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A Mathematical Programming Approach for Strategy Ranking 

 
Abstract 

Before working out their final strategic plan, managers must consider several feasible 

alternatives and contemplate various factors behind each of them. It is a very complicated task 

to rank the strategies. The objective of this paper is to propose a method that allows strategy 

to be evaluated on both ordinal and cardinal criteria on the one hand, and on the other hand is 

to use a method for ranking strategies without relying on weight assignment by decision 

makers. A numerical example demonstrates the application of the proposed method. 

 

Keywords: Strategic Management, Strategy ranking, Cardinal and ordinal data, 

Minimax regret-based approach 

 

1. Introduction 

Strategic management can be considered as a collection of decisions and actions taken by 

the decision maker in consultation with all levels within the company to determine the long-

term activities of the company. The experiences of many businesses, indicate that the highest 

profitability levels are found in businesses that possess both types of competitive advantage at 

the same time. In other words, businesses that have one or more value chain activities that 

truly differentiate them from key competitors and also have value chain activities that let them 

operate at a lower cost will consistently outperform their rivals that do not. So, the challenge 

for today’s decision makers is to evaluate and choose business strategies based on core 

competencies and value chain activities that sustain both types of competitive advantage 

simultaneously. Among multiple strategies, managers choose one of those strategies. If the 

analysis identified a clearly superior strategy or if the current strategy will clearly meet future 

company objectives, then the decision is relatively simple. Such clarity is the exception, 

however, and strategic decision makers often are confronted with several viable alternatives 

rather than the luxury of a clear-cut choice. Under these circumstances, several criteria such 

as risk, ability of strategy to satisfy agreed-on objectives with the least resources and the 

fewest negative side effects influence the strategic choice. 

Some approaches have been used for strategy selection and ranking in the past. Corner 

and Kirkwood (1991) surveyed multi-attribute decision analysis applications in operations 
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research literature and found many of the applications to address strategic decisions. Wind 

and Saaty (1980) applied the Analytic Hierarchy Process (AHP) to the portfolio decision of a 

firm whose management is concerned with the determination of the desired target portfolio 

and allocation of resources among its components. Wind (1987) presented an application for 

corporate strategy for evaluating strategic options on multiple and interdependent objectives 

to ensure effective utilization of resources. Hastings (1996) provided a method for ranking 

strategy on quantitative, qualitative and intangible criteria based on AHP. Chiou et al. (2005) 

proposed a fuzzy AHP to derive the weight of considered criteria and the final synthetic 

utility values, and then ranked the importance of the criteria as well as the sustainable 

development strategies. However, AHP has two main weaknesses. First subjectivity of AHP 

is a weakness. Second AHP could not include interrelationship within the criteria in the 

model. Chien et al. (1999) established a systematic approach that incorporates neural 

networks in conjunction with portfolio matrices to assist managers in evaluating and forming 

strategic plans. Based on the principle of dispersing risks, they also provided a linear integer 

programming model, which helps in allocating the annual budget optimally among proposed 

strategies. However, their proposed approach is computational burden. Meanwhile, their 

linear integer programming model considers just two factors including cost and profit of the 

strategy. Kajanus et al. (2001) presented the principles of even swaps method and its use was 

illustrated by applying it to a case of strategy selection in a rural enterprise in Finland. 

Nevertheless, in the case of strategies abundance, the pairwise comparison between strategies 

is computational burden. In addition, their proposed method suffers from subjective 

judgments. 

However, all of the abovementioned references suffer from subjective judgments. A 

technique that can deal with both ordinal and cardinal data and not relying on weight 

assignment by decision makers is needed to better model such situation. A critical issue of 

traditional approaches are the correct choice of the weights. These must be assigned by the 

decision maker or a decision committee and are often very subjective measures. The basic 

idea of DEA is that the weights are chosen by an optimization procedure and not by the 

decision maker. Weights are assigned optimally for every input and output attribute. This 

makes the approach more robust against human inference. 

To the best of author’s knowledge, there is not any reference that deals with strategy 

ranking without relying on weight assignment by decision makers. The objective of this paper 

is to propose a method that allows strategy to be evaluated on both ordinal and cardinal 

criteria on the one hand, and on the other hand is to use a method for ranking strategies 
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without relying on weight assignment by decision makers. In summary, the approach 

presented in this paper has some distinctive contributions. 

• The proposed model does not demand weights from the decision maker. 

