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Quantum measurement theory

1.1 Classical measurement theory
1.1.1 Basic concepts

Although this chapter, and indeed this book, is concerned with quantum measurements, we
begin with a discussion of some elementary notions of measurement for classical systems.
These are systems that operate at a level where quantum effects are not apparent. The
purpose of this discussion is to introduce some ideas, which carry over to quantum theory,
concerning states, conditional and non-conditional distributions, and stochastic processes.
It will also make the distinct features of quantum measurements plainer.

A classical system can be described by a set of system variables, which we will call
the system configuration. For example, for a system of N interacting particles these could
be the N position and momentum vectors of the particles. The possible values of these
variables form the configuration space S for the system. In the above dynamical example,
the configuration space would be R where R is the real line.! Alternatively, to take the
simplest possible example, there may be a single system variable X that takes just two
values, X = 0 or X = 1, so that the configuration space would be {0, 1}. Physically, this
binary variable could represent a coin on a table, with X = 0 and X = 1 corresponding to
heads and tails, respectively.

We define the state of a classical system to be a probability distribution on configuration
space. Say (as in the example of the coin) that there is a single system variable X € S
that is discrete. Then we write the probability that X has the value x as Pr[X = x]. Here,
in general, Pr[E] is the probability of an event E. When no confusion is likely to arise,
we write Pr[ X = x] simply as g(x). Here we are following the convention of representing
variables by upper-case letters and the corresponding arguments in probability distributions
by the corresponding lower-case letters. If X is a continuous variable, then we define a
probability density g(x) by g(x)dx = Pr[X € (x, x 4+ dx)]. In either case, the state of the
system is represented by the function gp(x) for all values of x. When we choose to be
more careful, we write this as{g(x): x € S}, or as{g(x): x}. We will use these conventions

! This space is often called ‘phase space’, with ‘configuration space’ referring only to the space of positions. We will not use
‘configuration space’ with this meaning.
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conscientiously for the first two chapters, but in subsequent chapters we will become more
relaxed about such issues in order to avoid undue notational complexity.

The system state, as we have defined it, represents an observer’s knowledge about the
system variables. Unless the probability distribution is non-zero only for a single con-
figuration, we say that it represents a state of uncertainty or incomplete knowledge. That is,
in this book we adopt the position that probabilities are subjective: they represent degrees of
certainty rather than objective properties of the world. This point of view may be unfamiliar
and lead to uncomfortable ideas. For example, different observers, with different knowledge
about a system, would in general assign different states to the same system. This is not a
problem for these observers, as long as the different states are consistent. This is the case
as long as their supports on configuration space are not disjoint (that is, as long as they all
assign a non-zero probability to at least one set of values for the system variables). This
guarantees that there is at least one state of complete knowledge (that is, one configuration)
that all observers agree is a possible state.

We now consider measurement of a classical system. With a perfect measurement of X,
the observer would simply find out its value, say x’. The system state would then be a state
of complete knowledge about this variable. For discrete variables this is represented by the
Kronecker §-function gp(x) = 6, -, whereas for a continuous variable it is represented by
the Dirac §-function p(x) = §(x — x’). For comparison with the quantum case (in following
sections), it is more enlightening to consider imperfect measurements. Suppose that one only
has access to the values of the system variables indirectly, through an apparatus variable
Y. The state of the apparatus is also specified by a probability distribution g(y). By some
physical process, the apparatus variable becomes statistically dependent on the system
variable. That is, the configuration of the apparatus is correlated (perhaps imperfectly) with
the configuration of the system. If the apparatus variable is observed, {@(y): y} is simply
the probability distribution of measurement outcomes.

One way of thinking about the system—apparatus correlation is illustrated in Fig. 1.1.
The correlation is defined by a functional relationship among the readout variable, Y, the
system variable, X, before the measurement, and a random variable, E, which represents
extra noise in the measurement outcome. We can specify this by a function

Y = G(X, B), (1.1)

together with a probability distribution (&) for the noise. Here, the noise is assumed to
be independent of the system, and is assumed not to affect the system. That is, we restrict
our consideration for the moment to non-disturbing measurements, for which X after the
measurement is the same as X before the measurement.

1.1.2 Example: binary variables

To illustrate the above theory, consider the case of binary variables. As we will see,
this is relevant in the quantum setting also. For this case, the state of the system gp(x) is
completely specified by the probability g (x := 0), since pp(x := 1) = 1 — p(x := 0). Here
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MEASURING

SYSTEM APPARATUS
X ) Y-G(X.Z)

Fig. 1.1 System—apparatus correlation in a typical classical measurement.

we have introduced another abuse of notation, namely that g (x := a) means gp(x) evaluated
at x = a, where a is any number or variable. In other words, it is another way of writing
Pr[X = a] (for the case of discrete variables). The convenience of this notation will become
evident.

We assume that the apparatus and noise are also described by binary variables with values
0 and 1. We take the output variable Y to be the binary addition (that is, addition modulo
2) of the system variable X and the noise variable Z. In the language of binary logic, this
is called the ‘exclusive or’ (XOR) of these two variables, and is written as

Y=XoE. (1.2)

We specify the noise by gp(§ := 0) = u.

Equation 1.2 implies that the readout variable ¥ will reproduce the system variable X
if 2 = 0. If E = 1, the readout variable is (in the language of logic) the negation of the
system variable. That is to say, the readout has undergone a bit-flip error, so that Y = 1 when
X = 0 and vice versa. We can thus interpret p as the probability that the readout variable
is ‘correct’. If no noise is added by the measurement apparatus, so that p(§ :=0) = 1, we
call the measurement ideal.

It should be intuitively clear that the apparatus state (i.e. the readout distribution) g(y)
is determined by the function G together with the noise probability g(£) and the system
state before the measurement, g(x). This last state is called the a-priori state, or prior state.
In the example above we find that

PO =1 =ppk :=1)+0 - wepkx = 0), (1.3)
P(y:=0) = ppl =0+ 1 - wel = 1. (1.4)
This may be written more succinctly by inverting Eq. (1.2) to obtain E = X @ Y and

writing

1
PO =) pE =x @ y)p(x). (1.5)

x=0
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In the case of a binary variable X with distribution g(x), it is easy to verify that the mean
is given by E[X] = g(x := 1). Here we are using E to represent ‘expectation of”. That is,
in the general case,

E[X]=) xPriX =x]=) xp(x). (1.6)
More generally,
ELfOO] =) fOPIX =x] =) f()px). (1.7)
Using this notation, we define the variance of a variable as
Var[X] = E[X?] — (E[X])*. (1.8)
Exercise 1.1 Show that
E[Y] = (1 — u)+ 2u — DE[X], (1.9)
Var[Y] = (1 — p) + 2u — 1)*Var[X]. (1.10)

Equation (1.9) shows that the average measurement result is the system variable mean,
scaled by a factor of 2;4 — 1, plus a constant off-set of 1 — . The scaling factor also appears
in the variance equation (1.10), together with a constant (the first term) due to the noise
added by the measurement process. When the measurement is ideal (i« = 1), the mean and
variance of the readout variable directly reflect the statistics of the measured system state.

1.1.3 Bayesian inference

We stated above that we are considering, at present, non-disturbing measurements, in which
the system variable X is unaffected by the measurement. However, this does not mean that
the system state is unaffected by the measurement. Recall that the state represents the
observer’s incomplete knowledge of the system, and the point of making a measurement is
(usually) to obtain more knowledge. Thus we should expect the state to change given that
a certain readout is obtained.

