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Abstract. We study a hard geometric problem. Given n points in the
plane and a positive integer k, the Rectilinear k-Bends Traveling
Salesman Problem asks if there is a piecewise linear tour through the
n points with at most k bends where every line-segment in the path
is either horizontal or vertical. The problem has applications in VLSI
design. We prove that this problem belongs to the class FPT (fixed-
parameter tractable). We give an algorithm that runs in O(kn2 + k4kn)
time by kernelization. We present two variations on the main result.
These variations are derived from the distinction between line-segments
and lines. Note that a rectilinear tour with k bends is a cover with k
line-segments, and therefore a cover by lines. We derive FPT-algorithms
using bounded-search-tree techniques and improve the time complexity
for these variants.

1 Introduction

The Minimum Bends Traveling Salesman Problem seeks a tour through
a set of n points in the plane, consisting of the least number of straight lines,
so that the number of bends in the tour is minimized. Minimizing the number
of bends in the tour is desirable in applications such as the movement of heavy
machinery because the turns are considered very costly. Both, general and rec-
tilinear, versions of this problem are studied in the literature. In the general
version, the lines could be in any configuration whereas in the rectilinear ver-
sion, the line-segments1 are either horizontal or vertical. The general version
of the problem is NP-complete [2]. The hardness of the rectilinear version re-
mains open, however, Bereg et al. [3] suspect that it is NP-complete because
the Rectilinear Line Cover in 3 dimensions (or higher) is NP-complete [8].
The rectilinear version of the problems received considerable attention during
1990’s [5, 9, 10] and recently [1, 3, 4, 13], since much of the interest in the recti-
linear setting have been motivated by applications in VLSI. In the context of
VLSI design, the number of bends on a path affects the resistance and hence
the accuracy of expected timing and voltage in chips [10]. Stein and Wagner [12]
solved approximately the rectilinear version of the Minimum Bends Travel-
ing Salesman Problem. They gave a 2-approximation algorithm that runs in
O(n1.5) time. However, no polynomial-time exact algorithm is known for this
rectilinear tour problem despite the motivating applications in VLSI.

In classical complexity theory, NP-completeness is essentially a tag for in-
tractability to finding exact solutions to optimization problems. However, pa-
rameterized complexity theory [6, 7, 11] offers FPT (fixed-parameter tractable)
1 A line is unbounded whereas a line-segment is bounded.



algorithms, which require polynomial time in the size n of the input to find these
exact answers, although exponential time may be required on a parameter k.

We reformulate the Rectilinear Minimum Bends Traveling Salesman
Problem as a parameterized problem and we call it the Rectilinear k-Bends
Traveling Salesman Problem. From the parameterized complexity perspec-
tive, we show that the problem in general belongs to the class FPT by kerneliza-
tion. As such, it can be solved exactly and in polynomial time for small values
of the parameter. The requirement that line-segments of the tour are hosted
exclusively by a line leads to a different variant of the problem. Another variant
also emerges if we require that the same line-segment orientation cover points on
the same line. We provide FPT-algorithms with improved complexity for these
two variants of the rectilinear tour problem. Our algorithms for these variants
are based on bounded-search-tree techniques.

2 Rectilinear Tours
We define the Rectilinear k-Bends Traveling Salesman Problem for-
mally as follows. Given a set S of n points in the plane, and a positive integer
k, we are asked if there is a piecewise linear tour (which may self-intersect)
through the n points in S with at most k bends where every line-segment in the
path is either horizontal or vertical (the tour must return to its starting point).
An instance of the Rectilinear k-Bends Traveling Salesman Problem is
encoded as the pair (S, k), and we call the solution a rectilinear tour. In this rec-
tilinear version, the standard convention restricts the tour to 90◦ turns. A 180◦

