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SIMPLIFIED ANALYSIS OF SHEAR-LAG IN FRAMED-TUBE 
STRUCTURES WITH MULTIPLE INTERNAL TUBES 

 

Kang-Kun Lee1, Hong Guan2, and Yew-Chaye Loo3 
 

ABSTRACT:  A simple numerical modelling technique is proposed for estimating the shear-lag 

behaviour of framed-tube systems with multiple internal tubes. The system is analysed using an 

orthotropic box beam analogy approach in which each tube is individually modelled by a box 

beam that accounts for the flexural and shear deformations, as well as the shear-lag effects. The 

method idealises the tube(s)-in-tube structure as a system of equivalent multiple tubes, each 

composed of four equivalent orthotropic plate capable of carrying loads and shear forces. The 

numerical analysis so developed is based on the minimum potential energy principle in 

conjunction with the variational approach. The shear-lag phenomenon of such structures is studied 

taking into account the additional bending stresses in the tubes. Structural parameters governing 

the shear-lag behaviour in tube(s)-in-tube structures are also investigated through a series of 

numerical examples. 

 

Key words: highrise building, framed-tube structures, shear-lag, orthotropic box beam, tube-

tube interaction 

 

1. INTRODUCTION 

 

Modern highrise buildings of the framed-tube system exhibit a considerable degree of shear-lag 

with consequential reduction in structural efficiency.  Despite this drawback, framed-tube 

structures are widely accepted as an economical system for highrise buildings.  This is because in 

the framed-tube system the lateral load resisting elements are placed on the outer perimeter. Such 

building systems are usually equipped with service cores, or internal tubes that are often designed 

to provide added lateral stiffness to the building. The internal tubes also interact with each other as 

well as with the external tube. Framed-tube structures with multiple internal tubes, or tubes-in-tube 
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structures, are widely used due to their high stiffness in resisting lateral loads and the availability 

of the internal tubes in supporting vertical loads. 

 

A typical framed-tube structure under lateral loading is shown in Fig. 1. The structure behaves 

differently from that predicted by the primary bending theory, in that the stress distribution in the 

flange wall panels is not uniform, and that in the web wall panels is nonlinear. These are illustrated 

in Fig. 2. This nonlinear phenomenon is referred to as “shear-lag”. Positive shear-lag refers to the 

case where the stresses in the corner columns of the flange frame panels exceed those in the centre 

columns. This leads to the warping of the floor slabs which, in turn, causes the deformation of the 

interior partitions and other secondary components. In the case of negative shear-lag, where the 

stresses in the centre columns exceed those in the corner columns, local buckling on the 

compression side and cracking on the tension side of the flange frame may occur. In addition, the 

tube-tube interactive stresses, referred to as the additional bending stresses, would further 

complicate the shear-lag prediction. 

 

The occurrence of shear-lag has long been recognised in hollow box girders as well as in 

tubular structures. Foutch and Chang (1982) and Chang and Zheng (1987) observed the negative 

shear-lag phenomenon in box girders. Since then negative shear-lag effects have been considered 

in box girder design. However little effort has been made to understand the cause and the 

characteristics of such phenomenon. Recently, Kristek and Bauer (1993) and Singh and Nagpal 

(1995) also observed the existence of negative shear-lag in framed-tube structures. Yet, there is no 

comprehensive study on the net shear-lag behaviour or on the tube-tube interaction. 

 

It has been noted that existing models for approximate analysis not only ignore the 

contribution of the internal tubes to the overall lateral stiffness but also neglect the negative shear-

lag effects in the tubes. Thus, these models can cater only for the structural analysis of the external 

tube but fail to consider the shear-lag phenomenon of the internal tubes. As a result, they are 

inadequate in capturing the true behaviour of such structures. Note also that the tube-tube 

interaction coupled with the negative shear-lag in the tubes further complicates the estimation of 

the structural performance and the accurate analysis of framed-tube structures. 

 

The additional bending stresses due to the tube-tube interaction are considered capable of 

revealing the shear-lag phenomenon in tube(s)-in-tube structures. However, existing simple 

analytical methods and existing commercial 3-D frame analysis programs do not take into account 
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the additional bending stresses and hence, they cannot be used to interpret the cause of the shear-

lag phenomenon existing in the tubes. In view of this, a simplified method needs to be developed 

to determine the additional bending stresses and the axial stress distributions in columns as well as 

to study the shear-lag reversal points. 