• The proposed model considers cardinal and ordinal data for strategy ranking. 

• The proposed model deals with imprecise data in a direct manner. 

• Strategy ranking is a straightforward process carried out by the proposed model. 

 

This paper proceeds as follows. In Section 2, the method that ranks the strategies is 

introduced. Numerical example and managerial implications are discussed in Sections 3 and 

4, respectively. Section 5 discusses concluding remarks. 

 

2. Proposed method for ranking strategies 

Data Envelopment Analysis (DEA) proposed by Charnes et al. (1978) (CCR model) and 

developed by Banker et al. (1984) (BCC model) is an approach for evaluating the efficiencies 

of Decision Making Units (DMUs). This evaluation is generally assumed to be based on a set 

of cardinal (quantitative) output and input factors. In many real world applications (especially 

strategy ranking problems), however, it is essential to take into account the presence of 

ordinal (qualitative) factors when rendering a decision on the performance of a DMU. Very 

often it is the case that for a factor such as strategy risk, one can, at most, provide a ranking of 

the DMUs from best to worst relative to this attribute. The capability of providing a more 

precise, quantitative measure reflecting such a factor is generally beyond the realm of reality. 

In some situations such factors can be legitimately quantified, but very often such 

quantification may be superficially forced as a modeling convenience. In situations such as 

that described, the data for certain influence factors (inputs and outputs) might better be 

represented as rank positions in an ordinal, rather than numerical sense. Refer again to the 

strategy risk example. In certain circumstances, the information available may permit one to 

provide a complete rank ordering of the DMUs on such a factor. Therefore, the data may be 

imprecise. 

Outcome of DEA models is an efficiency score equal to one to efficient DMUs and less 

than one to inefficient DMUs. So, for inefficient DMUs a ranking is given but efficient 

DMUs can not be ranked. One problem that has been discussed frequently in the DMUs 

ranking literature, has been the lack of discrimination in DEA applications, in particular when 

there are insufficient DMUs or the number of inputs and outputs is too high relative to the 
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number of DMUs. In the strategy selection problem a difficulty arises when attempting to 

identify the “best”, when multiple candidates have an efficiency score of 1. If a decision 

maker arbitrarily selects an efficient strategy, then there is a possibility that this system is a 

niche member performing well on few inputs and outputs, and doing poorly with a majority of 

input-output measures. This paper proposes to use a formulation called "Minimax Regret-

based Approach" (MRA) to rank the strategies.  

In this section, the model that can rank the efficiency of strategies in the presence of both 

ordinal and cardinal data (without relying on weight assignment by decision makers) is 

presented. Suppose that there are n strategies (DMUs) to be evaluated. Each DMU consumes 

m inputs to produce s outputs. In particular, DMUj consumes amounts Xj ={ }ijx  of inputs (i=1, 

…, m) and produces amounts Yj={ }rjy  of outputs (r=1, …, s). Without loss of generality, it is 

assumed that all the input and output data xij and yrj (i=1, …, m; r=1, …, s; j=1, …, n) cannot 

be exactly obtained due to the existence of uncertainty. They are only known to lie within the 

upper and lower bounds represented by the intervals [ ]U
ij

L
ij xx ,  and [ ]U

rj
L
rj yy , , where 0>L

ijx  and 

0>L
rjy . 

In order to deal with such an uncertain situation, the following pair of linear programming 

models has been developed to generate the upper and lower bounds of interval efficiency for 

each DMU (Wang et al. 2005): 
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where jo is the DMU under evaluation (usually denoted by DMUo); ur and vi are the weights 

assigned to the outputs and inputs; U
joθ  stands for the best possible relative efficiency 

achieved by DMUo when all the DMUs are in the state of best production activity, while L
joθ  

stands for the lower bound of the best possible relative efficiency of DMUo. They constitute a 

possible best relative efficiency interval [ ]U
jo

L
jo θθ , . ε  is the non-Archimedean infinitesimal. 

In order to judge whether a DMU is DEA efficient or not, the following definition is 

given. 

 

Definition 1. A DMU, DMUo, is said to be DEA efficient if its best possible upper bound 

efficiency ;1* =U
joθ  otherwise, it is said to be DEA inefficient if .1* <U

joθ  

 

Now, the method of transforming ordinal preference information into interval data is 

discussed, so that the interval DEA models presented in this paper can still work properly 

even in these situations. 