The concept we are introducing here is the conditional state of the system, also known
as the state conditioned on the readout. This state is sometimes called the a-posteriori state,
or posterior state. The key to finding the conditioned state is to use Bayesian inference.
Here, inference means that one infers information about the system from the readout, and
Bayesian inference means doing this using Bayes’ theorem. This theorem is an elementary
consequence of basic probability theory, via the double application of the conditional-
probability definition

Pr(A|B) = Pr(A N B)/Pr(B), (1.11)

where A and B are events, A N B is their intersection and A|B is to be read as ‘A given B’.
In an obvious generalization of this notation from events to the values of system variables,
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Bayes’ theorem says that the conditional system state may be written in terms of the a-priori
(or prior) system state gp(x) as
P |x)p(x)

! = 1.12
o (x]y) 00 (1.12)

Here the prime emphasizes that this is an a-posteriori state, and (sticking to the discrete
case as usual)

PO =Y e(np), (1.13)

as required for the conditional state to be normalized.

The crucial part of Bayesian inference is the known conditional probability gp(y|x),
also known as the ‘forward probability’. This is related to the measurement noise and the
function G as follows:

PO =D pGlx. HPE) =Y 8,c0o0E). (1.14)
& §

Here p(y|x, §) means the state of y given the values of x and . If the output function
Y = G(X, B)isinvertible in the sense that there is a function G~! suchthat 2 = G~'(X, Y),
then we can further simplify this as

PO =" 86169 E) = pE == G (x, y). (1.15)
&

Thus we obtain finally for the conditional system state
p(E = G'(x, »))px)
£

Exercise 1.2 If you are unfamiliar with probability theory, derive the first equality in
Eq. (1.14).

(1.16)

9 (xly) =

As well as defining the conditional post-measurement system state, we can define an
unconditional posterior state by averaging over the possible measurement results:

PO =) P ENee =) pE =G""x y)p). (1.17)
y y
The terms conditional and unconditional are sometimes replaced by the terms selective and
non-selective, respectively. In this case of a non-disturbing measurement, it is clear that

9'(x) = p(x). (1.18)

That is, the unconditional posterior state is always the same as the prior state. This is the
counterpart of the statement that the system variable X is unaffected by the measurement.

Exercise 1.3 Determine the posterior conditional states £'(x|y) in the above binary exam-
ple for the two cases y =0 and y = 1. Show that, in the limit @ — 1, ©'(x]y) = by,
(assuming that p(x := y) # 0), whereas, in the case u = 1/2, '(x|y) = gp(x). Interpret
these results.
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1.1.4 Example: continuous variables

We now turn to the case of continuous state variables. Suppose one is interested in deter-
mining the position of a particle on the real line. Let the a-priori state of this system be
the probability density g(x). As explained earlier, this means that, if an ideal measurement
of the position X is made, then the probability that a value between x and x + dx will be
obtained is gp(x)dx.

As in the binary case, we introduce an apparatus with configuration Y and a noise variable
Z, both real numbers. To define the measurement we specify the output function, G(X, B),
for example

Y =X+E, (1.19)

so that E = G™!(X,Y) =Y — X. We must also specify the probability density for the
noise variable £, and a common choice is a zero-mean Gaussian with a variance A%:

P(§) = (2m A% E/0AD, (1.20)
The post-measurement apparatus state is given by the continuous analogue of Eq. (1.13),
o0
p0)= [ pOlpd. (121)

Exercise 1.4 Show that the mean and variance of the state (v) are E[X] and Var[X] + A2,
respectively. This clearly shows the effect of the noise.

Finding the conditional states in this case is difficult in general. However, it is greatly
simplified if the a-priori system state is Gaussian:

_=\2
px) = 2ro?) '/ em(—%) (1.22)

because then the conditional states are still Gaussian.

Exercise 1.5 Verify this, and show that the conditional mean and variance given a result
y are, respectively,
o’y + A’x " a?A?
T AL o2 @) ="5"—
A +o A*+o
Hence show that, in the limit A — 0, the conditional state ©'(x|y) converges to 5(x — y),
and an ideal measurement is recovered.

=/

(1.23)

1.1.5 Most general formulation of classical measurements

As stated above, so far we have considered only non-disturbing classical measurements;
that is, measurements with no back-action on the system. However, it is easy to consider
classical measurements that do have a back-action on the system. For example, one could
measure whether or not a can has petrol fumes in it by dropping a lit match inside. The
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result (nothing, or flames) will certainly reveal whether or not there was petrol inside the
can, but the final state of the system after the measurement will have no petrol fumes inside
in either case.

We can generalize Bayes’ theorem to deal with this case by allowing a state-changing
operation to act upon the state after applying Bayes’ theorem. Say the system state is gp(x).
For simplicity we will take X to be a discrete random variable, with the configuration
space being {0, 1, ...,n — 1}. Say Y is the result of the measurement as usual. Then this
state-changing operation is described by an n x n matrix B, whose element B, (x |x") is the
probability that the measurement will cause the system to make a transition, from the state
in which X = x’ to the state in which X = x, given that the result Y = y was obtained.
Thus, for all x” and all y,

Byxlx) =0, Y Byxlx)=1. (1.24)

The posterior system state is then given by
> Byx1x)p(ylx)p(x")
()

where the expression for g(y) is unchanged from before.
We can unify the Bayesian part and the back-action part of the above expression by
defining a new n x n matrix O, with elements

o (xly) = ; (1.25)

Oy (x1x") = By(x[x)p(ylx"), (1.26)

which maps a normalized probability distribution g(x) onto an unnormalized probability
distribution:

§'(xly) =D Oy(xx)p(x). (1.27)

Here we are introducing the convention of using a tilde to indicate an unnormalized state,
with a norm of less than unity. This norm is equal to

PO =D > Oyxx)p(x), (1.28)

the probability of obtaining the result Y = y. Maps that take states to (possibly unnormal-
ized) states are known as positive maps. The normalized conditional system state is

P'(xly) =) 0, x e /(). (1.29)

From the properties of Oy, it follows that it is possible to find an n-vector E, with positive
elements E,(x), such that the probability formula simplifies:

YD Oy pG) =) Eyx)p(x). (1.30)
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Specifically, in terms of Eq. (1.26),
Ey(x) = p(ylx). (1.31)

This satisfies the completeness condition

Vx, Y Ey(x)=1. (1.32)
y

This is the only mathematical restriction on {Oy: y} (apart from requiring that it be a
positive map).

Exercise 1.6 Formulate the match-in-the-tin measurement technique described above. Let
the states X = 1 and X = 0 correspond to petrol fumes and no petrol fumes, respectively.
LettheresultsY = 1 andY = 0 correspond to flames and no flames, respectively. Determine
the two matrices Oy.—o and Oy.—; (each of which is a 2 x 2 matrix).

The unconditional system state after the measurement is

PO =) > Oyxl)px) =) Oklx)p(). (133)
y x’ x’

Here the unconditional evolution map O is

0=) 0, (1.34)
y

Exercise 1.7 Show that O is the identity if and only if there is no back-action.

1.2 Quantum measurement theory
1.2.1 Probability and quantum mechanics

As we have discussed, with a classical system an ideal measurement can determine with
certainty the values of all of the system variables. In this situation of complete knowledge,
all subsequent ideal measurement results are determined with certainty. In consequence,
measurement and probability do not play a significant role in the foundation of classical
mechanics (although they do play a very significant role in practical applications of classical
mechanics, where noise is inevitable [Whi96]).

