81

analytical solution is obtained by employing a base solution in terms of the Hankel82

function of the first kind which satisfies the radiation boundary condition at infinity,83

while for the bounded sub-domains, the semi-analytical solutions are given by ma-84

trix power series. Detailed numerical results on wave forces and run-ups over broad85

range of incident wave parameters as well as structure configurations are presented.86

2 Mathematical model and numerical implementation87

2.1 Boundary value problem88

Consider a monochromatic wave train propagating at an angleθ with positivex89

axis. A structure system consisting of several vertical cylinders extends from the90

sea bottom to above the free surface of the ocean alongz axis (see Fig. 1).91

Tao et al. [10] showed that the solution process can be significantly simplified by92

choosing the Hankel function as a base function for wave diffraction by a circular93

cylinder. However, it is no longer valid for a cylinder with arbitrary cross section. In94

order to preserve the accuracy and efficiency of the SBFEM model and overcome95

the convergence problem associated with the algebraic series base function, an ar-96

tificial porous circular cylinder (Γc) enclosing the structure system consisting of97

several vertical cylinders is introduced. The origin is placed at the centre of the ex-98

4
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Fig. 1. A sketch of the water wave diffraction by multiple bodies.

terior circular cylinder on the mean water surface (Fig. 1).The whole fluid region99

is then divided into two regions, the interior bounded region and the unbounded100

region outside of the cylinderS0. The interior region is further divided intoq sub-101

domains,S1, S2, . . . , Sq. The following notation have been used in the paper:Φj =102

total velocity potential injth sub-domain,ΦI
0 = velocity potential of incident wave103

in S0, ΦS
0 = velocity potential of scattered wave inS0, k = total wave number,104

kx = wave number inx direction,ky = wave number iny direction,ω = wave fre-105

quency,h = water depth,A = amplitude of incident wave,a = the characteristic106

length of the interior cylinders,c = the radius of the porous circular cylinder,t =107

time,ρ = mass density of water, andg = gravitational acceleration. The subscripts108

j(j = 0, 1, 2, . . . , q) denote the physical parameters in the solution sub-domainSj .109

The velocity potentials can be decomposed by separating thevertical variablez and110

the timet from each component as111

5
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Φj(x, y, z, t) = φj(x, y)Z(z)e−iωt in Sj , (1)

ΦI
0(x, y, z, t) = φI

0(x, y)Z(z)e−iωt in S0, (2)

ΦS
0 (x, y, z, t) = φS

0 (x, y)Z(z)e−iωt in S0, (3)

where112

Z(z) =
cosh k(z + h)

cosh kh
, (4)

leading to the seabed boundary condition being satisfied. The diffraction problem113

in S0 is then governed by Helmholtz equation with the boundary condition at the114

porous interfaceΓc, and the radiation condition at infinity:115

∇2φS
0 + k2φS

0 = 0 in S0, (5)

φS
0,n + φI

0,n = −φadj,n = −iG0k(φadj− φS
0 − φI

0) on Γc, (6)

lim
kr→∞

(kr)1/2
(

φS
0,r − ikφS

0

)

= 0 on Γ∞, (7)

whereG0 is a measure of the porous effect [11] andG0 = 0,∞ represent a solid116

wall and a transparent boundary respectively,r is the radial axis,i =
√
−1 is the117

imaginary unit,n denotes the normal to the boundary, “adj” in the subscript denotes118

the physical quantities in the adjacent sub-domain, and comma in the subscript119

designates the partial derivative with respect to the following variable.120

The functionφj(x, y) (j = 1, 2, · · · , q) in the interior region is governed by the121

Helmholtz equation with the boundary conditions at the interface of the sub-domains122

Γs andΓc, and body boundaryΓb:123

6
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∇2φj + k2φj = 0 in Sj , (8)

φj = φadj on Γs, (9)

φj,n = −φadj,n on Γs, (10)

φj,n = −φS
0,n − φI

0,n = iG0k(φj − φS
0 − φI

0) on Γc, (11)

φj,n = 0 on Γb. (12)

According to Mei [12], the linear incident plane wave can be expressed by the real124

part of125

ΦI = −igA

ω
Z(z)ei(kxx+kyy−ωt), (13)

and the relationship of total velocity potential, scattered wave, and incident wave126

velocity potentials are127

Φ0 = ΦI
0 + ΦS

0 , φ0 = φI
0 + φS

0 . (14)

