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Abstract. We have discovered that, in specific cases, decoherenc® dhe interaction with the
environment can be avoided by just introducing a specigirdyifield for an open quantum system.
We show that this phenomenon constitutes a new class of demrote-free subspaces which are
useful for passive preservation of quantum information @isduss a physical example.
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INTRODUCTION

Encoding into decoherence-free subspaces (DFS) [1, Zgsotjuantum states from the
effects of decoherence by exploiting certain symmetriehéndecoherence processes.
This encoding can be useful for guantum memory and may rettieageed for quantum
error correction and has been subject to experimental[@sts 5, 6, 7].

In this paper, we discuss a new type of DFS that is createdigird'incoherently
generated coherences™ (IGC). Such subspaces exist folircegpan systems, where
the dynamics of a quantum system can connive together watintieractions between
the system and its environment in a special way to reducehgeence. We provide an
example of a physical system that supports such states.

DECOHERENCE-FREE SUBSPACES

We study DFS in open quantum systems whose evolution is diyea Markovian
semigroup master equation. In this approach, an open quasystemsS is coupled
to the environmenR. Tracing over the degrees of freedom of the environmentsléad
a description of the system’s dynamics in terms of the redulsnsity matrixo which
describes the state of the syst&nThe evolution ofo is given by the Markovian master
equation A

p = —i[Fer, p] + Lolp], (1)

whereHes is the effective-system Hamiltonian that also includesgynéevel shifts due
to the interaction with the environmetip[p] is often called dissipative or decoherence



part of the Markovian master equation and is given by thevalg expression
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where A, > 0 andJ; are Lindblad operators which describe all possible de@otoer
processes in a quantum syst&m

DFS have been proposed as a collection of states that ungerganitary evolution
[1, 2]. Early works on DFS [2] interpreted Markovian mastguation by saying that the
first term in the equatior{ilef, p]) generates unitary evolution, wherdasgp] generates
non-unitary decoherening dynamics. With this interpretatit would be natural to
define DFS as follows:
DFS definition 1a DFS corresponds to a collection of states that satigfp(t)] = 0
for all timest. Then the evolution op will be generated by-i[Hef, p] alone, which is
unitary.

INCOHERENTLY GENERATED COHERENCES

In Ref. [8] we have shown tha&ip [p] # O is not a necessary condition generating unitary
dynamics. For systems described by Markovian master emsatpure states undergo
unitary dynamics when purity Tp?(t)] is preserved throughout the evolution. This
suggests a different definition for decoherence-free sadespin Markovian systems:
DFS definition 2 A DFS J#pgs C 75 is a collection of pure statgs(t) generated by
s that fulfill 8 Tr[p?(t)] = O for allt.

DFS definitions 1 and 2 are different in a subtle way. To shggtt lbn this we introduce
a new class of DFS states:

Definition of IGC statesStates with incoherent generation of coherences (IGC) are
statesp(t) that satisfy DFS definition 2 but not DFS definition 1, so #®atr[p?(t)] =0
with Lp[p(t)] # O.

Hence, IGC states evolve coherently, but for the - genedabohering - effect of the
dissipative part of the master equation cannot be negletiigdg their evolution. As
we have shown in Ref. [8] this is only possible if the dissyatpart does generate
a coherent, instead of decohering, effect on IGC states iBhnot possible for all
decoherence models but can occur under special circunestanc

Example

One example of a system that can support IGC states is giventiwp-level atom
with ground statd1l) and excited stat¢?) that interacts with the quantized radiation
field. In this example the environment corresponds to thxtiad field which is initially
prepared in a squeezed vacuum state. The time evolutionsodyhtem is given by the
Markovian master equation [9]
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p = —ilfio,p] + 3 [23p3" — 3"3p - p3'3) 3



where the Lindblad operator take the fodr= co_ + so; with ¢ = cosHr), s= sinh(r)
andr is the real squeezing parameter. and o_ are, respectively, the raising and
lowering operators for the two-level atom, apds the decay rate of the two-level atom
in vacuum. The reduced density matrix of the two-level cgponds to a Hermitean2
matrix with matrix elementgjj (t), i,j = 1,2.

If the system Hamiltonian takes the form

Fo = 3 vsds—)ay = 2 v/sds—c) (° o ) 7 )

then the general solution of Eqg. (3) is given by
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p22(t) =1—paa(t). (8)
This implies that the pure statg(t)) = 1/5/2) + /c|1), with corresponding density
matrix 1 S
s cs
pt) = [U)(Y| = S-I-_C( JCS ¢ ) ) 9)
solves Egs. (5-8) and thus indeed undergoes a (trivialapnévolution. Furthermore,
_ys—¢ 2cs v/cs(s—c)
Lo[p(t)] = 2stc ( JCHs—©) 2cs 70, (10)

so that|g(t)) corresponds to an IGC state: it undergoes unitary evolgi@m though
the decoherence term of the Markovian master equation isarot

The interplay between the dissipative part and the coheashbf the master equation
is critical for the existence of IGC states. To demonsttaitg tve consider the case when
the driving Hamiltonian is absent from the master equatity—= 0. The general solution



to Eq. (3) is then given by

§ p—
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c? 2 )
p22(t) ) + (022(0) — 52+02) e UL (14)

so that all states decay to

& 0

p(t — ) = ( Sz—ci—)c2 2 ) ' (15)
£+c?

Thus, without driving all pure states decay into incohereixture of ground and excited
state. We see that in this system the application of a spetrifrcng Hamiltonian can
eliminate decoherence for IGC states.

In conclusion, we have introduced a new class of decoherieeeestates for which
the effect of the dissipative part of the master equatiomusial to achieve coherence.
In the example presented above in Egs. (5-8), ondp&s(t)] = i[Hp, p(t)], so that the
driving field negates the decohering effectd gfp] and allows to preserve the state.
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