The situation is very different in quantum mechanics. Here, for any sort of measurement,
there are systems about which one has maximal knowledge, but for which the result
of the measurement is not determined. The best one can do is to give the probability
distributions for measurement outcomes. From this it might be inferred that a state of
maximal knowledge about a quantum system is not a state of complete knowledge. That
is, that there are ‘hidden’ variables about which one has incomplete knowledge, even
when one has maximal knowledge, and these hidden variables determine the measurement
outcomes.
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Although itis possible to build a perfectly consistent interpretation of quantum mechanics
based on this idea (see for example Ref. [BH93]), most physicists reject the idea. Probably
the chief reason for this rejection is that in 1964 John Bell showed that any such deterministic
hidden-variables theory must be nonlocal (that is, it must violate local causality) [Bel64].
That is, in such a theory, an agent with control over some local macroscopic parameters
(such as the orientation of a magnet) can, under particular circumstances, instantaneously
affect the hidden variables at an arbitrarily distant point in space. It can be shown that
this effect cannot allow faster-than-light signalling, and hence does not lead to causal
paradoxes within Einstein’s theory of relativity. Nevertheless, it is clearly against the spirit
of relativity theory. It should be noted, however, that this result is not restricted to hidden-
variable interpretations; any interpretation of quantum mechanics that allows the concept
of local causality to be formulated will be found to violate it — see Refs. [Bel87] (p. 172)
and [Wis06].

Another, perhaps better, justification for ignoring hidden-variables theories is that
there are infinitely many of them (see Ref. [GW04] and references therein). While some
are more natural than others [Wis07], there is, at this stage, no compelling reason to choose
one over all of the others. Thus one would be forced to make a somewhat arbitrary choice
as to which hidden-variables interpretation to adopt, and each interpretation would have its
own unique explanation as to the nature of quantum-mechanical uncertainty.

Rather than grappling with these difficulties, in this book we take an operational
approach. That is, we treat quantum mechanics as simply an algorithm for calculating
what one expects to happen when one performs a measurement. We treat uncertainty about
future measurement outcomes as a primitive in the theory, rather than ascribing it to lack
of knowledge about existing hidden variables.

We will still talk of a quantum state as representing our knowledge about a system, even
though strictly it is our knowledge about the outcomes of our future measurements on
that system. Also it is still useful, in many cases, to think of a quantum state of maximal
knowledge as being like a classical state of incomplete knowledge about a system. Very
crudely, this is the idea of ‘quantum noise’. The reader who is not familiar with basic
quantum mechanics (pure states, mixed states, time-evolution, entanglement etc.) should
consult Appendix A for a summary of this material. However, before moving to quantum
measurements, we note an important point of terminology. The matrix representation p
of a mixed quantum state is usually called (for historical reasons) the density operator, or
density matrix. We will call it the state matrix, because it generalizes the state vector for
pure states.

Finally, just as in the classical case, observers with different knowledge may assign
different states simultaneously to a single system. The most natural way to extend the
concept of consistency to the quantum case is to replace the common state of maximal
knowledge with a common pure state. That is, the condition for the consistency of a
collection of states {p;} from different observers is that there exists a positive € and a ket
[) such that, forall j, p; — €|) (| is a positive operator. In other words, each observer’s
state p; can be written as a mixture of the pure state |/) (| and some other states.
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Exercise 1.8 Show, from this definition, that two different pure states 7, and f, cannot be
consistent states for any system.
Hint: Consider the operator 6; = #t; — €| ){(V¥|. Assuming 7; # |y)(Y¥|, show that

Tr[crjz] > (Tr[crj] )2 and hence deduce the result.

1.2.2 Projective measurements

The traditional description of measurement in quantum mechanics is in terms of projective
measurements, as follows. Consider a measurement of the physical quantity A. First we
note that the associated operator A (often called an observable) can be diagonalized as

A =me, (1.35)
A

where {A} are the eigenvalues of A which are real and which we have assumed for con-
venience are discrete. IT, is called the projection operator, or projector, onto the subspace
of eigenstates of A with eigenvalue A. If the spectrum (set of eigenvalues {1}) is non-
degenerate, then the projector would simply be the rank-1 projector 7; = |A)(A|. We will
call this special case von Neumann measurements.

In the more general case, where the eigenvalues of A are N,-fold degenerate, I, is a
rank- N, projector, and can be written as Z;V;l [X, j){(X, j|. For example, in the simplest
model of the hydrogen atom, if A is the energy then A would be the principal quantum
number n and j would code for the angular-momentum and spin quantum numbers [, m
and s of states with the same energy. The projectors are orthonormal, obeying

1,00, = 8, 11, (1.36)

The existence of this orthonormal basis is a consequence of the spectral theorem (see
Box 1.1).

When one measures A, the result one obtains is one of the eigenvalues A. Say the
measurement begins at time ¢ and takes a time 7. Assuming that the system does not evolve
significantly from other causes during the measurement, the probability for obtaining that
particular eigenvalue is

Pr{A(t) = A = o, = Tr[p()IL;]. (1.37)

After the measurement, the conditional (a-posteriori) state of the system given the result
Als
IL p(D)1I;

o+ T)= m

(1.38)
That is to say, the final state has been projected by IT, into the corresponding subspace of
the total Hilbert space. This is known as the projection postulate, or sometimes as state
collapse, or state reduction. The last term is best avoided, since it invites confusion with the
reduced state of a bipartite system as discussed in Section A.2.2 of Appendix A. This process



1.2 Quantum measurement theory

11

Box 1.1 Spectral theorem

The spectral theorem states that any normal operator N has a complete set of eigenstates
that are orthonormal. A normal operator is an operator such that [N, NT] = 0. That
is, for every such N there is a basis {|v, j): v, j} for the Hilbert space such that, with
v eC,

Niv, j) = v, j).

Here the extra index j is necessary because the eigenvalues v may be degenerate. The
general diagonal form of N is
A=Y v,
v

where the IT, = > j Iv, J){v, j| form a set of orthogonal projectors obeying

1,11, =8, ,I1,.

Hermitian operators (for which N = NT) are a special class of normal operators. It
can be shown that a normal operator that is not Hermitian can be written in the form N =
R +iH, where R and A are commuting Hermitian operators. For any two operators
that commute, there is some complete basis comprising states that are eigenstates
of both operators, which in this case will be a basis |v, j) diagonalizing N. As will
be discussed in Section 1.2.2, operators that share eigenstates are simultaneously
measurable.

Thus it is apparent that a non-Hermitian normal operator is really just a compact
way to represent two simultaneously observable quantities by having eigenvalues
v in the complex plane rather than the real line. By considering vectors or other
multi-component objects, any number of commuting operators can be combined to
represent the corresponding simultaneously observable quantities. This demonstrates
that, for projective quantum measurement theory, the important thing is not an operator
representing the observables, but rather the projector I1, corresponding to a result r.

should be compared to the classical Bayesian update rule, Eq. (1.12). A consequence
this postulate is that, if the measurement is immediately repeated, then

Pr{A(t + T) = M |A®t) = A] = Trlp(t + TI1] = 8.5 (1.3

That is to say, the same result is guaranteed. Moreover, the system state will not be changed

by the second measurement. For a deeper understanding of the above theory, see Box 1.

For pure states, p(t) = |¥(¢)) (¥ ()|, the formulae (1.37) and (1.38) can be more simply

expressed as

Pr{A(t) = A = o5 = (YOI (1)) (1.40)

of

9)

2.
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Box 1.2 Gleason’s theorem

It is interesting to ask how much of quantum measurement theory one can derive from
assuming that quantum measurements are described by a complete set of projectors, one
for each result r. Obviously there must be some rule for obtaining a probability g, from
a projector I1,, such that >, #r = 1. Gleason [Gle57] proved that, if one considers
measurements with at least three outcomes (requiring a Hilbert-space dimension of at
least three), then it follows that there exists a non-negative operator p of unit trace such
that

g, = Tr[I1, p].