turn is considered two 90◦ turns with a zero-length line-segment in between. If
n ≥ 3, it is always possible to transform a tour with a 180◦ turns into a tour
with only proper 90◦ turns and line-segments of positive length. With these con-
ventions, every 90◦ turn consists of one horizontal line-segment and one vertical
line-segment, both of positive length. Thus, we assume n ≥ 3, we also accept
that there are no tours with an odd number of bends and that the required
number k of bends is even. A rectilinear tour must have at least 4 bends.
Lemma 1. If there exists a rectilinear tour with at most k bends, the number of
horizontal line-segments is at most k/2 and the number of vertical line-segments
is at most k/2.
Proof. If there exists a tour with at most k bends, there are at most k line-
segments. In a rectilinear tour, the number of horizontal line-segments is equal to
the number of vertical line-segments. There cannot be more than k/2 horizontal
line-segments and no more than k/2 vertical line-segments. ut
We distinguish 3 types of rectilinear tours that derive from the distinction be-
tween line-segment and line. Fig. 1 illustrates this. In the first case, we require
that if l is the line containing a line-segment s of the tour (i.e. l ∩ s = s), then
the line-segment s covers all the points in S ∩ l. In the second case, if a point p
is on a line l used by the tour, then there must be a segment of the tour with
the same orientation as l covering p. The third type does not have any of the
above constraints. For illustration, consider the set of points in Fig. 1 (a). Each
vertical cluster or horizontal cluster of points is numerous enough to force being



covered by at least one line-segment of the tour with minimum bends. Without
any constraint, the two tours with 8 bends in Fig. 1 (b) are optimal; however,
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Fig. 1. Three types of the Rectilinear k-Bends Traveling Salesman Problem
emerge as we considered the legal line-segments that are part of the tour.

in both there are two vertical line-segments that share a common line (in the
second one, the two segments 2, 3 and 6, 7 are not drawn exactly co-linear so
the reader can appreciate that the tour self intersects). The first constraint will
require that all the points under these two line-segments be covered by only one
line segment. In Fig. 1 (c) we see that this constraint forces the tour to travel
over the large line-segment 2, 3 and the minimal tour has now 10 bends. The
second constraint can be illustrated if we add a point p to S as per Fig. 1 (d).
This new point lies on lines used by two types of line-segments, one horizon-
tal and one vertical and both of these types of line-segments must cover the
point (that is, the point p cannot be already covered by the vertical line seg-
ment, because it belongs to a line where there is a horizontal line-segment of the
tour). Note that this constraint is satisfied by points that are located at a bend.
That is, if a bend is placed at a data point q, this constraint is automatically
satisfied for q because the horizontal line-segment at q plus all other horizon-
tal line-segments on the same horizontal line will cover q (and symmetrically
for the vertical line-segment). In Fig. 1 (d) all the line-segments drawn must
be contained in a line-segment of a minimum bends tour satisfying the second
constraint (which now has 12 turns; see Fig. 1 (e)).

We first show that the problem in general (without any constraints) is FPT.
The first variant requires that one line-segment covers all the points on the same
line while the second variant requires the same orientation be represented by
a line-segment that covers the points. We prove that the first variant and the
second variant are also FPT but the time complexity of the FPT-algorithms
here is smaller than in the general setting.

2.1 Tours without Constraints

We now proceed with the kernelization approach by presenting some reduc-
tion rules. Kernelization is central to parameterized complexity theory because
a decision problem is in FPT if and only if it is kernelizable [11]. Intuitively,
kernelization self-reduces the problem efficiently to a smaller problem using re-
duction rules. The rules are applied repeatedly until none of the rules applies.
If the result is a problem of size no longer dependent on n, but only on k, then
the problem is kernelizable because the kernel, the hard part, can be solved



by exhaustive search in time that depends only on the parameter (even if it is
exponential time).

Reduction Rule 1 If k ≥ 4 and all points in S lie on only one rectilinear line,
then the instance (S, k) of the Rectilinear k-Bends Traveling Salesman
Problem is a YES-instance.

The next rule is derived from Lemma 1.
Reduction Rule 2 If the minimum number of rectilinear line-segments needed
to cover a set S of n points in the plane is greater than k, then the instance
(S, k) of the Rectilinear k-Bends Traveling Salesman Problem is a
NO-instance.
We refer to a set of k rectilinear lines that cover the points in S as a k-cover. If
(S, k) is a YES-instance of the Rectilinear k-Bends Traveling Salesman
Problem, then the tour induces a k-cover. In fact, we can discover lines that
host line-segments of any tour.