Eqs (5)-(12) constitute two sets of the governing equation and boundary conditions128

for the diffraction of plane waves by a cylindrical structure system with a porous129

surrounding circular cylinder, corresponding to boundaryvalue problems in several130

bounded sub-domains and an unbounded sub-domain respectively. The boundary131

condition on the porous interface is eliminated by matchingthe unbounded sub-132

domain solution and bounded sub-domain solutions onΓc, corresponding toG0 =133

∞. After obtainingΦj by solving the above boundary-value problems, the velocity,134

free surface elevation and the dynamic pressure can be calculated respectively from135

7
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vj = ∇Φj , (15)

ηj =
iω

g
φj, (16)

pj = −ρΦj,t. (17)

2.2 Scaled boundary finite-element transformation136

In this section,φj andφS
0 will both be denoted asφ for brevity, and the regionSj137

will be denoted asΩ. If the velocity boundary is defined byΓv, we have138

φ,n = v̄n, on Γv, (18)

where the overbar denotes a prescribed value.139

The finite-element method requires the weighted residuals of the governing equa-140

tion to be zero. Hence Eqs. (5), (8) and (18) are multiplied bya weighting function141

w and integrated over the flow domain and the boundary. Performing integration by142

parts, the resulting equation becomes143

∫

Ω
∇T w∇φdΩ −

∫

Ω
wk2φdΩ −

∮

Γ
wv̄ndΓ = 0. (19)

SBFEM defines the domainΩ by scaling a single piecewise-smooth curveS rela-144

tive to a scaling centre(x0, y0), which is chosen at the centre of the porous cylinder145

in this case (see Fig. 2). The circumferential coordinates is anticlockwise along146

the curveS and the normalised radial coordinateξ is a scaling factor, defined as 1147

at curveS and 0 at the scaling centre. The whole solution domainΩ is in the range148

8
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Fig. 2. The coordinate definition of SBFEM

of ξ0 ≤ ξ ≤ ξ1 ands0 ≤ s ≤ s1. The two straight sectionss = s0 ands = s1149

are called side-faces. They coincide, if the curveS is closed. For bounded domain,150

ξ0 = 0 andξ1 = 1; whereas, for unbounded domain,ξ0 = 1 andξ1 = ∞. Therefore151

the Cartesian coordinates are transformed to the scaled boundary coordinateξ and152

s with the scaling equations153

x = x0 + ξxs(s), y = y0 + ξys(s). (20)

By employing SBFEM, an approximate solution ofφ is sought as154

φA(ξ, s) = N(s)a(ξ), (21)

whereN(s) is the shape function, the vectora(ξ) is analogous to the nodal values155

same as in FEM. The radial functionaj(ξ) represents the variation of the scattered156

wave potential in the radial axisξ at each nodej, and the shape functionN(s)157

interpolates between the nodal potential values in the circumferential axiss.158

By performing scaled boundary transformation, the operator ∇ can be expressed159

9
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as [9]:160

∇ = b1(s)
∂

∂ξ
+

1

ξ
b2(s)

∂

∂s
, (22)

whereb1(s) andb2(s) are dependent only on the boundary definition161

b1(s) =
1

|J |































ys(s),s

−xs(s),s































, b2(s) =
1

|J |































−ys(s)

xs(s)































, (23)

and|J | is the Jacobian at the boundary162

|J | = xs(s)ys(s),s − ys(s)xs(s),s. (24)

From Eqs. (15) and (22), the approximate velocity can be expressed as163

vA(ξ, s) = B1(s)a(ξ),ξ +
1

ξ
B2(s)a(ξ), (25)

where164

B1(s) = b1(s)N(s), B2(s) = b2(s)N(s),s. (26)

Applying the Galerkin approach, the weighting functionw can be formulated using165

the same shape function as in Eq. (21)166

w(ξ, s) = N(s)w(ξ) = w(ξ)T N(s)T . (27)

Substituting Eqs. (21), (22), (26) and (27) into Eq. (19) results in167

10
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∫

Ω

[

B1(s)w(ξ),ξ +
1

ξ
B2(s)w(ξ)

]T [

B1(s)a(ξ),ξ +
1

ξ
B2(s)a(ξ)

]

dΩ

−
∫

Ω
k2w(ξ)T N(s)T N(s)a(ξ)dΩ−

∮

Γ
w(ξ)T N(s)T v̄ndΓ = 0,

(28)

where the incremental volume is [9]168

dΩ = |J |ξdξds. (29)

For convenience, coefficient matrices are introduced here as169

E0 =
∫

S
B1(s)