 

A simple numerical modelling technique is thus proposed for estimating the shear-lag effects 

of tube(s)-in-tube structures. Such building system is analysed using an orthotropic box beam 

analogy approach in which each tube is individually modelled by a box beam that accounts for the 

flexural and shear deformations, as well as the shear-lag effects. The method idealises the tube(s)-

in-tube structure as a system of equivalent multiple tubes, each composed of four equivalent 

orthotropic plate panels capable of carrying axial loads and shear forces. Using simplified 

assumptions in relation to the patterns of strain distributions in external and internal tubes, the 

structural behaviour is reduced to the mere solution of a single second order linear differential 

equation. The numerical analysis so developed is based on the minimum potential energy principle 

in conjunction with the variational approach. 

 

Three 40-storey framed-tube structures with single, two and three internal tubes are analysed 

using the proposed method. These structures are also analysed using a 3-D frame analysis program 

(ETABS, 1989). The results are compared to demonstrate the simplicity and accuracy of the 

proposed method. The numerical results indicating the additional bending stresses and shear-lag 

reversal points can then be used to estimate the shear-lag behaviour and its effect on such 

structures. 

 

Four nondimensional structural parameters governing the shear-lag behaviour are also 

discussed. These parameters are: 

(1) Stiffness factor Sf, i.e., the ratio of the shear rigidity and the column bending stiffness; 

(2) Stiffness ratio Sr, i.e., the ratio of the bending stiffness of the column and that of the beam; 

(3) Ratio g, number of storeys on number of bays in direction of the flange frame; 

(4) Number of internal tubes N. 

Consequently, the shear-lag characteristics of framed-tube structures with and without internal 

tubes can be identified. 
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2. SHEAR-LAG IN TUBE(S)-IN-TUBE STRUCTURES 
 

2.1 Structural modelling 

 

A discrete framed-tube structure with multiple internal tubes (2 in this case) is shown in Fig. 3. 

The structure is modelled using equivalent multiple tubes, each composed of four equivalent 

orthotropic plate panels of uniform thickness. Consequently, a framed-tube structure may be 

analysed as a continuum (Lee, et al. 1998). The floor slabs in the structure are also considered to 

be rigid diaphragms within their own plane. Thus, the high in-plane stiffness of the slabs restricts 

the relative lateral displacements between the multiple tubes at each level. 

 

It is assumed that the structure has two horizontal axes of symmetry (x and y) with the vertical 

axis (z) passing through the centre of its cross section. Based on this assumption, the strain 

distributions in the external web frame panels are identical, whereas those in the external flange 

frame panels are equal but opposite (see Fig. 4). A similar assumption for the strain distributions in 

the external tube is also applied to the internal tubes (Lee, et al. 1998). 

 

2.2 Vertical displacements in flange and web frame panels 
 

The shape functions adopted herein are the modified Reissner’s functions (Reissner, 1945; Lee, et 

al., 1998). Essentially, the modification involves up-grading the displacement functions from the 

parabolic variation to a cubic one. This is to account for the independent distribution of vertical 

displacement in the flange frame panels, thereby taking into consideration the net shear-lag. The 

function for estimating the distribution of vertical displacement in the web frame panel is also 

assumed to be cubic. A pilot study (Lee and Loo, 1997) of the modified Reissner’s functions 

indicates that they are adequate to cover the important characteristics of the shear-lag phenomenon 

in assessing the global behaviour of tube(s)-in-tube structures as well as the tube-tube interactions. 

 

Shown in Figs. 5 and 6, respectively, are the general shapes for the displacement distributions 

in the flange and web frame panels. The general expressions are assumed as, for flange frame 

panel 
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and, for web frame panel 
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where )(1 zu  and )(2 zu  are the displacement functions including shear-lag coefficients due to the 

shear deformation; w is the deflection of the structure; b and c are the half-widths of the flange and 

web frame panels of the external tube, respectively; x, y and z are the coordinates of the three 

rectangular axes (see Figs. 3 and 4). 