Suppose some input and/or output data for DMUs are given in the form of ordinal 

preference information. Usually, there may exist three types of ordinal preference 

information: (1) strong ordinal preference information such as yrj>yrk or xij>xik, which can be 
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further expressed as rkrrj yy χ≥  and ,ikiij xx η≥  where 1>rχ  and 1>iη  are the 

parameters on the degree of preference intensity provided by decision maker. Here, both rχ  

and iη  are positive scalars used to distinguish rank positions strictly, with larger values, 

tending to provide greater discriminations in the resulting efficiency values. To determine 

these values, decision maker uses from his experiences. In addition, there is a mathematical 

model for determining the values of rχ  and iη  (see Cook et al. (1996)); (2) weak ordinal 

preference information such as rqrp yy ≥  or ;iqip xx ≥  (3) indifference relationship such as yrl 

= yrt or xil = xit. Since DEA has the property of unit-invariance, the use of scale transformation 

to ordinal preference information does not change the original ordinal relationships and has 

no effect on the efficiencies of DMUs. Therefore, it is possible to conduct a scale 

transformation to every ordinal input and output index so that its best ordinal datum is less 

than or equal to unity and then give an interval estimate for each ordinal datum. 

Now, consider the transformation of ordinal preference information about the output yrj 

(j=1,…, n) for example. The ordinal preference information about input and other output data 

can be converted in the same way. 

For weak ordinal preference information ,21 rnrr yyy ≥≥≥   we have the following 

ordinal relationships after scale transformation: 

,ˆˆˆ1 21 rrnrr yyy σ≥≥≥≥≥   

where rσ  is a small positive number reflecting the ratio of the possible minimum of {yrj| 

j=1,…, n} to its possible maximum. It can be approximately estimated by the decision maker. 

It is referred as the ratio parameter for convenience. The resultant permissible interval for 

each rjŷ  is given by 

[ ] .,,1,1,ˆ njy rrj =∈ σ  

For strong ordinal preference information ,21 rnrr yyy >>>   there is the following 

ordinal relationships after scale transformation: 

,ˆand)1,,1(ˆˆ,ˆ1 1,1 rrnjrrrjr ynjyyy σχ ≥−=≥≥ +   

where rχ  is a preference intensity parameter satisfying rχ >1 provided by the decision maker 

and rσ  is the ratio parameter also provided by the decision maker. The resultant permissible 

interval for each rjŷ  can be derived as follows: 
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To transform the ordinal preference information to interval data, geometrical spacing is 

utilized. For more details see Wang et al. (2005). 

Finally, for indifference relationship, the permissible intervals are the same as those 

obtained for weak ordinal preference information. 

Through the scale transformation above and the estimation of permissible intervals, all the 

ordinal preference information is converted into interval data and can thus be incorporated 

into interval DEA models. 

In interval efficiency assessment, since the final efficiency score for each DMU is 

characterized by an interval, a simple yet practical ranking approach is thus needed for 

ranking the efficiencies of different DMUs. Here the MRA developed by Wang et al. (2005) 

is introduced. The approach is summarized as follows: 

Let [ ] ),,1()(),(, niAwAmaaA ii
U
i

L
ii ===  be the efficiency intervals of n DMUs, 

where )(
2

1
)(and)(

2

1
)(

L
i

U
ii

L

i

U
ii aaAwaaAm −=+=  are their midpoints (centers) 

and widths. Without loss of generality, suppose [ ]U
i

L
ii aaA ,=  is chosen as the best efficiency 

interval. Let { }.max U
jij ab ≠=  Obviously, if ,ba L

i <  the decision maker might suffer the loss 

of efficiency (also called the loss of opportunity or regret) and feel regret. The maximum loss 

of efficiency he/she might suffer is given by 

{ } .max)max( L
i

U
jij

L
ii aaabr −=−=

≠
 

If ,ba L
i ≥  the decision maker will definitely suffer no loss of efficiency and feel no regret. In 

this situation, his/her regret is defined to be zero, i.e. 0=ir . Combining the above two 

situations, there is 

.0,)(maxmax)max( 



 −=

≠

L
i

U
jiji aar  

Thus, the minimax regret criterion will choose the efficiency interval satisfying the following 

condition as the best (most desirable) efficiency interval: 

{ } .0,)(maxmaxmin)max(min












 −=

≠

L
i

U
jijiii

aar  

Based on the above analysis, the following definition for ranking efficiency intervals is given. 
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Definition 2. Let [ ] ),,1()(),(, niAwAmaaA ii
U
i

L
ii ===  be a set of efficiency intervals. 