T B1(s)|J |ds, (30)

E1 =
∫

S
B2(s)

T B1(s)|J |ds, (31)

E2 =
∫

S
B2(s)

T B2(s)|J |ds, (32)

M0 =
∫

S
N(s)T N(s)|J |ds, (33)

Fs(ξ) = N(s0)
T (−v̄n(ξ, s0))|J(s0)| + N(s1)

T (−v̄n(ξ, s1))|J(s1)|. (34)

The above integrals Eqs. (30)-(33) can be computed element by element and as-170

sembled together for the entire boundary. Expanding Eq. (28) and integrating the171

terms containingw(ξ),ξ by parts with respect toξ using Green’s theorem leads to172

11
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w(ξ1)
T

[

E0ξ1a(ξ1),ξ + ET
1 a(ξ1) −

∫

S
N(s)T (v̄n(ξ1, s))ξ1ds

]

−w(ξ0)
T

[

E0ξ0a(ξ0),ξ + ET
1 a(ξ0) +

∫

S
N(s)T (v̄n(ξ0, s))ξ0ds

]

−
∫ ξ1

ξ0
w(ξ)T

[

E0ξa(ξ),ξξ + (E0 + ET
1 − E1)a(ξ),ξ − E2

1

ξ
a(ξ) + k2ξM0a(ξ) − Fs(ξ)

]

dξ

= 0.

(35)

To satisfy all sets of weighting functionw(ξ), the following conditions must be173

satisfied:174

q(ξ1) =
∫

S
N(s)T (v̄n(ξ1, s))ξ1ds, (36)

q(ξ0) = −
∫

S
N(s)T (v̄n(ξ0, s))ξ0ds, (37)

E0ξ
2a(ξ),ξξ + (E0 + ET

1 − E1)ξa(ξ),ξ − E2a(ξ) + k2ξ2M0a(ξ) = ξFs(ξ), (38)

where175

q(ξ) = E0ξa(ξ),ξ + ET
1 a(ξ). (39)

Eq. (38) is the so-called scaled boundary finite-element equation. By introducing176

the shape function, the Helmholtz equation has been weakened in the circumferen-177

tial direction, so that the governing partial differentialequation is transformed to an178

ordinary matrix differential equation in radial direction. The rank of matricesE0,179

E1, E2, M0 and vectora(ξ) is m (wherem is the number of nodes in the curveS).180

In the present study, the side-faces either coincide or are impermeable so that the181

termFs(ξ) vanishes. Therefore, the final governing equation, Eq. (38), is a homo-182

12
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geneous second-order ordinary matrix differential equation in terms of matrix of183

rankm.184

Boundary conditions, Eqs. (6) and (7) or Eqs. (12) and (10) - (11), are weakened in185

the form of Eqs. (37) and (36) respectively, indicating the relationship between the186

integrated nodal flow on the boundary and the velocity potentials of the nodes. For187

the wave diffraction problem in the unbounded regionS0, ξ0 = 1 on the boundary of188

exterior porous cylinder andξ1 = +∞ at infinity. For the boundary-value problem189

in the bounded regionSj(j 6= 0), ξ0 = 0 andξ1 = 1.190

2.3 Solution procedure191

2.3.1 Solution for unbounded sub-domainS0192

For the exterior porous circular cylinder, we have193

xs(s) = c cos(s/c), ys(s) = c sin(s/c). (40)

From Eqs. (20), (23), (24), (26) and (30)-(33),xs(s),s, ys(s),s, b1(s), b2(s), |J |,194

B1(s), B2(s), E0, E1, E2, andM0 can be calculated accordingly. The following195

relationships hold:196

E1 = 0 · I, E−1
0 M0 = c2I, (41)

E0 =
1

c

∫

S
N(s)T N(s)ds, (42)

whereI is the identity matrix of rankm.197

Using Eq. (41), pre-multiplying both sides of Eq. (38) byE−1
0 and simplifying, we198
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have199

ζ2a(ζ),ζζ + ζa(ζ),ζ − E−1
0 E2a(ζ) + ζ2a(ζ) = 0, (43)

where200

ζ = kcξ. (44)

Eq. (43) is the matrix form of Bessel’s differential equation. Considering the Som-201

merfeld radiation condition Eq. (7), it is logical to selectHrj
(ζ)Tj as a base solution202

of Eq. (43) in regionS0.203

The solution fora0(ζ) is then expressed in the series form:204

aS
0 (ζ) =

m
∑

j=1

cjHrj
(ζ)Tj = TH(ζ)C, (45)

whereTj are vectors of rankm, cj are coefficients,Hrj
(ζ) are the Hankel functions205

of the first kind, and206

T = [T1, T2, · · · , Tm], (46)