 

2.3 Solution method 
 

The total potential energy, V, of a framed-tube structure with multiple internal tubes is obtained by 

summing up the potential energy of the applied load and the total strain energy of the external and 

internal tubes. Or, 
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where Vis is the total strain energy of the internal tubes; w(z) is the lateral displacement of the 

structure; n(z) is the sum of the interactive forces between the external and internal tubes; M(z) is 

the total bending moment of the structure induced by the applied load (Lee, 1999). 

 

Using simplified assumptions in relation to the patterns of the displacement distributions in 

external and internal tubes, the complex total potential energy of Eq. (2) is reduced to the mere 

solution of a single second order linear differential equation. The numerical analysis is based on 

the minimum potential energy principle in conjunction with the variational approach (Ketter, et al. 

1979). 
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The total potential energy given in Eq. (2) may be rewritten symbolically as 
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where F is an assumed function which leads to the following governing differential equations 

based on the principle of minimum potential energy. 

 

For the external tube, 
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For the internal tube, 
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where )(1 zu and )(1 zui  are the undetermined functions including shear-lag coefficients of the 

external and internal tubes respectively; Pe(z) and Pi(z) are the total shear forces in the external and 

internal tubes, respectively, due to the lateral load; α1, α2, α3, β1, β2, and β3 are the constants to be 

determined using the boundary conditions; Ie, Ii and I are the second moments of area of the 

external tube, internal tubes and the entire tube(s)-in-tube system, respectively (Lee, 1999). 

 

Combining the two expressions in Eq. (4) and the same for Eq. (5) lead to 

 

 YzPXu"u e )(2
11 =−  

and 

 1
2

111 )( YzPXu"u iii =−  (6) 



 7

 

where X, Y, X1 and Y1 are given in Table 1. Note in the table that IN and IiN are the second moments 

of area of the flange panels in the external and internal tubes, respectively. 

 

The general solutions for the two non-homogeneous equations given in Eq. (6) are 

 

 u1(z) = AsinhXz + BcoshXz + CPe(z)Y 

and 

 ui1(z) = DsinhXiz + EcoshXiz + FPi(z)Yi (7) 

 

where A, B, C, D, E and F are the constants to be determined according to the loading conditions. 

 

2.4 Bending stresses 
 

The bending stresses of tube(s)-in-tube structures can be derived from the governing differential 

equations. Note that the shear-lag phenomenon is due to the distributions of the additional bending 

stresses, the expressions of which can be derived from those for the axial bending stresses. The 

axial bending stress distributions including the shear-lag effect are expressed in terms of a series of 

linear functions of its second moment of area, I, of the entire tube(s)-in-tube system and its 

corresponding geometric and material properties as well as the applied load (Lee, et al. 1998). 

 

For a tube(s)-in-tube structure, the bending stresses in the external tube are 
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for the external flange frame panel, where cwEf ′′=σ ; and 
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for the external web frame panel, where xwEw ′′=σ . 
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The bending stresses for the internal flange frame panels are derived as 
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for a structure with single internal tube; 
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for a structure with an even number of internal tubes, where ibnann ⎟
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for a structure with an odd number of internal tubes, where ibnann ⎟
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Finally for the internal web frame panel, the bending stress is 
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Note in Eq. (8) that, fsσ  and wsσ  are, respectively, the additional bending stresses in the 

external flange and web frame panels; fisσ  and wisσ  are the corresponding stresses in the internal 

flange and web frame panels. These additional bending stresses are due to the shear-lag effect 

induced by the tube-tube interaction where 
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Note also that Mi(z) is the total bending moment of the internal tubes; N is the number of 

internal tubes; H is the total height of the building; q is the uniformly distributed load per unit 

height; a is the space between internal tubes, and bi and ci are the half-widths of the flange and 

web frame panels of the internal tubes, respectively (see Fig. 4). 

 

In Eq. (8a), )( byfs =σ  is the additional bending stress in the corner columns of the external 

flange frame panels due to the shear-lag effect. If this stress )( byfs =σ  has the same sign as the 

bending stress )( byf =σ  generated by the external moment, stress )( byzf =σ  given in Eq. (8a) 

is then larger than that computed by the elementary bending theory. This is due to the effect of the 

positive shear-lag. In a reverse case, however, it is very difficult to predict whether )( byzf =σ  is 

larger or smaller than the computed value using the primary bending theory. This is a result of the 

negative shear-lag effect. The magnitude of this effect depends on the ratio of fsσ  and fσ . Thus 

the additional bending stress, fsσ , plays an important role in demonstrating the effect of positive 

and negative shear-lag. A similar procedure can also be applied to evaluate the additional bending 

stress in the internal flange frame panels. 