That is, the probability rule (1.37) can be derived, not assumed.

It must be noted, however, that Gleason required an additional assumption: non-
contextuality. This means that g, depends only upon I1,, being independent of the
other projectors which complete the set. That is, if two measurements each have one
outcome represented by the same projector I1,, the probabilities for those outcomes are
necessarily the same, even if the measurements cannot be performed simultaneously.

Gleason’s theorem shows that the state matrix p is a consequence of the structure
of Hilbert space, if we require probabilities to be assigned to projection operators. It
suggests that, rather than introducing pure states and then generalizing to mixed states,
the state matrix p can be taken as fundamental.

and

¥t + 1)) = Ty () / /67 (1.41)

However, if one wishes to describe the unconditional state of the system (that is, the state
if one makes the measurement, but ignores the result) then one must use the state matrix:

ot +T)= ZPr[A(t) =AMt +T) = Z I, p()IT;. (1.42)
A A

Thus, if the state were pure at time ¢, and we make a measurement, but ignore the result,
then in general the state at time # + 7 will be mixed. That is, projective measurement,
unlike unitary evolution,? is generally an entropy-increasing process unless one keeps track
of the measurement results. This is in contrast to non-disturbing measurements in classical
mechanics, where (as we have seen) the unconditional a-posteriori state is identical to the
a-priori state (1.17).

Exercise 1.9 Show that a projective measurement of A decreases the purity Tr[,oz] of the
unconditional state unless the a-priori state p(t) can be diagonalized in the same basis as
can A.

2 Of course unitary evolution can change the entropy of a subsystem, as we will discuss in Chapter 3.
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Hint: Ler p;, = Tr[lil,\,o(t)li[;\rp(t)] and show that VYA,)', pyy > 0. Then express
Tr[,o(t)z] and Tr[,o(t + T)2] in terms of these p;,;..

From the above measurement theory, it is simple to show that the mean value for the
result A is

(A) = ZPr[A = Ar
A

=) _TilpTL]a
A

= Tr|:,0 (Z )Lfl)\)i| = Tr[pA]. (1.43)
A

Here we are using angle brackets as an alternative notation for expectation value when
dealing with quantum observables.

Exercise 1.10 Using the same technique, show that

(A%) =) 22Pr{A = 1] = Tr[pA?]. (1.44)
A

Thus the mean value (A.6) and variance (A.8) can be derived rather than postulated,
provided that they are interpreted in terms of the moments of the results of a projective
measurement of A.

Continuous spectra. The above results can easily be generalized to treat physical quantities
with a continuous spectrum, such as the position X of a particle on a line. Considering this
non-degenerate case for simplicity, the spectral theorem becomes

X = /Oo x[(x)dx = /oox|x)(x|dx. (1.45)

Note that IT(x) is not strictly a projector, but a projector density, since the orthogonality
conditions are

1O = 8(x — xHI(x), (1.46)
or, in terms of the unnormalizable improper states |x),
(x]x")y = 8(x — x"). (1.47)

These states are discussed in more detail in Appendix A.

The measurement outcomes are likewise described by probability densities. For example,
if the system is in a pure state |1(¢)), the probability that an ideal measurement of position
gives a result between x and x + dx is

p)dx = Tr[ |y (0)) (¥ (O)IT1(x)]dx = [¢(x, 1)]* dx. (1.48)

Here we have defined the wavefunction ¥ (x, ) = (x|¥(¢)). Unfortunately it is not possible
to assign a proper a-posteriori state to the system, since |x) is unnormalizable. This problem
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can be avoided by considering an approximate measurement of position with finite accuracy
A, as will always be the case in practice. This can still be described as a projective
measurement, for example by using the (now discrete) set of projectors

. X1,
I; =/ IT(x)dx, (1.49)
xj
where, forall j, x;11 = x; + A.

Exercise 1.11 Show that the T1 ;j defined here form an orthonormal set.

Simultaneous measurements. Heisenberg’s uncertainty relation (see Exercise A.3) shows
that it is impossible for both the position and the momentum of a particle to be known exactly
(have zero variance). This is often used as an argument for saying that it is impossible
simultaneously to measure position and momentum. We will see in the following sections
that this is not strictly true. Nevertheless, it is the case that it is impossible to carry out a
simultaneous projective measurement of position and momentum, and this is the case of
interest here.

For two quantities A and B to be measurable simultaneously, it is sufficient (and neces-
sary) for them to be measurable consecutively, such that the joint probability of the results
a and b does not depend on the order of the measurement. Considering a system in a pure
state for simplicity, we thus require for all @ and b and all |y) that

1,11, |y) = 11,11, |¥), (1.50)

for some 6. By considering the norm of these two vectors (which must be equal) it can be
seen that e’ must equal unity.

Exercise 1.12 Prove this, and hence that

A

Va, b, [[1,, [1,] = 0. (1.51)

This is equivalent to the condition that [A, 3] = 0, and means that there is a basis, say
{|¢x)}, in which both A and B are diagonal. That is,

A=Y alpdiol.  B=Y bilgu) (@i, (152)
k k

where the eigenvalues a; may be degenerate (that is, there may exist k and &’ such that
ar = ay) and similarly for by. Thus, one way of making a simultaneous measurement of
A and B is to make a measurement of K = > klow) (@], and from the result k determine
the appropriate values a; and by for A and B.

1.2.3 Systems and meters

The standard (projective) presentation of quantum measurements is inadequate for a num-
ber of reasons. A prosaic, but very practical, reason is that very few measurements can be
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made in such a way that the apparatus adds no classical noise to the measurement result.
A more interesting reason is that there are many measurements in which the a-posteriori
conditional system state is clearly not left in the eigenstate of the measured quantity corre-
sponding to the measurement result. For example, in photon counting by a photodetector,
at the end of the measurements all photons have been absorbed, so that the system (e.g.
the cavity that originally contained the photons) is left in the vacuum state, not a state con-
taining the number n of photons counted. Another interesting reason is that non-projective
measurements allow far greater flexibility than do projective measurements. For example,
the simultaneous measurement of position and momentum is a perfectly acceptable idea,
so long as the respective accuracies do not violate the Heisenberg uncertainty principle, as
we will discuss below.

The fundamental reason why projective measurements are inadequate for describing real
measurements is that experimenters never directly measure the system of interest. Rather,
the system of interest (such as an atom) interacts with its environment (the continuum of
electromagnetic field modes), and the experimenter observes the effect of the system on
the environment (the radiated field). Of course, one could argue that the experimenter does
not observe the radiated field, but rather that the field interacts with a photodetector, which
triggers a current in a circuit, which is coupled to a display panel, which radiates more
photons, which interact with the experimenter’s retina, and so on. Such a chain of systems is
known as a von Neumann chain [vVN32]. The point is that, at some stage before reaching the
mind of the observer, one has to cut the chain by applying the projection postulate. This cut,
known as Heisenberg’s cut [Hei30], is the point at which one considers the measurement
as having been made.

If one were to apply a projection postulate directly to the atom, one would obtain wrong
predictions. However, assuming a projective measurement of the field will yield results
negligibly different from those obtained assuming a projective measurement at any later
stage. This is because of the rapid decoherence of macroscopic material objects such as
photodetectors (see Chapter 3). For this reason, it is sufficient to consider the field to be
measured projectively. Because the field has interacted with the system, their quantum
states are correlated (indeed, they are entangled, provided that their initial states are pure
enough). The projective measurement of the field is then effectively a measurement of the
atom. The latter measurement, however, is not projective, and we need a more general
formalism to describe it.