Lemma 2. Let (S, k) be a YES-instance of the Rectilinear k-Bends Trav-
eling Salesman Problem. Let l be a rectilinear line through 1 + k/2 or more
co-linear points. Then the line l must host a line-segment of any tour T with k
or fewer bends.
Proof. Without loss of generality, assume l is a vertical line. In contradiction to
the lemma, assume there is no vertical segment on l for a tour T that covers
with k bends. Then, the 1 + k/2 points in S ∩ l would be covered by horizontal
lines in T . According to Lemma 1, this contradicts T has k or fewer bends. ut
The rectilinear line through S′ in the proof above may be represented by separate
line-segments of a witness tour. We now describe how to compute a k-cover if one
exists. Consider a preprocessing of an input instance that consists of repeatedly
finding 1 + k/2 or more co-linear points and on a rectilinear line (that is, they
are on a vertical or horizontal line). This process can be repeated until k + 1
rectilinear lines, each covering 1 + k/2 or more different points are found, or no
more rectilinear lines covering 1+k/2 points are found. In the first case, we have
k + 1 disjoint subsets of points each co-linear and each with 1 + k/2 or more
points. When this happens, we halt indicating a NO-instance. By Lemma 2, even
if each of the k + 1 lines hosts only one line-segment in the tour, we would still
have more than k line-segments. In the second case, once we discover that we
cannot find a line covering 1 + k/2 points and not exceeded k repetitions, we
have a problem kernel.
Lemma 3. Any instance (S, k) of the of the Rectilinear k-Bends Travel-
ing Salesman Problem can be reduced to a kernel S′ of size at most k2/2.
Proof. Let S′ be the set of points after we cannot repeat the removal of points
covered by a rectilinear line covering 1 + k/2 or more points. Recall that if we
repeated the removal more than k times, we know it is a NO-instance. If we
repeated no more than k times and it is a YES-instance, a witness tour T would
have matched hosting lines with the lines removed. Also T is a k-cover of S′.
So the lines in T are rectilinear and each covers no more than k/2 points. This
means |S′| ≤ k2/2. ut



From the above lemma, if we have a kernel of size larger than k2/2, then it is
a NO-instance. Algorithmically, we can either determine that we have a NO-
instance in polynomial time in k and in n, or we have a kernel where we still
have to determine if it is a YES or NO-instance. What follows resolves this issue.
With the next lemma we prove that each best tour is always equivalent to a tour
with the same number of bends but where line-segments on the same line are
not disjoint (as the two tours with 8 bends in Fig. 1 (b)).
Lemma 4. Every optimal rectilinear tour T that has two disjoint line-segments
hosted by the same line can be converted into a tour T ′ with the same number
of bends and where the line segments have no gap.

Proof. Consider first the case the two disjoint line segments s1 and s2 are tra-
versed by T in the same direction. Fig. 2 (a) and (b) shows the transformation
of the two line segments s1 and s2 in the same hosting line lp into a new tour by
enlarging both s1 and s2 and flipping the direction of two bends. Clearly, there
are no more bends and although the direction of the path between these two
bends is reversed, we still have a well formed tour. Note that Fig. 2 (a) deals
with the case when the bends share a label2 while (b) is the case the two bends
share no label. Once this case is clear, the case where two disjoint line segments
s1 and s2 are traveled by T in opposite directions is also clear, although now 4
bends are involved. Fig. 2 (c) illustrates this. ut
Moreover, the transformation in the proof above always increases the length of
the tour. So if we apply it again, it will not undo the work done by its previous
application. Thus we can apply it repeatedly until there are never two disjoint
line-segments in an optimal tour. In particular, we can assume optimal tours
have no gap between co-linear line-segments like in Fig. 2 (a).

(a) (b) (c)

Fig. 2. The tour T is changed preserving the number of bends. Thick lines correspond to segments
of the tour, while thin lines indicate the Jordan curve of the tour somewhere in the plane.