 

 

3. NUMERICAL EXAMPLES 
 

To demonstrate the simplicity and accuracy of the proposed method, three reinforced concrete 

framed-tube structures (of 40-storey construction) with single, two and three internal tubes are 

analysed and the results are compared with the 3-D frame analysis program (ETABS, 1989). The 

additional bending stresses due to the proposed method are estimated to reveal the shear-lag 

phenomenon. Note that the 3-D frame analysis program does not take into account the additional 

bending stresses. 
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The plan views of the three structures are shown in Fig. 7. Each building has a 3.0 m story 

height and 2.5 m centre-to-centre column spacing. The second moment of area of each internal 

tube is taken to be 90 m4, and Young’s modulus E and shear modulus G are taken to be 2.06×1010 

N/m2 and 2.0×109 N/m2, respectively. Note for the sake of comparison that, the values of E and G 

are computed on the basis of Kwan’s theory (Kwan, 1994). To consider the critical case, a 

uniformly distributed lateral load of 88.24 KN/m is applied along the entire height of the structure. 

 

Column axial forces in the flange frame panels of external and internal tubes are computed, at 

the 1st and 10th levels, using the proposed method. The results are presented in Fig. 8. Compared to 

the 3-D frame analysis results (ETABS, 1989), the proposed method yields good correlation in 

column axial force distributions for all three structures. 

 

Comparisons of the lateral deflections of the structures as well as the column axial forces in 

web frame panel of external tube also show the accuracy of the proposed method (Lee, 1999). It is 

worth mentioning that the proposed method requires minimal data preparation effort, and for each 

analysis, the personal computer running time is absolutely negligible when compared with the 3-D 

frame analysis program. In view of its simplicity, efficiency and accuracy, the proposed method is 

considered to be a suitable design tool for framed-tube structures, particularly at the preliminary 

stage where numerous analysis iterations need to be carried out. 

 

Fig. 9 shows the distributions of the additional bending stresses in the centre and corner 

columns of the flange frame panels for the three structures. It is found, for the internal tubes, that 

as their second moments of area are identical, increasing the number of internal tubes gradually 

reduces the increment in the additional bending stresses from centre to corner columns. In other 

words, a reduction occurs in the bending stresses between centre and corner columns. As a result, 

the shear-lag is also reduced. However, the number of internal tubes does not have much effect on 

the additional bending stresses in the external tubes. It is further observed, in the external tubes, 

that the effect of the positive shear-lag is greater at the bottom of the structures, whereas the 

negative shear-lag occurs at around 1/4 of the building height. For all three structures, the shear-

lag reversal point for the internal tubes locates at the bottom of the structures. 
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4. STRUCTURAL PARAMETERS GOVERNING THE SHEAR-LAG 
 

Due to the increase in the natural flexibility of the spandrel beams, which tie the closely spaced 

columns at each floor level, the positive and negative shear-lag phenomenon is more prominent in 

tube(s)-in-tube structures than in any other system. In addition, the shear-lag phenomenon and the 

tube-tube interaction in such structures further complicate the evaluation of the structural 

behaviour. 

 

The shear-lag phenomenon is further investigated through four structural parameters. 

Numerical examples considered herein are a series of 40-storey buildings having identical plan 

dimensions, material properties (i.e. E and G) and loading condition as those adopted in the 

preceding section. 

 

The four nondimensional structural parameters governing the shear-lag behaviour are: 

 

(1) Stiffness factor Sf representing the ratio of the shear rigidity and the column bending 

stiffness, or 
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where Ic and Ib are, respectively, the second moments of area of the column and the beam; Ac is the 

sectional area of the column; h is the storey height; d is the bay width or span. 

 

(2) Stiffness ratio Sr, the ratio of the bending stiffness of the column and that of the beam, or 
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(3) Ratio g, i.e. the number of storeys on the number of bays in the external flange frame 

panel; 

 

(4) Number of internal tubes, N. 

 



 12

Table 2 shows the four parameters Sf, Sr, g and N calculated for the tube(s)-in-tube structures. 