The maximum loss of efficiency (also called maximum regret) of each efficiency interval Ai is 

defined as 

.,,1,0)),()(()()(maxmax0,)(maxmax)( ni
i

Aw
i

Am
j

Aw
j

Am

ij

L

i
a

U

j
a

iji
AR =−−+

≠

=−

≠

= 
























 

It is evident that the efficiency interval with the smallest maximum loss of efficiency is 

the most desirable efficiency interval. 

To be able to generate a ranking for a set of efficiency intervals using the maximum losses 

of efficiency, the following eliminating steps are suggested: 

Step 1: Calculate the maximum loss of efficiency of each efficiency interval and choose a 

most desirable efficiency interval that has the smallest maximum loss of efficiency (regret). 

Suppose 
1i

A  is selected, where .1 1 ni ≤≤  

Step 2: Eliminate 
1i

A  from the consideration, recalculate the maximum loss of efficiency 

of every efficiency interval and determine a most desirable efficiency interval from the 

remaining (n-1) efficiency intervals. Suppose 
2i

A  is chosen, where .but1 122 iini ≠≤≤  

Step 3: Eliminate 
2i

A  from the further consideration, re-compute the maximum loss of 

efficiency of every efficiency interval and determine a most desirable efficiency interval 
3i

A  

from the remaining (n-2) efficiency intervals. 

Step 4: Repeat the above eliminating process until only one efficiency interval 
ni

A is left. 

The final ranking is ,
21 niii AAA   where the symbol ""  means “is superior to”. 

 

The above ranking approach is referred to as the MRA. In the next section, a numerical 

example is presented. 
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3. Numerical example 

The data set for this example contains specifications on 27 strategies. The cardinal input 

considered is Total Cost of strategy (TC). The inputs and outputs selected in this paper are not 

exhaustive by any means, but are some general measures that can be utilized to evaluate 

strategies. In fact, criteria that are critical to strategic choices concerning the future will vary 

from company to company and over time, and will emerge from different parts of the strategy 

analysis. In an actual application of this methodology, decision makers must carefully identify 

appropriate inputs and outputs measures to be used in the decision making process. Risk is 

included as a qualitative input while Net Present Value (NPV) of the strategy will serve as the 

bounded data output. Risk is an intangible factor that is not usually explicitly included in 

evaluation model for strategy. This qualitative variable is measured on a strong ordinal scale. 

Payback time for the strategy is considered as cardinal output. Table 1 depicts the strategy's 

attributes. 

 

"Take in Table 1" 

 

Suppose the parameters of degree of preference intensity about the strong ordinal 

preference information are given (or estimated) as 01.0and12.1 22 == ση . Using the 

transformation technique described in previous section, an interval estimate for risk of each 

strategy can be derived, which is shown in the Table 2. For example, the transformation result 

for strategy23 is as follows: 

 

[ ] [ ]1,0400719.012.1,)12.1(01.0ˆ 026
23,2 =∈x  

 
"Take in Table 2" 

 
Therefore, all the input and output data are now transformed into interval numbers and 

can be evaluated using interval DEA models. Table 3 reports the results of efficiency 

assessments for the 27 strategies obtained by using interval DEA models (1) and (2). The non-

Archimedean infinitesimal was set to be 0001.0=ε . 

 
"Take in Table 3" 

 
Based on the definition 1, strategies 10, 17, 20, and 27 all have the possibility to be DEA 

efficient. If they are able to use the minimum inputs to produce the maximum outputs, they 
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are DEA efficient (efficient in scale); otherwise, they are not DEA efficient. Although 

strategies 10, 17, 20, and 27 all have the possibility to be DEA efficient, due to the differences 

in the lower bound efficiencies, their performances are in fact different. 

In order to rank the efficiencies of the 27 strategies (DMUs), the MRA is employed to 

compute the maximum loss of efficiency for each strategy (see appendix). As computations 

show, strategy20 is selected as the best strategy. 

 

4. Managerial implications 

No organization has unlimited resources. No firm can take on an unlimited amount of debt 

or issue an unlimited amount of stock to raise capital. Therefore, no organization can pursue 

all the strategies that potentially could benefit the firm. Strategic decisions thus always have 

to be made to eliminate some courses of action and to allocate organizational resources 

among others. Most organizations can afford to pursue only a few corporate-level strategies at 

any given time. It is a critical mistake for managers to pursue too many strategies at the same 

time, thereby spreading the firm’s resources so thin that all strategies are jeopardized. 