C = [c1, c2, · · · , cm]T , (47)

H(ξ) = diag[Hr1
(kcξ), Hr2

(kcξ), · · · , Hrm
(kcξ)], (48)

where “diag” denotes a diagonal matrix with the elements in the square brackets on207

the main diagonal.208

Substituting Eq. (45) into Eq. (43), and using the followingproperties of Hankel209

function210
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ζ2H ′′

rj
(ζ) = −ζ2Hrj

(ζ) + ζHrj+1(ζ) − rjHrj
(ζ) + r2

jHrj
(ζ), (49)

ζH ′

rj
(ζ) = −ζHrj+1(ζ) + rjHrj

(ζ), (50)

where the prime and the double prime denote the first and second derivatives with211

respect to the argumentζ respectively, we have212

m
∑

j=1

(E−1
0 E2 − r2

j I)Tj · cjHrj
(ζ) = 0. (51)

For anycjHrj
(ζ), Eq. (51) yields213

(E−1
0 E2 − r2

j I)Tj = 0. (52)

Let λj be the eigenvalues ofE−1
0 E2, thenrj =

√

λj, andTj are the eigenvectors of214

E−1
0 E2.215

Since the Sommerfeld radiation condition (7) has been satisfied by the Hankel func-216

tions, we now only consider the boundary condition (37) of the circular cylinder.217

qS
0 (kc) = E0kc

m
∑

j=1

cjH
′

rj
(kc)Tj = −

[
∫

S
N(s)T N(s)ds

]

v̄S
0n, (53)

wherev̄S
0n is the vector of nodal normal velocity of scattered wave onΓc.218

Using Eq.(45), the boundary condition onΓc can be written as219

qS
0 (kc) = kcE0THbhT−1aS

0 (kc) = −
[
∫

S
N(s)T N(s)ds

]

v̄S
0n, (54)

where220
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Hbh = diag[Hr1
(kc)′/Hr1

(kc), · · · , H ′

rm
(kc)/Hrm

(kc)]. (55)

2.3.2 Solution for bounded sub-domainSj(j = 1, 2, · · · , q)221

Define222

X(ξ) =































a(ξ)

q(ξ)































, (56)

Eq. (38) can be written as223

ζX(ζ),ζ = −ZX(ζ) − ζ2MX, (57)

where224

ζ = kaξ, (58)

M =
1

a2

















0 0

M0 0

















, (59)

and225

Z =

















E−1
0 ET

1 −E−1
0

−E2 + E1E−1
0 ET

1 −E1E−1
0

















. (60)
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According to Wolf [9], the Hamiltonian matrixZ of rankm consists of two groups226

with opposite sign eigenvalues,Λ0 and−Λ0, where the real parts of eigenvalues227

in Λ0 are all nonnegative and sorted in descending order.228

The eigenvalue problem is formulated as

ZV = −VΛ. (61)

where

Λ =

















Λ0 0

0 −Λ0

















. (62)

Usually there is one zero eigenvalue inΛ0 (marked asλm = 0), indicating a con-229

stant velocity potential component in the solution domain.This behaviour, how-230

ever, leads to two linearly dependant eigenvectors inV (Vm andVm+1), making231

the matrix of eigenvectorsV irreversible.232

Solving the eigenvalue problem of

Z2W = −WΛ̄, (63)

and marking the eigenvector corresponding to the zero eigenvalue asWm, a re-

versible Jordan matrix is constructed as

Jj =























































Vj 1 ≤ j < m or m + 1 < j ≤ 2m,

−ZWj j = m,

Wj−1 j = m + 1,

(64)

with the property of

ZJ = −JΛ̂, (65)
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where

Λ̂ =









































Λ̂0

















0 1

0 0

















−Λ̂0









































(66)

andΛ̂0 is an diagonal matrix with all the eigenvalues ofΛ0 except zero on the main233

diagonal.234

Similar to [9], the analytical solution of Eq. (57) can be expressed as235

X(ζ) = JR(ζ)ζΛζUD, (67)

whereU is an upper-triangular matrix with zeros on the diagonal,D is a coefficient236

vector, and237

R(ζ) = I + ζ2R1 + ζ4R2 + · · ·+ ζ2kRk + · · · . (68)