Let Lk be the set of rectilinear lines found by kernelization having at least
1 + k/2 co-linear points. We know |Lk| ≤ k and all these lines have segments
that are part of the tour. Given a vertical line l ∈ Lk, cover(l) = S ∩ l.
we let hmax be the horizontal line through the point pmax ∈ cover(l) with
the largest y coordinate, while hmin is the horizontal line through the point
pmin ∈ cover(l) with the smallest y coordinate. The line h(max−i) is the horizon-
tal line through the i-th point in cover(l) below pmax while h(min+i) is the hor-
izontal line through the i-th point in cover(l) above pmin, for 1 ≤ i ≤ (k/2− 1).
2 We say the turns have a common label if the turns are NE at p and NW at q (with

N in common) or the turns are SE at p and SW at q (with S in common) where
N , S, W , and E stand for North, South, West and East respectively.



We expand the set Lk as follows. For every vertical line l ∈ Lk, we add k horizon-
tal lines hmax, h(max−1), . . . , h(max−k/2+1) and hmin, h(min+1), . . . , h(min+k/2−1)

to Lk. Symmetrically, for every horizontal line l ∈ Lk, we add also k vertical
lines vmax, v(max−1), . . . , v(max−k/2+1) and vmin, v(min+1), . . ., v(min+k/2−1) to
Lk, where vmax passes through pmax ∈ cover(l) with the largest x-coordinate and
vmin passes through the point pmin ∈ cover(l) with the smallest x-coordinate.
The lines v(max−i) and v(min+i) are defined in a similar way to that of h(max−i)

and h(min+i). Note that, if l covers less than k different points, we add a line that
is orthogonal to l on every point in cover(l). We call Lk with all these additional
lines the set L′k and |L′k| ≤ k2. Let H be all the horizontal lines through a point
in the kernel S′ and let V be all the vertical lines through a point in S′. Thus,
|H| ≤ k2/2 and |V | ≤ k2/2. Now, we add to L′k all the lines in V and all the
lines in H. The new set R = L′k ∪H ∪ V has quadratic size in k. Moreover the
set I of all intersections of two lines in R has also polynomial size in k (that
is, O(k4)). We will argue that a rectilinear tour of k bends exists for any given
instance if and only if a tour with k bends exists with bends placed on I.
Lemma 5. If the instance has a rectilinear tour T with k or fewer bends, then
a tour can be built with k or fewer bends and all the bends are at I, the set of
all intersections of lines in R where R = L′k ∪H ∪ V .

Proof. We will show that for every YES-instance, we can transform the witness
tour T to a tour T ′ with the same number of bends where every line-segment in
T ′ is hosted by a line in R. From this, it follows that the set I hosts the possible
positions for the bends in T ′.

Let p be any point in S. If this is a YES-instance,

Fig. 3. The point p is
covered by a horizontal
line that is not found in
the set H or the set Lk.

there is a witness tour that has a line-segment lp
covering the point p. Moreover, because of Lemma 4,
we can assume that if s1, . . . , si are line-segments
hosted by a rectilinear line lp, there are no gaps;
that is, ∪i

j=1sj is not disjoint. If the point p was from
the kernel, we are done because the line-segment is
hosted on H ⊆ R or on V ⊆ R. Otherwise, the point
p was from a line discovered in kernelization. If the
point p is covered by some sj in the same orientation
as the line discovered by kernelization, we are done.
If the point is covered in the k-bends witness tour
by a segment orthogonal to the line discovered in
kernelization, the case becomes delicate. Assume p
is on a vertical line lp discovered by the kernelization, but in the witness tour
T ′, p is covered in a horizontal line-segment over a line hp. If hp was discovered
by kernelization, we are done, the same if it was a line in H. Therefore, line hp is
either above or below ∪i

j=1sj because we are in a case where p is not covered by
∪i

j=1sj (see Fig. 3, for example). Moreover, there cannot be more than k/2 points
in the same situation as p. Otherwise, the witness structure would have more
than k/2 horizontal line-segments (Lemma 1) at those positions. Therefore, the
rank of p from either end of lp must be no more than k/2. That is, p is in one of



the lines hmax, h(max−1), . . . , h(max−k/2+1) or hmin, h(min+1), . . . , h(min+k/2−1)

that we have in L′k. Since hp ⊆ L′k, we have hp ⊆ R. ut

Theorem 1. The Rectilinear k-Bends Traveling Salesman Problem
is FPT.