Let the initial system state vector be [/(¢)), and say that there is a second quantum
system, which we will call the meter, or apparatus, with the initial state |0(¢)). Thus the
initial (unentangled) combined state is

[W() = 10(0) (1)) (1.53)

Let these two systems be coupled together for a time 7} by a unitary evolution operator
U (t + Ty, t), which we will write as 0 (Ty). Thus the combined system—meter state after
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this coupling is
Wt + T0)) = U Y(1). (1.54)

This cannot in general be written in the factorized form of Eq. (1.53).

Now let the meter be measured projectively over a time interval T, and say T = T + T>.
We assume that the evolution of the system and meter over the time 75 is negligible (this
could be either because T, < T}, or because the coupling Hamiltonian is time-dependent).
Let the projection operators for the meter be rank-1 operators, so that I, = #, ® 1. The
order of the tensor product is meter then system, as in Eq. (1.53), and 7, = |r)(r|. Here r
denotes the value of the observed quantity R. The set {|r)} forms an orthonormal basis for
the meter Hilbert space. Then the final combined state is

.t T)) = |r><r|U(T1)|9(t)>|¢(t))’ (1.55)

Vor

where the probability of obtaining the value r for the result R is
PR =r] = p, = (YOUOOITT TP (r| @ TITTHIOW) 1Y (1)) (1.56)

The measurement on the meter disentangles the system and the meter, so that the final
state (1.55) can be written as

W, + T)) = |y 2O (157)

Jor

where M, is an operator that acts only in the system Hilbert space, defined by
M, = (r|U(T)IO@)). (1.58)

We call it a measurement operator. The probability distribution (1.56) for R can similarly
be written as

o = (WOIM] M, 1y (1)). (1.59)

1.2.4 Example: binary measurement

To understand the ideas just introduced, it is helpful to consider a specific example. We
choose one analogous to the classical discrete binary measurement discussed in Sec-
tion 1.1.2. The quantum analogue of a system with a single binary system variable is
a quantum system in a two-dimensional Hilbert space. Let{|x): x = 0, 1} be an orthonor-
mal basis for this Hilbert space. An obvious physical realization is a spin-half particle. The
spin in any direction is restricted to one of two possible values, £//2. These correspond to
the spin being up (4) or down (—) with respect to the given direction. Choosing a particular
direction (z is conventional), we label these states as |0) and |1), respectively. Other physi-
cal realizations include an atom with only two relevant levels, or a single electromagnetic
cavity mode containing no photon or one photon. The latter two examples will be discussed
in detail in Section 1.5.
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Now consider a measured system S and a measurement apparatus A, both described by
two-dimensional Hilbert spaces. We will use x for the system states and y for the apparatus
states. Following the above formalism, we assume that initially both systems are in pure
states, so that the joint state of the system at time # is

W) =10y @) = stasly =&)|x). (1.60)
x.§
Note that we have used an analogous notation to the classical case, so that |y := &) is
the apparatus state |y) with y taking the value &. To make a measurement, the system
and apparatus states must become correlated. We will discuss how this may take place
physically in Section 1.5. For now we simply postulate that, as a result of the unitary
interaction between the system and the apparatus, we have

W@+ 1)) = Glw(@) = Zagsxly = G(x, §))|x), (1.61)
x,€

where G is a unitary operator defined by
Gly :=&)Ix) =y := G(x, &) Ix). (1.62)

Note that the interaction between the system and the apparatus has been specified by
reference to a particular basis for the system and apparatus, {|y)|x)}. We will refer to this
(for the system, or apparatus, or both together) as the measurement basis.

Exercise 1.13 Show that G as defined is unitary if there exists an inverse function G~ in
the sense that, for all y, y = G(x, G™'(x, y)).

Hint: Show that G1G = 1 = GG using the matrix representation in the measurement
basis.

The invertibility condition is the same as we used in Section 1.1.3 for the classical binary
measurement model.

As an example, consider G(x, &) = x @ £, as in the classical case, where again this
indicates binary addition. In this case G = G~'. The system state is unknown and is thus
arbitrary. However, the apparatus is assumed to be under our control and can be prepared
in a fiducial state. This means a standard state for the purpose of measurement. Often the
fiducial state is a particular state in the measurement basis, and we will assume that it is
|y := 0), so that ag = J¢ . In this case the state after the interaction is

[W(r + 1) =st|y = x)|x) (1.63)
X

and there is a perfect correlation between the system and the apparatus. Let us say a
projective measurement (of duration 75) of the apparatus state in the measurement basis is
made. This will give the result y with probability |s,|?, that is, with exactly the probability
that a projective measurement directly on the system in the measurement basis would have
given. Moreover, the conditioned system state at time ¢ + 7 (where T = T} + T, as above),
given the result y, is

Yyt + 1)) = |x = y). (1.64)
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Again, this is as would have occurred with the appropriate projective measurement of
duration T on the system, as in Eq. (1.41).

This example is a special case of a model introduced by von Neumann. It would appear
to be simply a more complicated version of the description of standard projective mea-
surements. However, as we now show, it enables us to describe a more general class of
measurements in which extra noise appears in the result due to the measurement apparatus.

Suppose that for some reason it is not possible to prepare the apparatus in one of the
measurement basis states. In that case we must use the general result given in Eq. (1.61).
Using Eq. (1.58), we find

M|y () = (y|W(t + T7))

=D 8y.Gupdeslx)
x.§
= Z AG-1(x,y)Sx|X)
=D a1y sxlx). (1.65)
x’ x
Thus we have the measurement operator
My =" ag-iqplx)(xl. (1.66)
For the particular case G~!(x, y) = x @ y, this simplifies to
My=) aclx =y ®E)(x:=ydE|. (1.67)
&

Returning to the more general form of Eq. (1.65), we find that the probability for the
result y is

PO) = WOIMIM @) =D Iscl’lag1.p (1.68)

If we define
P(€) = lag|*, (1.69)
P(x) = |sc|* = Tr[p(®)]x)(x]], (1.70)

where p(t) = |¥(¢)) (¥ (¢)] is the system state matrix, then the probability distribution for
measurement results may then be written as

PO =Y pE =G (x, y)p(x). (1.71)

This is the same form as for the classical binary measurement scheme; see Eq. (1.13)
and Eq. (1.15). Here the noise distribution arises from quantum noise associated with the
fiducial (purposefully prepared) apparatus state. It is quantum noise because the initial
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apparatus state is still a pure state. The noise arises from the fact that it is not prepared in
one of the measurement basis states. Of course, the apparatus may be prepared in a mixed
state, in which case the noise added to the measurement result may have a classical origin.
This is discussed below in Section 1.4.

The system state conditioned on the result y is

Uyt + ) = My @) V() = Y a6-166,8: 1) /9. (1.72)

If, from this, we calculate the probability |{x |y, (t + T)) |2 for the system to have X = x
after the measurement giving the result y, we find this probability to be given by

©'(xly) = £ONEE) (1.73)

()

Again, this is the same as the classical result derived using Bayes’ theorem. The interesting
point is that the projection postulate does that work for us in the quantum case. Moreover,
it gives us the full a-posteriori conditional state, from which the expectation value of any
observable (not just X) can be calculated. The quantum measurement here is thus more
than simply a reproduction of the classical measurement, since the conditional state (1.72)
cannot be derived from Bayes’ theorem.