Writing Y(ζ) = ζU andK(ζ) = JR(ζ), and partitioning all the matrices into block238

matrix withm×m dimensions and block vector withm×1 dimensions respectively,239

Eq. (67) becomes240

X(ζ) =

















K11 K12

K21 K22

































ζΛ0 0

0 ζ−Λ0

































Y11 Y12

0 Y22

































D1

D2

















. (69)

The value atζ = 0 should be finite, thusD2 = 0.241
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Define242

A(ζ) = K11(ζ)ζΛ0Y11(ζ), (70)

Q(ζ) = K21(ζ)ζΛ0Y11(ζ), (71)

then243

a(ζ) = A(ζ)D1, (72)
q(ζ) = Q(ζ)D1. (73)

Eliminating the constant vectorD1, we have244

q(ζ) = Q(ζ)A−1(ζ)a(ζ) = K21(ζ)K−1
11 (ζ)a(ζ). (74)

Assembling the matrices in all the sub-domains and noting the boundary conditions245

(6) and (9)-(11), the whole problem can then be solved.246

All the other physical properties of engineering interest including velocity, surface247

elevation, and pressure can now be determined based on the velocity potentials by248

Eqs. (15)-(17). The total wave force can then be obtained by integrating the pressure249

along the body boundary of the cylinder.250

The following point is worth noting regarding the use of different base solutions,251

i.e. Hankel function for unbounded sub-domain and power series for bounded sub-252

domains. Similar to the approach of Wolf [9] in obtaining a solution for soil-253

structure interaction, here a power series is adopted in theform (
∑

∞

0 Cmξ̄m) in254

bounded sub-domains. The solutions are obtained as series expansions to limited255

radial distance (c), and the computation has revealed that the solution procedure is256

very accurate and efficient. However, in the unbounded sub-domain, the solution in257

the form of algebraic series (
∑

∞

0 Cmξ̄−m) would involve sums to infinity. For large258
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values ofξ̄ the series approaches the exact solution rapidly and only a few terms259

in the series need to be computed. However, this is only the case at the cylinder260

boundary (̄ξ = kc ) for high frequency waves. For low frequency waves, the series261

hardly converges to the exact solution. The Hankel function, on the other hand, is262

a perfect choice in unbounded domain to ensure the radiationcondition at infinity263

being satisfied.264

3 Model validation and applications265

In this section, the SBFEM model is first validated by comparing its semi-analytical266

predictions with analytical solutions and published results using other numerical267

methods or experiments for special cases such as wave diffraction by a circular268

cylinder and a square cylinder. Then the model is further applied to more compli-269

cated interaction problems between waves and one and two rectangular cylindrical270

structures with variable wave parameters and structure configurations.271

3.1 Wave diffraction by a circular cylinder (G0 = 0)272

When the porous effect parameterG0 = 0, the external circular cylinder is im-273

permeable, leading to the limiting case of wave diffractionby a circular cylinder.274

For this special case, there is only an unbounded solution domain and the prob-275

lem of wave diffraction by a circular cylinder can be solved explicitly by matching276

the no-slip condition on the cylinder boundary. Due to the symmetry of the phys-277

ical problem, only half of the circumference needs to be discretised. Three-noded278

quadratic elements are used in the circumferential direction as shown in Fig. 3.279

Accurate evaluation of the wave run-up and the wave excitingforces are of paramount280
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Scaling centre


unbounded

domain


Side face
Side face


Fig. 3. Scaled boundary finite-element mesh for a circular cylinder

importance in the analysis of dynamic responses of an offshore structure. Fig. 4 is281

a comparison of wave run-ups on a circular cylinder between the present SBFEM282

results and the analytical solutions given in [12]. As shownin Fig. 4, for smallka283

(= 0.5), i.e., in the range proposed by [12] where the theory and theexperiments284

have good agreement, the SBFEM results given by even two elements agree well285

with the analytical solutions. Aska increases from 0.5 to 5.0, the convergence of286

the SBFEM scheme is clearly evident as the number of elementsis increased. Even287

at ka = 5.0, accurate numerical results were obtained when merely 8 elements288

were used for the SBFEM computation.289

Fig. 5 is a comparison of wave run-ups computed by the SBFEM, BEM and the290

analytical solutions of [12] forka = 2.0. Forty (40) constant boundary elements291

are used in BEM. As can be seen in Fig. 5, the SBFEM results obtained with only292