Proof. The algorithm computes R and searches exhaustively all tours over the
lines in R. For example, a naive algorithm tests all subsets of size k of I to
decide whether these k candidate-intersections can be completed into a tour
with at most k bends and all the n points lie on the line-segments that make
up the tour. Note that the k candidate-intersections of lines essentially host the
bends in the tour. Since the number |I| of intersections by lines in R is O(k4),
the number of subsets of size k is bounded by

(
k4

k

)
= O(k4k/k!). Testing all

permutations to cover all tours result in time bounded by O((k!)(n)(k4k/k!)) =
O(k4kn). Kernelization can be performed in O(kn2) time. Thus, we can decide
the Rectilinear k-Bends Traveling Salesman Problem in O(kn2 +k4kn)
time. ut

2.2 Tours with Constraints
Now, we decide the problem for the rectilinear tour with at most k bends for
the two variants introduced earlier. In fact, for both variants, the first phase
computes several k-covers (candidates set L of k lines that cover all the n points
in S). However, instead of kernelization, in order to identify hosting lines, the
technique here will be a bounded-search-tree. The second phase checks if each
candidate k-cover can constitute a tour based on such k-cover. To find these
k-covers, we consider a search tree as illustrated by Fig. 4. In every node of the
tree, the set L is a partial cover of S, and in some leaves it will be a k-cover.
In the root of the tree, the set L is empty. In each internal node of the tree, we
choose a point p ∈ S \ cover(L) and we explore the two possibilities of enlarging
L by analyzing the situation at p. Note that if the given instance were a YES-
instance, every point in S is covered by a horizontal line (H-line), or a vertical
line (V-line) (or both, if a bend or crossing is placed at the point). The point p
is marked as covered with an H-line or V -line, depending on the branch of the
tree. Also, the chosen line is added to L. The points that fall into the same class
with p are also marked as covered so that we do not consider these points again
in the next recursive call.

We keep track of how many vertical and horizontal assignments have been
made and we emphasize that we do not assign more than k/2 horizontal lines
and also no more than k/2 vertical lines. Each branch of the tree stops when
the upper bound is reached or when every point is marked as covered. At the
leaves of the tree, we have at most k lines that cover the set of n points, or
exactly k lines that do not cover; in this case, we know the candidate set of lines
cannot be completed into a covering tour. Therefore, the depth of the tree is at
most k. This matches the pattern of a bounded-search-tree. The depth of the
tree is bounded by the parameter and the fan-out is a constant (in this case the
constant is 2).
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Fig. 4. Computing candidate sets of k
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the set S at a leaf of the tree where
|L| ≤ k. We only consider tours where
every line-segment covers at least one
point because for every tour T that
covers S, there is an equivalent tour T ′

where every line-segment of the tour
covers at least one point3. If T is a
tour, we let lines(T ) be the set of lines
used by the line-segments in T . Each
line in lines(T ) covers at least one point and lines(T ) is a cover with k or fewer
orthogonal lines. These observations allow us to state the following lemma.

Lemma 6. If the instance has a tour T with k or fewer bends, then there is a
leaf of the tree at the end of phase one where the cover made by the lines in L
is consistent with the cover by lines(T ) (i.e. L ⊆ lines(T )).

Proof. The algorithm of the first phase picks up a point p at each node. This
point must be covered by lines(T ) with a horizontal or a vertical line. Therefore,
there is a child that agrees with lines(T ) for this node. Traveling the path from
the root of the tree down the child that agrees with lines(T ), we reach a leaf
where each line in L must be in lines(T ). ut

In the second phase, we investigate if those leaves of the first phase that cover
the n points can result in a tour with the constraints of the variants.