The strategic management process results in decisions that can have significant, long-

lasting consequences. One major component of strategic management is strategy selection. 

Erroneous strategic decisions can inflict severe penalties and can be exceedingly difficult, if 

not impossible, to reverse. Most strategists agree, therefore, that strategy evaluation is vital to 

an organization’s well-being. Strategy evaluation is important because organizations face 

dynamic environments in which key external and internal factors often change quickly and 

dramatically. 

Strategy analysis and choice seeks to determine alternative courses of action that could 

best enable the firm to achieve its mission and objectives. The firm’s present strategies, 

objectives, and mission, coupled with the external and internal audit information, provide a 

basis for generating and evaluating feasible alternative strategies. Unless a desperate situation 

faces the firm, alternative strategies will likely represent incremental steps to move the firm 

from its present position to a desired future position. Strategists never consider all feasible 

alternatives that could benefit the firm, because there are an infinite number of possible 

actions and an infinite number of ways to implement those actions. Therefore, a manageable 

set of the most attractive alternative strategies must be developed. The advantages, 

disadvantages, trade-offs, costs, and benefits of these strategies should be determined. 
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Strategy selection has long been recognized as a multi-criteria problem. The joint 

consideration of multiple criteria complicates the selection decision, even in the case of 

experienced managers, because competing strategies have different levels of success under 

multiple criteria. This paper introduces a technique that can help strategists evaluate the 

feasible strategies and choose a specific strategy. Without the technique, personal biases, 

politics, emotions, personalities, and halo error (the tendency to put too much weight on a 

single factor) unfortunately may play a dominant role in the strategy ranking process. This 

paper has following advantages for strategists: 

 

• With respect to dynamic environments in which key external and internal factors 

often change rapidly and considerably, this paper helps strategists to react quickly 

and accurately. 

• Since classical techniques always require intuitive judgments that have biases, this 

paper helps strategists to select and rank the strategies without relying on intuitive 

judgments. 

• The increasing number of decision making criteria, complicates the strategy 

ranking process. This paper presents a robust model to solve the multiple-criteria 

problem. 

 

5. Concluding remarks 

Strategic decisions deal with the long-term future of the entire organization. The decisions 

are rare and typically have no precedent to follow. In addition, strategic decisions usually 

commit substantial resources and demand a great deal of commitment. Moreover, they are 

directive, they set precedents for more detailed (tactical level) decisions and future actions 

throughout the organization. To rank the strategies a method was introduced. 

The problem considered in this study is at initial stage of investigation and much further 

researches can be done based on the results of this paper. Some of them are as follows: 

Similar research can be repeated for the case that some of the strategies are slightly non-

homogeneous. One of the assumptions of all the classical models of strategy evaluation is 

based on complete homogeneity of strategies, whereas this assumption in many real 

applications cannot be generalized. In other words, some criteria (inputs and/or outputs) are 

not common for all the strategies occasionally. Therefore, there is a need to a model that deals 

with these conditions. Comparing the results of performance of proposed method with fuzzy 

DEA will be another research topic. To transform the ordinal preference information to 
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interval data, geometrical spacing was utilized. Comparing statistical properties of linear 

spacing and geometrical spacing and their effects on the result of efficiency could be an 

interesting topic for future study. 

 
Appendix 
R(strategy1)= .855557, R(strategy2)= .752023, R(strategy3)= .829391, …, R(strategy27)= 

.133532 

 

Obviously, strategy20 has the smallest maximum loss of efficiency. So, strategy20 is rated 

as the best strategy and eliminated from the further consideration. Therefore for the remaining 

strategies, maximum losses of efficiency are recalculated as follows: 

 

R(strategy1)= .855557, R(strategy2)= .752023, R(strategy3)= .829391, …, R(strategy27)= 

.133532 

 

Among the above regrets, the maximum loss of efficiency of strategy27 is the smallest, so 

strategy27 is rated as the second best strategy and eliminated from the further consideration. 