4 elements are almost identical to the analytical solutions, a clear demonstration of293

its superior to traditional BEM.294

The relationship betweenka and the required element number for computation of295

wave forces on a circular cylinder are shown in Fig. 6. Excellent computational296
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A
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Mei, 1989
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ka = 5
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Fig. 4. The run-up of plane wave on a circular cylinder

θ/π

|η
|/

A

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

2 elements
4 elements
6 elements
BEM
Analytic results

Fig. 5. Wave run-ups on a circular cylinder (ka = 2.0).

efficiency and accuracy of the present SBFEM scheme are further demonstrated by297

examining the hydrodynamic forces. It is seen that the results of the SBFEM model298

using 8 elements is valid untilka = 10, and the model returns to satisfactory results299

in the entire linear range (0.2 < ka < 0.65) by even using 2 elements. This clearly300

demonstrates the efficiency of the present SBFEM model.301
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Fig. 6. The relationship betweenka and the required elements number for wave forces on

a circular cylinder.

3.2 Wave diffraction by a cylindrical structure system other than a circular cylin-302

der303

The accuracy and efficiency of the present SBFEM model is demonstrated by the304

above wave diffraction problem. However, the case of wave interaction with a cir-305

cular cylinder is relatively simple, the analytical solution exists and accurate nu-306

merical results can be easily obtained by traditional numerical methods. As a key307

element of the present SBFEM model, the introduction of thevirtual cylinder to308

decompose the solution domain into bounded and unbounded sub-domains and ap-309

ply different strategies in solution techniques in these sub-domains, will be further310

demonstrated by the following limiting cases.311

For the porous effect parameterG0 = ∞, the external circular cylinder is trans-312

parent, corresponding to wave diffraction by structures inthe interior region sur-313

rounded by thevirtual circular cylinder. Here we apply the SBFEM model to solve314
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the wave diffraction by a single and multiple cylindrical structures other than a315

circular cylinder, in which no fundamental solutions exist. The solution domain is316

then divided into one unbounded sub-domain outside the virtual circular cylinder317

and several bounded sub-domains inside the circular cylinder as shown in Fig. 1. By318

matching the boundary conditions on the virtual circular cylinder due toG0 = ∞,319

the solutions of the bounded and unbounded sub-domains are solved separately.320

3.2.1 Wave diffraction by a single square cylinder321

For a cylinder with sharp corners, the scaling centre in the associated bounded322

sub-domain is chosen at the corner. The discretisation along the interfaces of the323

sub-domains with three-node quadratic elements are shown in Fig. 7, wherea is324

the half width of the cylinder inx direction andb is the half length of the cylinder325

in y direction. For square cylinder,b = a. If the physical problem is symmetric326

(e.g. incident wave angleθ = 0,±π/2, π), only half of the sub-domains need to327

be discretised. In the following validation,θ = 0 is chosen so the total elements328

number are reduced to half and the wave forces iny direction are equal to zero.

Scaling centre for unbounded domain


Scaling centre for bounded domain


Side face for bounded domain


Node


N
1


N
1

N
2


a


b

x


y


Fig. 7. Scaled boundary finite-element mesh for a square cylinder

329
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Fig. 8. Comparisons of the nondimensional wave forces on a square cylinder from SBFEM,

experiments [13] and BEM.

Mogridge and Jamieson [13] measured the wave forces on a large square caisson.330

Two square caissons were tested individually in the experiment. One is 12 in. by331

12 in., the other is 2 ft. by 2 ft.. Monochromatic waves were generated in five332

water depths ranging from 9.7 to 29 in. and nine wave periods were tested from333

0.77 to 2.58 s. A number of wave heights were generated for each water depth334

and period tested [13]. Fig. 8 is a comparison of wave forces computed using the335

present SBFEM model, experimental data of [13] and BEM solutions. The meshes336

of the SBFEM solution are shown in Fig. 7, whereN1 is the element number in one337

of the interfaces of the interior sub-domains andN2 is the element number in one338

of the interfaces of an interior sub-domain and exterior sub-domain. Convergence339

test plotted in Fig. 8 shows that the wave forces converge rapidly as the number340

of elements increases. Even the very coarse mesh (N1 = 1 andN2 = 3) achieves341

excellent results, while the BEM requires finer mesh for the similar accuracy.342

Fig. 9 shows the nondimensional wave forces computed using the present SBFEM343
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Fig. 9. Comparisons of the nondimensional wave forces on a square cylinder: SBFEM vs

BEM.