Tours where one line-segment covers all the points on the same line:
Here, we require that every line-segment s of a tour T must cover all the points
in S on the line that includes s. In this special case of the Rectilinear k-
Bends Traveling Salesman Problem, each candidate set L of lines at a
leaf of the tree (recall Fig. 4) results in a candidate set of line-segments since
we can simply connect the extreme points in cover(l) for each line l ∈ L to get
the candidate line-segments. We can explore exhaustively if these candidate line-
segments result in a tour. In the worst case, we have k line-segments from the
first phase. These k line-segments are organized into k! orders in a possible tour.
In each of these orders, we can connect the line-segments (in the order chosen)
one by one to form a tour. There are at most 4 ways to connect the line-segment
li to the consecutive line-segment l(i mod k)+1 for i ∈ {1, 2, . . . , k}. Let a and b
be the extreme points of li, while c and d are the extreme points of l(i mod k)+1.
We can connect these two line-segments as ac, ad, bc or bd (see Fig. 5). This
means a total of (k!)(4k) tests. In some cases when we connect two line-segments
together, the extension of these two line-segments may be enough to make a turn,
therefore no additional line-segment is required. In some cases, it requires two
additional line-segments as shown in Fig. 5. These extra line-segments cover no
points, but they can be added in constant time when constructing the tour. Note
3 If a line-segment in the tour covers no points, it can be translated in parallel until

it is placed over one point.



that if the total number of line-segments in the final tour exceeds k, we simply
answer no (Lemma 1).

We now analyze the total running time of our algo-
a

b
c d

li

l(i mod k)+1

Fig. 5. One of four
possible ways of
joining two
consecutive lines.

rithm. It is obvious that the search tree for the first phase
in Fig. 4 has at most O(2k) leaves and O(2k−1) internal
nodes. However, not every branch in the tree has to be
explored. We explore only the branches that have the
equal number of H-lines and V -lines. This is equivalent
to choosing (among the k levels) a subset of size k/2
where to place the H-lines (or V -lines). Another way to
recognize this is that each path from the root to a leaf
in Fig. 4 is a word of length at most k with exactly k/2
symbols H and k/2 symbols V . Based on this analysis we reduce the size of the
tree to

(
k
k
2

)
which is simplified to O(2k/

√
k) using Stirling’s approximation. The

work at each internal node is to choose a point, record the line and mark the
associated points that are covered by that line. The dominant work is the compu-
tation at the leaves of the tree. Here we perform the tests to cover all tours that
require time bounded by O( 2k

√
k

(k!)(4k)n) which is simplified to O((2.95k)kn).
The time complexity is exponential in the parameter but linear in the size of the
input. This gives the following result.

Theorem 2. The Rectilinear k-Bends Traveling Salesman Problem
where one line-segment covers all the points on the same line is FPT.

Tours where the same line-segment orientation cover points on the
same line: In this special case, a point that lies on a line hosting a horizontal-
segment of the tour must be covered by a horizontal line-segment of the tour (pos-
sibly another horizontal-line segment, and possibly also a vertical line-segment).
The trick is that it cannot be covered only by a vertical line-segment. The sym-
metric condition holds for points in a line hosting a vertical line-segment. We
call this the no distinct type of line-segment condition.

In the first phase, a leaf that may hold a YES-instance has a candidate set
L of no more than k lines and L ⊆ lines(T ). We expand this set of candidate
lines as follows. For every vertical line l ∈ L we add two horizontal lines hmax

and hmin. The line hmax is the horizontal line through the point p ∈ cover(l)
with the largest y coordinate, while hmin is the horizontal line through the point
p ∈ cover(l) with the smallest y coordinate. Symmetrically, for every horizontal
line l ∈ L, we add two lines vmax and vmin where vmax passes through p ∈ l
with the largest x-coordinate and vmin passes through the point p ∈ l with the
smallest x-coordinate. Note that L with all these additional lines has size linear
in k. In what follows, we call the set L at a leaf with these additional lines, the
set C of lines. Our aim is the next result.

Lemma 7. If the instance has a tour T with k or fewer bends (and meeting the
no distinct type of line-segment condition), then there is a leaf of the tree at the
end of phase one where a tour can be built with k or fewer bends and all the
bends are at intersections of lines in C.



The proof shows that if we have a YES-instance, we can transform the witness
tour T to a tour T ′ with the same numbers of bends, where every line-segment
covers at least one point and lines(T ′) ⊆ C. From this, it follows that the
intersections of all lines in C hosts the possible positions for the bends in T ′.