Exercise 1.14 Consider two infinite-dimensional Hilbert spaces describing a system and
a meter. Show that the operator G, defined in the joint position basis |y)|x) by

Gly :=€)Ix) = |y := £ + x)|x), (1.74)

is unitary. Let the fiducial apparatus state be

*© _ 12
) = / dg[@r A~ exp(—&2/@a%)] 1y = ). (1.75)
—0o0
Following the example of this subsection, show that, insofar as the statistics of X are
concerned, this measurement is equivalent to the classical measurement analysed in
Section 1.1.4.

1.2.5 Measurement operators and effects

As discussed in Section 1.2.3, the system and apparatus are no longer entangled at the
end of the measurement. Thus it is not necessary to continue to include the meter in our
description of the measurement. Rather we can specify the measurement completely in
terms of the measurement operators M,. The conditional state of the system, given that the
result R has the value r, after a measurement of duration 7', is

M, ¥ (1))

A+ T)) =
[, (t +T)) N

(1.76)
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As seen above, the probabilities are given by the expectation of another operator, defined
in terms of the measurement operators by

E, = MiM,. (1.77)

These operators are known as probability operators, or effects. The fact that ) g, must
equal unity for all initial states gives a completeness condition on the measurement opera-
tors:

S £ =1s. (1.78)

This restriction, that {E,: r} be a resolution of the identity for the system Hilbert space, is
the only restriction on the set of measurement operators (apart from the fact that they must
be positive, of course).

The set of all effects { £,: r} constitutes an effect-valued measure more commonly known
as a probability-operator-valued measure (POM?) on the space of results 7. This simply
means that, rather than a probability distribution (or probability-valued measure) over
the space of results, we have a probability-operator-valued measure. Note that we have
left behind the notion of ‘observables’ in this formulation of measurement. The possible
measurement results r are not the eigenvalues of an Hermitian operator representing an
observable; they are simply labels representing possible results. Depending on the circum-
stances, it might be convenient to represent the result R by an integer, a real number, a
complex number, or an even more exotic quantity.

If one were making only a single measurement, then the conditioned state |,.) would be
irrelevant. However, one often wishes to consider a sequence of measurements, in which
case the conditioned system state is vital. In terms of the state matrix p, which allows the
possibility of mixed initial states, the conditioned state is

M, ot
ot +T)= M (1.79)
where g, = Tr[,o(t)E",] and, for arbitrary operators A and B,
JIA1B = ABAT. (1.80)
The superoperator
O, = JIM,] (1.81)

is known as the operation for r. It is called a superoperator because it takes an operator
(here p) to another operator. Operations can be identified with the class of superoperators
that take physical states to physical states. (See Box 1.3.) This very important class is also
known as completely positive maps.

3 The abbreviation POVM is used also, and, in both cases, PO is sometimes understood to denote ‘positive operator’ rather than
‘probability operator’.
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Box 1.3 Superoperators and operations

A superoperator S is an operator on the space of Hilbert-space operators:
A— A =SA. (1.82)

A superoperator S must satisfy three conditions in order to correspond to a physical
processes (such as measurement or dynamics).

1. S is trace-preserving or decreasing. That is, 0 < Tr[Sp] < 1 for any state p. Moreover,
Tr[Sp] is the probability that the process occurs.

2. Sisaconvex linear map on operators. That s, for probabilities p;, we have that S } ., p;0; =
2 9iSp)

3. Sis completely positive. That is, not only does S map positive operators to positive operators
for the system of interest S, but so does (Z ® S). Here 7 is the identity superoperator for an
arbitrary second system R.

The final property deserves some comment. [t might have been thought that positivity
of a superoperator would be sufficient to represent a physical process. However, it is
always possible that a system S is entangled with another system R before the physical
process represented by S acts on system S. It must still be the case that the total state of
both systems remains a physical state with a positive state matrix. This gives condition
3.

If a superoperator satisfies these three properties then it is called an operation, and
has the Kraus representation [Kra83], or operator sum representation,

S(p)=Y_K;pK] (1.83)
J

for some set of operators K ; satisfying

i1->"kIk; >0 (1.84)
J

There is another important representation theorem for operations, which follows
from the Gelfand—Naimark—Segal theorem [Con90]. Consider, as above, an apparatus
or ancilla system A in addition to the quantum system of interest S. Then there is a pure
state |0) o of A and some unitary evolution, Us,, describing the coupling of system S
to system A, such that

Sps = Tra [(1s ® fLA)Usaos @ 10)a(6DUL, ). (1.85)

where IT, is some projector for the ancilla system A. This is essentially the converse
of the construction of operations for measurements from a system—apparatus coupling
in Section 1.2.3.
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If the measurement were performed but the result R ignored, the final state of the system
would be

p+T) = oot +T) =) TIM1pt) = Op(0). (1.86)

Here O is also an operation, and is trace-preserving.

For non-projective measurements, there is no guarantee that repeating the measurement
will yield the same result. In fact, the final state of the system may be completely unrelated
to either the initial state of the system or the result obtained. This is best illustrated by an
example.

Example 1. Consider the set of measurement operators {M,} defined by M, = 10)(r|,
where r € {0, 1,2, ...} and {|r)} is a complete basis for the system Hilbert space. Then
the effects for the measurements are projectors £, = I1, = |r)(r|, which obviously obey
the completeness condition (1.78). The probability of obtaining R = r is just (r|p(t)|r).
However, the final state of the system, regardless of the result r, is p,(t + T) = |0)(0|. Lest
it be thought that this is an artificial example, it in fact arises very naturally from counting
photons. There R is the number of photons, and, because photons are typically absorbed
in order to be counted, the number of photons left after the measurement has finished is
zero.

In the above example, the effects are still projection operators. However, there are other
measurements in which this is not the case.

Example 2. Consider a two-dimensional Hilbert space with the basis |0), |1). Consider a
continuous measurement result ¢ that can take values between 0 and 27r. We define the
measurement operators M¢ = |p){(¢|/+/7, Where |@) is defined by

) = [10) + exp(ip)|1)1/+/2. (1.87)

In this case the effects are

. 1
Ey = ;Id))(qbl, (1.88)

and the completeness condition, which is easy to verify, is

2
A dgp Eg = [0)(0] + 11)(1] = 1. (1.89)

Although E » 18 proportional to a projection operator it is not equal to one. It does not square
to itself: (E"¢ d¢)? = E"¢ do(de/m). Neither are different effects orthogonal in general:
E"¢ qu # O unless ¢’ = ¢ + 7. Thus, even if the system is initially in the state |¢), there is
a finite probability for any result to be obtained except ¢ + 7.

The effects E, need not even be proportional to projectors, as the next example shows.
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Example 3. Consider again an infinite-dimensional Hilbert space, but now use the contin-
uous basis |x) (see Section 1.2.2 and Appendix A), for which {x|x") = §(x — x”). Define
an effect

[o.¢]

E, = / dr(@r A?) 712 expl—(y — )2/ @A) |x) (x]. (1.90)
—00

This describes an imprecise measurement of position. It is easy to verify that the effects are

not proportional to projectors by showing that E% is not proportional to Ey. Nevertheless,

they are positive operators and obey the completeness relation

o0 A A
/ dyE, = 1. (1.91)
—00 i
Exercise 1.15 Verify Eq. (1.91). Also show that these effects can be derived from the
measurement model introduced in Exercise 1.14.

The previous examples indicate some of the flexibility that arises from not requiring the
effects to be projectors. As mentioned above, another example of the power offered by
generalized measurements is the simultaneous measurement of position X and momentum
P. This is possible provided that the two measurement results have a certain amount of
error. A simple model for this was first described by Arthurs and Kelly [AK65]. A more
abstract description directly in terms of the resulting projection valued measure was given
by Holevo [Hol82]. The description given below is based on the discussion in [SMO1].