So, for the remaining strategies, maximum losses of efficiency are recalculated and shown 

below: 

 

R(strategy1)= .855557, R(strategy2)= .752023, R(strategy3)= .829391, …, R(strategy26)= 

.755492 

 

Since strategy17 has the smallest maximum loss of efficiency. So, it is rated as the third 

best strategy and eliminated from the further consideration. Repeating the above process, the 

ranking order of 27 strategies is obtained as follows: 

 

strategy20 strategy27 strategy17 strategy10 strategy25 strategy2 strategy7 strategy15  

strategy26 strategy21 strategy19 strategy16 strategy11 strategy9 strategy1 strategy3  

strategy14 strategy22 strategy6 strategy8 strategy24 strategy13 strategy5 strategy23  

strategy18 strategy4 strategy12. 

 

Therefore, strategy20 is selected as the best strategy. 
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Table 1 Related attributes for 27 strategies 

Strategy 
No. 

(DMU) 

Inputs Outputs 
TC 

(10000$) 
x1j 

Risk* 

x2j 

NPV 
(10000$) 

y1j 

Payback time 
(year) 

y2j 
1 7.2 15 [50, 65] 1.35 
2 4.8 7 [60, 70] 1.1 
3 5 23 [40, 50] 1.27 
4 7.2 16 [1, 3] .66 
5 9.6 24 [45, 55] .05 
6 1.07 3 [1, 2] .3 
7 1.76 8 [4, 5] 1 
8 3.2 17 [10, 20] 1 
9 6.72 9 [9, 12] 1.1 
10 2.4 2 [5, 8] 1 
11 2.88 18 [25, 35] .9 
12 6.9 10 [10, 15] .15 
13 3.2 25 [8, 12] 1.2 
14 4 19 [20, 35] 1.2 
15 3.68 11 [40, 55] 1 
16 6.88 20 [75, 85] 1 
17 8 1 [10, 18] 2 
18 6.3 21 [9, 15] 1 
19 .94 12 [10, 13] .3 
20 .16 5 [1, 4] .8 
21 2.81 26 [25, 30] 1.7 
22 3.8 13 [0.8, 1.2] 1 
23 1.25 27 [2, 4] .5 
24 1.37 14 [1, 5] .5 
25 3.63 4 [8, 12] 1 
26 5.3 22 [65, 80] 1.25 
27 4 6 [190, 220] .75 

* Ranking such that 27≡highest rank,…, 1≡ lowest rank (x2, 23>x2, 21 > … >x2, 17) 
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Table 2  Interval estimate for the 27 strategies after the transformation of ordinal preference 
information 

Strategy 
No. 

(DMU) 
Risk 

1 [.0488711, .2566751] 
2 [.0197382, .1036668] 
3 [.1210031, .635518] 
4 [.0547357, .2874761] 
5 [.1355235, .7117802] 
6 [.012544, .0658821] 
7 [.0221068, .1161068] 
8 [.0613039, .3219732] 
9 [.0247596, .1300396] 
10 [.0112, .0588233] 
11 [.0686604, .36061] 
12 [.0277308, .1456443] 
13 [.1517863, .7971939] 
14 [.0768997, .4038832] 
15 [.0310585, .1631217] 
16 [.0861276, .4523492] 
17 [.01, .0525208] 
18 [.0964629, .5066311] 
19 [.0347855, .1826963] 
20 [.0157352, .0826425] 
21 [.1700006, .8928571] 
22 [.0389598, .2046198] 
23 [.1904007, 1] 
24 [.0436349, .2291742] 
25 [.0140493, .073788] 
26 [.1080385, .5674269] 
27 [.0176234, .0925596] 
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Table 3 The efficiency interval for the 27 strategies 
Strategy 

No. 
(DMU) 

Efficiency Interval 

1 [.144443, .419936] 
2 [.247977, .720323] 
3 [.170609, .210524] 
4 [.0425437, .16333] 
5 [.0852112, .104152] 
6 [.0875352, .368205] 
7 [.166212, .707172] 
8 [.090317, .293553] 
9 [.145532, .448773] 
10 [.300161, 1] 
11 [.189221, .261913] 
12 [.0282147, .0774364] 
13 [.0861227, .152351] 
14 [.12231, .290935] 
15 [.223673, .540124] 
16 [.210202, .239594] 
17 [.489805, 1] 
18 [.0430496, .175404] 
19 [.224815, .281638] 
20 [.999693, 1] 
21 [.22552, .257214] 
22 [.092779, .380647] 
23 [.079943, .101363] 
24 [.072842, .212788] 
25 [.234906, .740475] 
26 [.244508, .294906] 
27 [.866468, 1] 
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