The argument shows that every time we have a line-segment pq in a tour
with its hosting line in lines(T ) \ C, we can find a covering tour T ′ with the
same bends and leading to the same leaf in phase one, the line-segment pq is
not used and more line-segments in T ′ have their hosting lines in C. Consider
a line-segment pq in a tour T that is a witness that the leaf is a YES-instance,
but the line l hosting pq in the tour is such that l /∈ C (i.e. l ∈ lines(T ) \ C).
Without loss of generality, assume pq is horizontal (if pq were vertical, we rotate
S and the entire discussion by 90◦). Also, we can assume that pq covers at least
one point in S and T has minimal number of bends. Let l1 be the line-segment
in the tour before pq and l2 the line-segment in the tour after pq.

Claim 1 For all p′ ∈ S ∩ pq \ {p, q}, there is a vertical line l ∈ L (and thus
l ∈ C) such that p′ ∈ cover(l).

Proof. Let p′ ∈ S ∩pq \{p, q}. Then p′ is covered by a vertical line in L, because
L covers S, and if p′ was covered by a horizontal line, then the line hosting pq
would be in L and L ⊆ C. This contradicts that the line hosting pq is not in C.
If ∅ = S ∩ pq \ {p, q} the claim is vacuously true. ut

Points in S ∩ pq \ {p, q} are covered in T by vertical line-segments (if any
point p′ was covered only by pq and not a vertical segment in T through the
vertical line at p′, then T ′ would not satisfy the no distinct type of line-segment
condition).

We will now distinguish two cases (refer to Fig. 6). In

Fig. 6. The line
l 6∈ L hosts pq
from T .

the first case, the tour T makes a U -return shape reversing
direction, while in the second case, the tour makes a zig-zag
shape and continues in the same direction. The bends at p
and q of the line-segment pq make a U -return if they have
one common label. The bends at p and q make a zig-zag of
the line-segment pq if they have no common label. In this
case the turns are NE at p and SW at q (with no letter
label in common) or SE at p and NW at q (with no letter
label in common). Without loss of generality, note that also
a horizontal reflection along pq can be made so the other subcases can be ignored
and we can assume the cases are as the two drawings of Fig. 6.

Case 1: In this case, we obtain the corresponding equivalent tour by shifting
pq vertically. This is possible because all points in S ∩ pq \ {p, q} are already
covered by other vertical lines of T . In fact, if there is any point in S∩{(x, y)|px ≤
x ≤ qx ∧ y ≥ py}4, by shifting pq vertically (up) we can (without increasing the
number of bends) overlaps with hmax for some vertical line in L. In fact, the set

4 Here px is the x-coordinate of point x, thus S ∩ {(x, y)|px ≤ x ≤ qx ∧ y ≥ py} is all
points in S above or on pq.



S ∩{(x, y)|px ≤ x ≤ qx ∧ y ≥ py} is not empty because pq has at least one point
covered by a vertical line in L (L is a cover and we assumed the horizontal line
hosting pq is not in L). It is important to note that our tour T ′ may self-intersect,
but that is not a constraint for the problem.

Case 2: This setting has the following subcases. First we show that if l2 /∈ L,
we can also change to a tour T ′ where now the set lines(T ′) \C is smaller. The
symmetric argument shows that we can do this also if l1 /∈ L. Finally, the case
left is when both l1, l2 ∈ L.

Subcase 2.a: If l2 /∈ L, then q /∈ S. Because the line-segment qq′ hosted
by l2 must cover one point q′ ∈ S and L is a cover, the point q′ is covered by
a horizontal line l3 ∈ L. Fig. 7 (a) shows that the tour cannot have a SE turn
at q′, because then we can make a tour with 2 fewer bends contradicting the
minimality of the witness tour (neither qq′ nor pq are needed).

Thus, the turn at q′ must be a SW

Fig. 7. The subcases if l2 6∈ L can be
converted and eliminate l2.

turn. Fig. 7 (b) shows that a tour with a
180◦-bend is equivalent and l2 and the
line hosting pq are not need. This makes
lines(T ′) \ C smaller by two lines.

Subcase 2.b: If l1 /∈ L, then p /∈
S. The arguments is analogous to the
previous case.