model and conventional BEM. 16 three-node quadratic elements are used in the344

BEM solution and a very coarse mesh (N1 = 1 andN2 = 2) is chosen in the345

SBFEM computation. It is seen in Fig. 9 that BEM is unable to provide accurate346

result aroundka = 3.5 where the irregular frequency occurs. However, the solution347

given by the present SBFEM model using a very coarse mesh is seen to produce348

very accurate results without suffering the irregular frequency, a clear demonstra-349

tion of the superiority of the present SBFEM model.350

3.2.2 Wave diffraction by a rectangular cylinder351

For wave diffraction by a rectangular cylinder, the solution process is very similar352

to the process in Section 3.2.1. However, as the side lengthsare no longer equal353

(b 6= a in Fig. 7), the maximum wave forces is different from the forces on the354

square cylinder. Fig. 10 shows the effect of incident wave angle θ on the nondi-355

mensional total wave forces|FT |/4ρgAa2 tanh(kh). It is seen in the figure that the356

maximum wave force on a rectangular cylinder occurs when theincident wave is357
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normal to the longer side (θ = 0◦ or 90◦), while the maximum wave force on a358

square cylinder always occurs as the incident wave is parallel to the diagonal of the359

square (θ = 45◦). The minimum wave force, however, is not only dependent on360

the incident wave direction, but also related to the nondimensional incident wave361

numberka. For smallka, the minimum wave force arises as the incident wave is362

normal to the shorter side, while for largeka, it appears that minimum force can be363

resulted from two varying incident angles depending on the configuration and inci-364

dent wave number. Thus, detailed calculation should be carried out before design365

to fully optimise the structure configuration according to the dominant incoming366

wave direction.367

The effect of the nondimensional side lengthska andkb on the nondimensional368

wave forces|FT |/4ρgAb2 tanh(kh) and|FT |/4ρgAa2 tanh(kh) for θ = 0 are ex-369

amined in Figs. 11 and 12 respectively. Askb is the nondimensional length of the370

side normal to the incident wave, a similar trend of increasing wave forces with371

different slope askb increases for all differentka values is observed (Fig. 12).372

However, as can be seen in Fig. 11, increasingka (incoming wave direction) may373

increase or reduce the wave forces on the cylinder dependingon the value ofkb.374

3.3 Wave diffraction by two adjacent rectangular cylinders375

For water wave diffraction by multiple bodies as sketched inFig. 13, the interaction376

of the scattered waves of the multiple structures is not negligible. In this section,377

a cylindrical structure system consists of two rectangularcylinders placed close to378

each other in a wave field is computed using the present SBFEM model. The results379

of the nondimensional wave forces|P | (|P | = |Fx|/4ρgAah[tanh(kh)/kh]) on the380

two cylinders are compared with BEM solutions for differentconfigurationsd/L381
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Fig. 10. Variation of nondimensional wave forces on the rectangular cylindervs. incident

wave angleθ.

(L = 2a, B = 2b). PL andPR represent wave force on left cylinder (upstream)382

and right cylinder (downstream) respectively. As can be seen in Fig. 14, excellent383

agreement is achieved between the SBFEM solutions and BEM results for cases384

of relative spacing between the two cylinders fromd/L = 0.1 to 0.5. However,385

it is worth pointing out that the SBFEM computation is based on merely total 14386

elements discretised along the cylinder boundaries and interfaces.387

Fig. 15 is a plot of wave forces on two cylinders against relative spacing. Wave388

forces on both cylinders is seen to have a brief increase withincreasing spacing389
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Fig. 11. Variation of nondimensional wave forces|FT |/4ρgAb2 tanh(kh) on the rectangu-
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Fig. 12. Variation of nondimensional wave forces|FT |/4ρgAa2 tanh(kh) on the rectangu-

lar cylindervs. side lengthkb.

between the cylidners at very small gap. Such a brief increase is followed by a390

steady decrease in wave forces on both cylinders as the spacing increases until391

reaches their respectively minimum at approximatelyd/L = 1.0 for this particular392

incident wave (kL = 2). Beyond this value, wave forces on both cylinders tend393

to increase again asd/L continue to increase. It is interesting to note that for the394
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given incident wave, the upstream cylinder tends to experience larger wave force395

than downstream one when the spacing is small. However, within a range of the396

spacing close to the side length of the rectangle cross section (L), the wave force on397

the downstream cylinder appears to be slightly larger than its upstream counterpart.398