Example 4. The model of Arthurs and Kelly consists of two meters that are allowed to inter-
act instantaneously with the system. The interaction couples one of the meters to position
and the other to momentum, encoding the results of the measurement in the final states of
the meters. Projective measurements are then made on each of the meter states separately.
These measurements can be carried out simultaneously since operators for distinct meters
commute. For appropriate meter states, this measurement forces the conditional state of
the system into a Gaussian state (defined below). We assume some appropriate length
scale such that the positions and momenta for the system are dimensionless, and satisfy
(X, P]=i.
The appropriate unitary interaction is

U =exp[—i(X P, + PP))]. (1.92)

Here the subscripts refer to the two detectors, which are initially in minimum-uncertainty
states (see Appendix A) |d;) and |d»), respectively. Specifically, we choose the wavefunc-
tions in the position representation to be

(xjld;) = (/2) Ve (1.93)

After the interaction, the detectors are measured in the position basis. The measure-
ment result is thus the pair of numbers (X, X»). Following the theory given above, the
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measurement operator for this result is
M(x1, x2) = (x1|(x2| Ulda)|dh ). (1.94)

With a little effort it is possible to show that M(x;, x,) is proportional to a projection
operator:

M(xy, x7) =

1
1Cer, x2)) ((x1, X2)1. (1.95)
2 :
Here the state |(xj, x2)) is a minimum-uncertainty state for the system, with a position
probability amplitude distribution

—1/4 . 1 2
(xlCrr, x2)) = ()" exp| ixxy — S(x —x1)7 . (1.96)
From Appendix A, this is a state with mean position and momentum given by x; and x,
respectively, and with the variances in position and momentum equal to 1/2.
Exercise 1.16 Verify Eq. (1.95).

The corresponding probability density for the observed values, (x1, x»), is found from
the effect density

N 1
E(xy, x2)dx; dxy = §|(X1,X2)) ((x1, x2)|dx; dxz. (1.97)
Exercise 1.17 Show that
o0 o0 “ R
/ dx1/ dxs E(xy, x2) = 1. (1.98)
—0oQ —0oQ
From this POM we can show that
A A 1
ElXi]=(X),  EIX]l=(X)+ 7, (1.99)
N N 1
E[Xo]=(P),  E[X3]=(P")+ 7, (1.100)

where (A) = Tr[Ap] is the quantum expectation, while E is a classical average computed
by evaluating an integral over the probability density g(x;, x;). Thus the readout variables
X and X, give, respectively, the position and momentum of the system with additional
noise.

It is more conventional to denote the state |(x, x2)) by |«), where the single complex
parameter « is given by & = (x; + ix2)/+/2. In this form the states are known as coherent
states (see Section A.4). The corresponding effect density is F(a) = |o)(«|/7 and the
resulting probability density p(a)d’a = Tr[F'(er)p] d’c. This is known as the Q-function
in quantum optics — see Section A.5. For a general choice of initial pure states for the
detectors, the probability density for observed results is known as the Husimi function
[Hus40].
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1.2.6 Non-selective evolution and choice of basis

Recall that in the analysis above, using system and meter states, the combined state prior
to the measurement of the meter was

\W(t + T1)) = UT)IO@) [y (1)) (1.101)

As explained there, it is not possible to assign a state vector to the system at time ¢ + 77,
because it is entangled with the meter. However, it is possible to assign a state matrix to the
system. This state matrix is found by taking the partial trace over the meter:

p(t +T1) = Tral|W(t + TP + Th)I]
= > Al 1+ TONW( + T)Id))a. (1.102)

J

where {|¢;)a: j} is an arbitrary set of basis states for the meter. But this basis can of course
be the basis {|r): r} appropriate for a measurement of R on the meter. Thus the reduced
system state p(t + 7)) is the same as the average system state p(t + 7') (for T > T})
of Eq. (1.86), which is obtained by averaging over the measurement results. That is, the
non-selective system state after the measurement does not depend on the basis in which the
meter is measured.

Different measurement bases for the meter can be related by a unitary transformation
thus:

Iry=Y_Uls), (1.103)

where U is a c-number matrix satisfying ), U, ;U r* = J5,4- In terms of the measurement
operators Mj, this amounts to a unitary rearrangement to M, defined by

M, = Z U, M. (1.104)

Exercise 1.18 Verify that the unconditional final state under the new measurement opera-
tors {M,} is the same as that under the old measurement operators {M,}.

The binary example. Although the unconditional system state is the same regardless of
how the meter is measured, the conditional system states are quite different. This can be
illustrated using the binary measurement example of Section 1.2.4. Consider the simple
case in which the fiducial apparatus state is the measurement basis state [0)s = |y := 0).
The measurement basis states are eigenstates of the apparatus operator

1
F=2% ynol (1.105)

y=0

Then, if the apparatus is measured in the measurement basis, the measurement operators are

M, = A(y|Gl0)a = |x := y)(x :=y|. (1.106)
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As stated before, these simply project or ‘collapse’ the system into its measurement basis,
the eigenstates of

1
X = xlx)(x]. (1.107)
x=0

Now consider an alternative orthonormal basis for the apparatus, namely the eigenstates
of the complementary operator

1
Pa=)" plpalpl. (1.108)
p=0

Here the eigenstates for the apparatus are
Pha=27"2(ly = 0) + eIy == 1)), (1.109)

and X and P are complementary in the sense that X is maximally uncertain for a system in a
P-eigenstate, and vice versa. In this case the measurement operators are, in the measurement
(x) basis,

M, =27"2(|0)(0] + e[ 1)(1]). (1.110)

Exercise 1.19 Verify that the non-selective evolution is the same under these two dif-
ferent measurements, and that it always turns the system into a mixture diagonal in the
measurement basis.

Clearly, measurement of the apparatus in the complementary basis does not collapse the
system into a pure state in the measurement basis. In fact, it does not change the occupation
probabilities for the measurement basis states at all. This is because the measurement yields
no information about the system, since the probabilities for the two results are independent
of the system:

P[Py = pl = (WO MM, |¥(1)) = 1/2. (1.111)

This ‘measurement’ merely changes the relative phase of these states by  if and only if
p=1

Ml’ Zx SXlx) _ —impx
—m_zx:sxe |x). (1.112)

That is to say, with probability 1/2, the relative phase of the system states is flipped. In
this guise, the interaction between the system and the apparatus is seen not to collapse the
system into a measurement eigenstate, but to introduce noise into a complementary system
property: the relative phase.

This dual interpretation of an interaction between a system and another system (the meter)
is very common. The non-selective evolution reduces the system to a mixture diagonal in
some basis. One interpretation (realized by measuring the meter in an appropriate way)
is that the system is collapsed into a particular state in that basis, but an equally valid
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interpretation (realized by measuring the meter in a complementary way) is that the meter
is merely adding noise into the relative phases of the system components in this basis. In the
following section, we will see how both of these interpretations can be seen simultaneously
in the Heisenberg picture.

Exercise 1.20 Consider the quantum position-measurement model introduced in Exer-
cise 1.14. Show that, if the apparatus is measured in the momentum basis (see Appendix A),
then the measurement operators are

2A2\/*

A _ 2 2 . >

M, _<—> exp(—p~Aexp(—ipX). (1.113)
T

Show also that the non-selective evolution is the same as in Exercise 1.14, and that the
selective evolution in this exercise can be described in terms of random momentum kicks
on the system.