In total, thirty-three such structures with different numbers of internal tubes are analysed. They are 

classified as the F, R, ST, DT and CT groups. The grey areas in the table indicate the varying 

structural parameters for each group. Note that the F group contains structures of different Sf (by 

modifying the value of Ac), while keeping Ic, Ib, Sr, g and N constant. The R group contains 

structures of different Sr (by changing the values of Ic and Ib), while keeping Sf, g and N constant. 

Similarly, the ST and DT (CT) groups contain structures of different g and N, respectively, while 

keeping the other parameters constant. Note also that the difference between the DT and CT 

groups is that the second moments of area of internal tubes are varying in DT group but constant in 

CT group. 

 

To investigate the shear-lag phenomenon in the front columns of the external flange frame 

panel, the ratio p is introduced as the ratio of the axial force in the corner column and that in the 

centre column. A value of p greater than unity suggests a positive shear-lag. Otherwise, a negative 

shear-lag is indicated. The storey level at which p is equal to unity represents the level of shear-lag 

reversal. 

 

Fig. 10 shows the variation of p along z/H in the external flange frame panel for different 

values of Sf (i.e., 0.026, 0.04 and 0.08) while keeping Ic, Ib, Sr, g and N constant. It is found that 

when Sf increases, the shear rigidity of a bay increases and hence resulting in a relatively more 

uniform distribution of the column axial forces, i.e., the positive and negative shear-lags are 

reduced. 

 

Shown in Fig. 11 is the variation of p along z/H for different values of Sr (i.e., 0.415, 0.833 and 

1.673) while keeping Sf , g and N constant. An increase in stiffness ratio Sr implies an increase in 

the column restraints to the rotation of the beams, hence resulting in an increased shear rigidity of 

a bay, i.e., the shear-lag is reduced. Note, however, that the stiffness ratio has insignificant effect 

on the shear-lag phenomenon. 

 

The variation of p along z/H for the three values of g (i.e., 1.66, 3.33 and 5.0) is presented in 

Fig. 12. Note that Sf, Sr and N remain constant. It is observed that the shear-lag, either positive or 

negative, decreases with an increase in the g values. This phenomenon appears to be similar for 

structures with single and two internal tubes, and those without. It is concluded that the larger the 
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ratio g (i.e., the number of storeys on the number of bays), the greater the cumulative shear 

stiffness of the beams. This in turn leads to a reduced shear-lag. 

 

Fig. 13 shows the variation of p along z/H for various values of N. Comparisons are made for 

varying and constant second moment of area of the internal tube (i.e., Ii). It is observed in Fig. 

13(a) that when N and Ii increase, the lateral stiffness provided by the internal tube also increases, 

which in turn results in a reduction in shear-lag. On the other hand, however, when N increases 

while keeping Ii constant, little difference is found on the shear-lag behaviour between each of the 

three structures (see Fig. 13(b)). This implies that the structural response depends more on the 

second moment of area of the internal tubes than the number of the internal tubes. In addition, it is 

observed that for structures with lower values of Ii, the shear-lag phenomenon is more pronounced 

in the negative region than in positive. 

 

Figs. 10 to 13 also show that the shear-lag reversal takes place at a low level (i.e., at about 1/3-

1/4 the height of the structure) except for the structure with a low value of g (i.e., g=1.66) (see Fig. 

12). Furthermore, the shear-lag reversal point moves towards the top of the structure with the 

increasing effects of shear-lag. This phenomenon is more pronounced for structures with lower values 

of Sf and g, as apparent in Figs. 10 and 12. 

 

5. CONCLUSION 
 

A simple numerical method is proposed for the approximate analysis of framed-tube structures 

with multiple internal tubes. The proposed method takes into account the additional bending 

stresses due to the tube-tube interaction in the tubes, which are observed to have significant effect 

on the shear-lag phenomenon. By quantifying the additional bending stresses and the shear-lag 

reversal points, a better understanding of the shear-lag phenomenon of tube(s)-in-tube structures is 

provided. 