When the spacing continue to increase, the wave force on the upstream cylinder399

increases in a more rapid path and tends to be greater than that experienced by the400

cylinder in the downstream.401

Fig. 16 shows the influence of the gap between the two cylinders on the wave forces402

on the two cylinders respectively for given wave conditions(kL = 0.1, 0.5, 1.0, 1.5).403

In general, the upstream cylinder appears to experience larger wave force than the404

cylinder placed in the downstream. The oscillatory behavour of the wave forces,405

dependent on the gap, experienced by the two cylinders are the clear evidence of406

the impact on the hydrodynamics due to the existence of one cylinder to another. By407

identifying the peak values of the wave forces associated with each configuration,408

this important characteristic in the forces can be effectively applied in a design to409

reduce the wave impact on coastal and offshore structures.410

Similar to the wave diffraction by a single rectangular cylinder, Fig. 17(a) shows411

an initial decrease of wave force on the upstream cylinder atlow kL, followed by a412

sharp increase askL increases. For the configuration calculated with relative spac-413

ing d/L = 0.25 to 1.5, however, the cylinder in the down stream experiences in-414

creasing wave force askL increases even at very small lowkL (Fig. 17(b)). Since415

the flow region in the wake immediate downstream of the left cylinder has been416

significant altered due the its existence, the cylinder in the downstream interact417

with a flow field different with the incident wave from far fieldresulting differ-418

ent hydrodynamic behaviour. Increasing the gap further between the two cylinders,419

however, the hydrodynamics of the downstream cylinder should reassemble its up-420

30



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

stream counterpart as the interference between the two cylinders becomes very421

weak. It is seen in Fig. 17 that wave forces on both cylinders reach their respective422

maximums atkL = 1.0 ∼ 2.0 depending on the gap, then rapidly decrease askL423

continue to increase.424

It is worth noting that the SBFEM model can be applied to more general complex425

structure system by assigning realistic porous effect parameterG0. Example appli-426

cations in coastal and offshore engineering include rock-filled porous breakwaters427

outside harbors, and porous outer protective structures with the main structures in428

its interior, such as the Ekofisk gravity offshore structurein the North Sea.429

θ


L
 L
d


B


Fig. 13. The sketch of wave diffraction by a cylindrical structure system of twin cylinders

4 Conclusions430

A new semi-analytical scaled boundary FEM model is developed to simulate the431

interaction of linear waves with cylindrical structures ofarbitrary cross-sectional432

shapes. Several techniques are applied to ensure that the new SBFEM model is433

capable of solving wave interaction with single or multiplestructures of complex434

configuration while achieving overall high efficiency and accuracy. The solution435

domain is partitioned by the introduction of avirtual porous circular cylindersur-436

roundingthe structures. A set of the boundary-value problems in an unbounded437

sub-domain and several bounded sub-domains are then solvedsemi-analytically by438

using different base solutions. Computations of differentcases of complex config-439
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Fig. 14. Comparison of the nondimensional wave forces|Fx|/4ρgAah[tanh(kh)/kh] on

the twin cylindersvs. ka.

uration have demonstrated significant advantages exhibited in the present SBFEM440

model including a reduction of one in the spatial dimension is achieved with the441

solution procedure as the governing equations are solved analytically in the radial442

direction; the new technique requires no help from any fundamental solutions as443

required by conventional boundary element method; choice of the base solution in444

the form of Hankel function of the first kind for the unboundedsub-domain while445

applying the power series for the bounded sub-domains to further improve the com-446
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Fig. 15. Comparison of the nondimensional wave forces|Fx|/4ρgAah[tanh(kh)/kh] on

the twin cylindersvs. distanced/L (T = 2s).
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Fig. 16. Variation of nondimensional wave forces|Fx|/ρgAL2 tanh(kh) on the twin cylin-

dersvs. distanced/L.

putational accuracy and efficiency.447

The newly developed semi-analytical method is shown to reproduce the analytical448

solutions and other published results for all the physical properties including wave449

run-ups and wave forces very accurately for wave interaction with simple struc-450
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Fig. 17. Variation of nondimensional wave forces|Fx|/ρgAL2 tanh(kh) on the twin cylin-

dersvs. side lengthkL at incident wave angleθ = 0.

tures. Furthermore, in solving the linear wave interactionwith multiple complex451

structures, the SBFEM model is seen to provide solutions with excellent accuracy452

at very low computational cost. The method holds promise in solving more practi-453

cal ocean engineering problems with increased complexity.454
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