Subcase 2.c: Now we must have
l1, l2 ∈ L. In this case, we make a cut
and join operation to obtain a new tour that now is as in Case 1 (that is, we
have a U-turn and not a zigzag).

First note that in this case there must

Fig. 8. The tour T is changed so
there is no zig-zag.

be points in S covered by l2 below or in-
cluding q. Otherwise, the line hmin from l2
can be made to coincide with pq and we are
done. Similarly, there must be points in S
covered by l1 above p, otherwise pq can be
made to coincide with hmax for l1. Note also
that there must be points in S above q cov-
ered by l2 otherwise shifting pq can be made
to coincide with hmax for l2. Also, by an anal-
ogous argument, there must be points in S
below p covered by l1. The tour T must use
a vertical line-segment to cover the points in
l2 below q,5 because the tour complies with the no distinct type of line-segment
condition. Assume that the tour T is traveled in the direction l1, then pq, then
l2 and let p′q′ be a segment of this tour under q hosted by l2, with p′y > q′y. In
the chosen traversal of the tour T , p′q′ may be traveled from p′ to q′ or from q′

to p′ (refer to Fig. 8).

5 An analogous argument happens if the tour T uses a vertical line-segment to cover
points above p covered by l1.



If T travels from p′ to q′, we build a new tour that travels from q to p′

and continues along T but in reverse, which ensures we will meet l2 and then q
again, but we now continue until q′. From here we continue along T in the same
direction, which ensures we reach p. This new tour now makes a U-turn at pq
and has the same set L as T and the same number of bends. For the case that T
travels from q′ to p′, the new tour travels from pq to q′. Then along T in reverse
order which guarantees arriving at q from l2. We continue until p′ and then in
reverse order in T until we reach p again. Once again, this conversion reduces
this case to Case 1 before.

We can now carry out the following procedure at each leaf. The number of
intersections between any pair of lines in C is bounded by O(k2). We enumerate
all words with repetitions of length k over the alphabet of intersections. We
require repetitions since we need to consider tours with 180◦-bends. A word
like this encodes where the bends of a tour will be. For each of these words,
we generate each of the possible placements given by the 4 types of 90◦-bends
(NE,NW,SE, SW ) at each intersection. A placement of bends can be tested (in
polynomial time) if it can be in fact completed into a tour and whether such tour
covers S. The running time is bounded by O( 2k

√
k

(2k2)k

k! (4k)kn) which is simplified
to O((43.5k)kn). This has clearly exponential complexity in k, but the overall
algorithm has polynomial complexity in n and demonstrates the following result.

Theorem 3. Under the constraint that a tour satisfies the no distinct type
of line-segment condition, the Rectilinear k-Bends Traveling Salesman
Problem is FPT.

3 Conclusions

We have presented three FPT algorithms for different variants of the Rectilin-
ear k-Bends Traveling Salesman Problem. We summarize these results
in Table 1. It is apparent that the complexity of the algorithms is slightly bet-

Table 1. FPT algorithms for finding a rectilinear tour with at most k bends.

Types of Rectilinear Tour Time Complexities

1) general case (without constraints) O(kn2 + k4kn)

2) same line-segment orientation cover points on the same line O((43.5k)kn)

3) one line-segment covers all the points on the same line O((2.95k)kn)

ter as more constraints are placed on the solution. Also, as we argued with an
example, a solution for the general case may not be a solution for either of
the constrained cases, and a solution of the constrained cases may require more
bends although it is a solution for the general case. Therefore, the fact that one
variant is FPT does not imply the other variant is FPT. While we have discussed
the decision-version of the problem, it is not hard to adapt to an FPT-algorithm
for the optimization version. For example, we can use an optimization-version
FPT-algorithm to find a k′-cover where k′ is the number of covering lines and



O(k′) is a bound for k where k is the minimum number of bends. In fact, it has
been shown [12] that k ≤ 2k′ + 2. That is, we can approximate the minimum
number of bends in FPT-time with respect to the sought minimum (or use a
polynomial-time approximation algorithm [12] to obtain the approximate min-
imum). Then the decision problem can be used to find the exact value of the
minimum in FPT-time (using binary search, for example).
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