 

The accuracy, simplicity and efficiency of the proposed method are verified through the 

comparisons with a 3-D frame analysis program. The comparative study is carried out based on the 

analysis of various types of tube(s)-in-tube structures. The accuracy and economy of the proposed 

method is confirmed. 
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Four structural parameters governing the shear-lag behaviour of tube(s)-in-tube structures are 

investigated through a series of 40-storey buildings. The investigation has provided important 

information associated with the net shear-lag, hence capable of maximising the structural 

performance of framed-tube structures. The study indicates that a decrease in ratios Sf, Sr, g and Ii 

results in an increase in shear-lag. The shear-lag phenomenon, either positive or negative, is more 

pronounced for structures with lower values of Sf, Sr, g and Ii.  It is observed that if the positive 

shear-lag is higher, so is the negative shear-lag, and that the shear-lag reversal point moves 

towards the top of the structure with the increasing effects of shear-lag. It is also found, in the 

flange frame panels, that the shear-lag reversal points in the internal tubes take place at a lower 

level than those in the external tubes. 

 

The proposed method is simple, accurate and economical.  It is especially suitable for use at 

preliminary design stages where a large number of structures with different features are required to 

be analysed repeatedly. 
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NOTATION 
 
The following symbols are used in this paper: 

 

Ac = sectional area of column 

b, c = half-widths of external flange and web frame panels, respectively 

bi, ci = half-widths of internal flange and web frame panels, respectively 

d = bay width 

E, G = elastic and shear moduli of equivalent tube, respectively 

g = number of storeys on number of bays in external flange frame 

panel 

H, h = total height of building and storey height 

Ic, Ib = second moments of area of column and beam, respectively 

Ie, Ii, I = second moments of area of external tube, internal tube and entire 

tube(s)-in-tube system, respectively 

IN,  IiN = second moments of area of flange panel in external and internal tubes, 

respectively 

M(z), Mi(z) = total bending moment of entire system and bending moment of internal 

tube 

N = number of internal tubes 

n(z) = sum of interactive forces between external and internal tubes 

Pe, Pi = shear forces of external and internal tubes, respectively 

q = uniformly distributed load per unit height 

Sf , Sr = stiffness factor and stiffness ratio 

U1 (z,  y), U2 (z , x) = displacement distributions in external flange and web frame panels, 

respectively 

Ui1 (z ,  y), Ui2 (z , x) = displacement distributions in internal flange and web frame panels, 

respectively 

)(1 zu , )(2 zu  = undetermined functions for displacement distribution in external flange 

and web frame panels, respectively 

)(1 zui , )(2 zui  = undetermined functions for displacement distribution in internal flange 

and web frame panels, respectively 

)(1 zu′ , )(2 zu′  = undetermined strain functions for strain distribution in external flange 

and web frame panels, respectively 

)(1 zui′ , )(2 zu i′  = undetermined strain functions for strain distribution in internal flange 
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and web frame panels, respectively 

V = total potential energy 

Vis = total strain energy of internal tubes 

w(z) = deflection 

x, y, z = coordinates of three rectangular axes 

cε  = strain in corner columns of external tube 

ε εzf zw,  = strains in external flange and web frame panels, respectively 

γ γx z y z,  = shear strains in web and flange frame panels of external tube, 

respectively 

fσ , wσ  = primary bending stresses in external flange and web frame panels, 

respectively 

fsσ , wsσ  = additional bending stresses in external flange and web frame panels, 

respectively 

fisσ , wisσ
 

 additional bending stresses in internal flange and web frame panels, 

respectively 

zfσ , zwσ  = bending stresses in flange and web frame panels of external tube, 

respectively 

zifσ , ziwσ  = bending stresses in flange and web frame panels of internal tube, 

respectively 
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Table 1. Formulas for X, Y, X1 and Y1 

 

Internal tubes  

Variables 

 

External tube 

 

Variables single tube multiple tubes 

(2, 3, 4, ….) 

X 

21
4

45
2

11

+⋅⋅
⋅

b
c

I
IE

G
c

e

N
 

X1 

⎟
⎠

⎞
⎜
⎝

⎛ +⋅⋅
⋅

21
4

45
21

11

i

i

i

iNi

b
c

I
I

N
E
G

c
 

Y 

b
c

I
IEI

e

Ne ⋅+
⋅

7
30

11  
Y1 

i

i

i

iNi

b
c

I
IEI ⋅+

⋅

7
30
11  

i

i

i

iNi

b
c

I
IEI ⋅+⋅

⋅

14
45

4
3

11  
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Table 2. Structural parameters (Sf , Sr , g and N) for the tube(s)-in-tube structures 

