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Abstract. We have discovered that, in specific cases, decoherence due to the interaction with the
environment can be avoided by just introducing a special driving field for an open quantum system.
We show that this phenomenon constitutes a new class of decoherence-free subspaces which are
useful for passive preservation of quantum information anddiscuss a physical example.
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INTRODUCTION

Encoding into decoherence-free subspaces (DFS) [1, 2] protects quantum states from the
effects of decoherence by exploiting certain symmetries inthe decoherence processes.
This encoding can be useful for quantum memory and may reducethe need for quantum
error correction and has been subject to experimental tests[3, 4, 5, 6, 7].

In this paper, we discuss a new type of DFS that is created through "‘incoherently
generated coherences"’ (IGC). Such subspaces exist for certain open systems, where
the dynamics of a quantum system can connive together with the interactions between
the system and its environment in a special way to reduce decoherence. We provide an
example of a physical system that supports such states.

DECOHERENCE-FREE SUBSPACES

We study DFS in open quantum systems whose evolution is givenby a Markovian
semigroup master equation. In this approach, an open quantum systemS is coupled
to the environmentR. Tracing over the degrees of freedom of the environment leads to
a description of the system’s dynamics in terms of the reduced density matrixρ which
describes the state of the systemS. The evolution ofρ is given by the Markovian master
equation

ρ̇ = −i[Ĥeff,ρ]+LD[ρ], (1)

whereĤeff is the effective-system Hamiltonian that also includes energy level shifts due
to the interaction with the environment.LD[ρ] is often called dissipative or decoherence



part of the Markovian master equation and is given by the following expression

LD[ρ] =
1
2

M

∑
l=1

λl

(

[Ĵl ,ρ Ĵ†
l ]+ [Ĵl ρ, Ĵ†

l ]
)

, (2)

whereλl > 0 and Ĵl are Lindblad operators which describe all possible decoherence
processes in a quantum systemS.

DFS have been proposed as a collection of states that undergopure unitary evolution
[1, 2]. Early works on DFS [2] interpreted Markovian master equation by saying that the
first term in the equation ([Ĥeff,ρ]) generates unitary evolution, whereasLD[ρ] generates
non-unitary decoherening dynamics. With this interpretation, it would be natural to
define DFS as follows:
DFS definition 1: a DFS corresponds to a collection of states that satisfyLD[ρ(t)] = 0
for all timest. Then the evolution ofρ will be generated by−i[Ĥeff,ρ] alone, which is
unitary.

INCOHERENTLY GENERATED COHERENCES

In Ref. [8] we have shown thatLD[ρ] 6= 0 is not a necessary condition generating unitary
dynamics. For systems described by Markovian master equations, pure states undergo
unitary dynamics when purity Tr[ρ2(t)] is preserved throughout the evolution. This
suggests a different definition for decoherence-free subspaces in Markovian systems:
DFS definition 2: A DFS HDFS ⊂ HS is a collection of pure statesρ(t) generated by
HDFS that fulfill ∂tTr[ρ2(t)] = 0 for all t.

DFS definitions 1 and 2 are different in a subtle way. To shed light on this we introduce
a new class of DFS states:
Definition of IGC states: States with incoherent generation of coherences (IGC) are
statesρ(t) that satisfy DFS definition 2 but not DFS definition 1, so that∂tTr[ρ2(t)] = 0
with LD[ρ(t)] 6= 0.

Hence, IGC states evolve coherently, but for the - generallydecohering - effect of the
dissipative part of the master equation cannot be neglectedduring their evolution. As
we have shown in Ref. [8] this is only possible if the dissipative part does generate
a coherent, instead of decohering, effect on IGC states. This is not possible for all
decoherence models but can occur under special circumstances.

Example

One example of a system that can support IGC states is given bya two-level atom
with ground state|1〉 and excited state|2〉 that interacts with the quantized radiation
field. In this example the environment corresponds to the radiation field which is initially
prepared in a squeezed vacuum state. The time evolution of this system is given by the
Markovian master equation [9]

ρ̇ = −i[ĤD,ρ]+
γ
2
[2Ĵρ Ĵ†− Ĵ†Ĵρ −ρ Ĵ†Ĵ], (3)



where the Lindblad operator take the form̂J = cσ−+sσ+ with c≡ cosh(r), s≡ sinh(r)
and r is the real squeezing parameter.σ+ and σ− are, respectively, the raising and
lowering operators for the two-level atom, andγ is the decay rate of the two-level atom
in vacuum. The reduced density matrix of the two-level corresponds to a Hermitean 2×2
matrix with matrix elementsρi j (t), i, j = 1,2.

If the system Hamiltonian takes the form

ĤD =
γ
2

√
sc(s−c)σ̂y =

γ0

2

√
sc(s−c)

(

0 −i
i 0

)

, (4)

then the general solution of Eq. (3) is given by

ρ11(t) =
s

s+c
+

√
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ρ22(t) =1−ρ11(t). (8)

This implies that the pure state|ψ(t)〉 =
√

s|2〉+
√

c|1〉, with corresponding density
matrix

ρ(t) = |ψ〉〈ψ| =
1

s+c

(

s
√

cs√
cs c

)

, (9)

solves Eqs. (5-8) and thus indeed undergoes a (trivial) unitary evolution. Furthermore,

LD[ρ(t)] =
γ
2

s−c
s+c

(

2cs
√

cs(s−c)√
cs(s−c) 2cs

)

6= 0 , (10)

so that|ψ(t)〉 corresponds to an IGC state: it undergoes unitary evolutioneven though
the decoherence term of the Markovian master equation is notzero.

The interplay between the dissipative part and the coherentpart of the master equation
is critical for the existence of IGC states. To demonstrate this, we consider the case when
the driving Hamiltonian is absent from the master equation,ĤD = 0. The general solution



to Eq. (3) is then given by
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so that all states decay to

ρ(t → ∞) =

(

s2

s2+c2 0

0 c2

s2+c2

)

. (15)

Thus, without driving all pure states decay into incoherentmixture of ground and excited
state. We see that in this system the application of a specificdriving Hamiltonian can
eliminate decoherence for IGC states.

In conclusion, we have introduced a new class of decoherence-free states for which
the effect of the dissipative part of the master equation is crucial to achieve coherence.
In the example presented above in Eqs. (5-8), one hasLD[ρ(t)] = i[ĤD,ρ(t)], so that the
driving field negates the decohering effects ofLD[ρ] and allows to preserve the state.
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