Model No. Sf Sr g N 

1-1F 0.04 0.833 3.33 0 

1-2F 0.08 0.833 3.33 0 

1-3F 0.026 0.833 3.33 0 

2-1F 0.04 0.833 3.33 1 

2-2F 0.08 0.833 3.33 1 

2-3F 0.026 0.833 3.33 1 

3-1F 0.04 0.833 3.33 2 

3-2F 0.08 0.833 3.33 2 

3-3F 0.026 0.833 3.33 2 

1-1R 0.026 0.833 3.33 0 

1-2R 0.026 1.673 3.33 0 

1-3R 0.026 0.415 3.33 0 

2-1R 0.026 0.833 3.33 1 

2-2R 0.026 1.673 3.33 1 

2-3R 0.026 0.415 3.33 1 

3-1R 0.026 0.833 3.33 2 

3-2R 0.026 1.673 3.33 2 

3-3R 0.026 0.415 3.33 2 

1-ST40 0.04 0.833 3.33 0 

1-ST60 0.04 0.833 5 0 

1-ST20 0.04 0.833 1.66 0 

2-ST40 0.04 0.833 3.33 1 

2-ST60 0.04 0.833 5 1 

2-ST20 0.04 0.833 1.66 1 

3-ST40 0.04 0.833 3.33 2 

3-ST60 0.04 0.833 5 2 

3-ST20 0.04 0.833 1.66 2 

1-DT 0.04 0.833 3.33 0 

2-DT 0.04 0.833 3.33 1 
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3-DT 0.04 0.833 3.33 2 

1-CT 0.04 0.833 3.33 1 

2-CT 0.04 0.833 3.33 2 

3-CT 0.04 0.833 3.33 3 
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Fig. 1 Typical framed-tube structure 

 
 

Negative shear lag

Positive shear lag

Bending stress in
external flange frame

Bending stress in
internal flange frame

Internal flange Internal web

External web

External flange

Lateral load

Stress with no shear lag
Stress with shear lag
Tube-tube interactive force

Bending stress in
internal web frame

Compression

Bending stress in
external web frame

 
 
 

Fig. 2 Stress distribution of laterally loaded tubes-in-tube structure 
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Fig. 3 Equivalent framed-tube structure with multiple (two) internal tubes 
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Fig. 4 Typical plan of equivalent tubes-in-tube structure 
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Fig. 5 Distribution of vertical displacement in flange frame panel 
 

 
 
 
 

2 c

),(2 xzU

c
dz
dw

 
 

 
 

Fig. 6 Distribution of vertical displacement in web frame panel 
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 Fig. 7 Plan views of three framed-tube structures with different numbers of internal tubes 
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(a) Tube-in-tube structure 
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(b) 2 tubes-in-tube structure 
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(c) 3 tubes-in-tube structure 

 

 
 

Fig. 8 Column axial forces in flange frame panels of external and internal tubes (along y-axis) 
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(a) Tube-in-tube structure 
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(b) 2 tubes-in-tube structure 
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(c) 3 tubes-in-tube structure 
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Fig. 9 Additional bending stresses in centre and corner columns of the three tube(s)-in-tube 

structures 
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(a) Tube structure (N=0, Sr=0.833, g=3.33) (b) Tube-in-tube structure (N=1, Sr=0.833, g=3.33) 
   

 
 

 
 

(c) 2 tubes-in-tube structure (N=2, Sr=0.833, g=3.33) 
 
 
 

Fig. 10 Variation of p for different values of Sf 
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(a) Tube structure (N=0, Sf=0.026, g=3.33) (b) Tube-in-tube structure (N=1, Sf=0.026, g=3.33) 
 
 

 
 

(c) 2 tubes-in-tube structure (N=2, Sf=0.026, g=3.33) 
 
 

Fig. 11 Variation of p for different values of Sr 
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(a) Tube structure (N=0, Sf=0.04, Sr=0.833) (b) Tube-in-tube structure (N=1, Sf=0.04, Sr=0.833) 
 
 

 
 

(c) 2 tubes-in-tube structure (N=2, Sf=0.04, Sr=0.833) 
 
 

Fig. 12 Variation of p for different values of g 
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 (a) For different second moment of (b) For constant second moment of 
 area of internal tube (Ii (m4)) area of internal tube (Ii (m4)) 
 
 

Fig. 13 Variation of p for different values of N (Sf=0.04, Sr=0.833, g=3.33) 
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