1.3 Representing outcomes as operators
1.3.1 ‘Correlations without correlata’

We have already met the idea that an operator can represent an outcome in Sections A.1
and 1.2.2, where it was shown that

(f(N) =Tr[ f(A)p]. (1.114)

That is, if an operator A represents an observable A, then any function of the result of a
measurement of A is represented by that function of the operator A. Here p is the state of
the system at the time of the measurements. Clearly, if p evolves after the measurement
has finished, then the formula (1.114) using this new p might no longer give the correct
expectation values for the results that had been obtained.

This problem can be circumvented by using the system—meter model of measurement
we have presented. Let us assume an entangled system—meter state of the form

W(t+ 1)) = ) [aTLIY@)s, (1.115)
A

where {|L)a: A} is an orthonormal set of apparatus states and { I1,: A} is the set of eigen-
projectors of the system observable Ag. This is the ideal correlation for the apparatus to
‘measure’ Ag. The apparatus observable represented by

A = Zm)Am (1.116)
A

has identical moments to the system observable Ag for the original system state | (¢)), or
indeed for the (mixed) system state at time ¢ + 7 derived from Eq. (1.115).

Exercise 1.21 Show this.
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What has been gained by introducing the meter is that A, will continue to represent
the result A of the measurement made at time ¢, for all times in the future, regardless of
the system evolution. We require only that the statistics of A do not change after the
measurement; that is, that A, be a so-called QND (quantum non-demolition) observable.
Since meter operators by definition commute with system operators, the meter operator is a
classical quantity insofar as the system is concerned — a c-number rather than a q-number.
For instance, one could consider a Hamiltonian, acting some time after the measurement,
of the form

H = A, ® Fs, (1.117)

where Fs is an Hermitian system operator, and not have to worry about the operator
ordering. In fact, insofar as the system is concerned, this Hamiltonian is equivalent to the
Hamiltonian

H = AF, (1.118)

where here A is the measurement result (a random variable) obtained in the projective
measurement of the system at time 7.

Exercise 1.22 Convince yourself of this.

The action of Hamiltonians such as these (a form of feedback) will be considered in greater
detail in later chapters.

This idea of representing measurement results by meter operators is not limited to
projective measurements of the system. Say one has the entangled state between system
and meter

(W@ + 1)) = O(T)IO)aly(1))s, (1.119)

and one measures the meter in the (assumed non-degenerate) eigenbasis {|r)a} of the
operator

Ra =Y _rir)alrl. (1.120)
r
Then the operator R, represents the outcome of the measurement that, for the system, is
described using the measurement operators M, = (r|U(T})|0). Recall that the results r are
just labels, which need not be real numbers, so R is not necessarily an Hermitian operator.
If the result R is a complex number, then I?A is a normal operator (see Box 1.1). If Ris a
real vector, then I?A is a vector of commuting Hermitian operators.

It is important to note that R, represents the measurement outcome whether or not
the projective measurement of the apparatus is made. That is, it is possible to represent
a measurement outcome simply by modelling the apparatus, without including the extra
step of apparatus state collapse. In this sense, the von Neumann chain can be avoided, not
by placing the Heisenberg cut between apparatus and higher links (towards the observer’s
consciousness), but by ignoring these higher links altogether. The price to be paid for this



1.3 Representing outcomes as operators 29

parsimony is a high one: the loss of any notion of actual outcomes. The measurement
result R remains a random variable (represented by the operator R,) that never takes any
particular one of its ‘possible’ values . Within this philosophical viewpoint one denies the
existence of events, but nevertheless calculates their statistics; in other words, ‘correlations
without correlata’ [Mer98].

1.3.2 Measurement in the Heisenberg picture

The ‘measurement without collapse’ formulation outlined above is obviously the ideal one
for working in the Heisenberg picture. Recall from Section A.1.3 that, in the Heisenberg
picture, the state vector or state matrix is constant, while operators evolve in time. However,
this was formulated only for unitary evolution; if one wishes to describe a measurement
for which some particular result is obtained, this can be done only by invoking state
collapse. That is, one must still allow the state to change, even though one is working in the
Heisenberg picture. But if one is content to describe a measurement simply as the coupling
of the system to the meter, with the result being represented by a meter operator, then
state collapse never occurs. Consequently, it is possible to describe all evolution, including
measurement, in terms of changing operators. Of course, to do this, one needs to consider
system and apparatus operators, not just system operators.

The necessity of using apparatus operators might not be obvious to the reader. After all,
when considering unitary evolution of the system alone, we can use essentially the same
transformation in the Schrodinger and Heisenberg pictures: p — UpUtand 0 — UTOU,
respectively. This suggests that for measurement the analogue of p — p, = M, erT would
be O — 0; = M,T OM,. However, this construction does not work when one considers
operator products. The correct post-measurement expectation for AB, weighted by the
probability for outcome r, is

A~

Tr[ABp)] = Te[MABM, p] . (1.121)
In general, this is quite different from
TBM,p], (1.122)

because, in general, M, is not unitary.

The correct Heisenberg formulation of measurement is as follows. The total state (of
system plus apparatus) remains equal to the initial state, which is usually taken to factorize
as

ptolal(t) = pPs ® PA- (1123)

The measurement outcome is described, as above, by the apparatus operator

Ra() = rlralr. (1.124)

r
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which here is for time ¢, before the measurement interaction between system and apparatus.
This interaction, of duration 7}, changes IQA to

Ra(t +T) = UN(T)[Ra)) ® 1] U(T1) (1.125)

=Y _rUNT)(r)afrl ® 19)0(T). (1.126)

Here T is any time greater than or equal to 77, since we are assuming that the measurement
interaction ceases at time ¢+ + 7 and that I?A is a QND observable for all subsequent
evolution of the meter.

It follows trivially from the analysis of Section A.1.3 that the Heisenberg-picture operator
IéA(t + T') with respect to py1(?) has the same statistics as does the Schrodinger-picture
operator with respect to pyi(t + T'), evolved according to the measurement interaction.
Hence, if the initial apparatus state is pure,

pa = 10)a(0], (1.127)

as we assumed, then these statistics are identical to those of the random variable R,, the
result of a measurement on the system with measurement operators {M, }.

Being an apparatus operator, R (s) commutes with system operators at all times s. For
s <t (that is, before the system and apparatus interact), it is also uncorrelated with all
system operators. That is, for s < ¢, expectation values factorize:

(Os(@) f(RA(1)) =(Os())( f (Ra(0))). (1.128)

Here Os is an arbitrary system operator and f is an arbitrary function. For s > ¢, this is no
longer true. In particular, for s =t + T the correlation with the system is the same as one
would calculate using state collapse, namely

(Ost + TV f(RaG +TV) = o, FITe[ Os o1 + T)] (1.129)

where p,(t + T') is the a-posteriori conditioned system state.
Exercise 1.23 Convince yourself of this.

It should be noted that these two descriptions of measurement, in terms of changing
operators or changing states, have classical equivalents. They are descriptions in terms of
changing system variables or changing probability distributions for these variables. We
have already used these two descriptions in Section 1.1. Specifically, we began with the
‘Heisenberg’ description, with correlations arising between system and apparatus variables,
and then moved to the complementary ‘Schrodinger’ description with system state collapse
derived using Bayes’ theorem.

In the Heisenberg picture, an important difference between quantum and classical mea-
surement stands out. The back-action of the measurement on the system is seen in changes
in the system operators, rather than changes in the system state. Classically, a non-disturbing
measurement does not introduce any noise into the system. Hence classically there may be
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no change in the system variables, but in the quantum case any measurement will neces-
sarily cause changes to the system operators. This quantum back-action is best illustrated
by example, as we will do in the next subsection. The same distinction between quantum
and classical mechanics is also present in the Schrodinger picture, but only in the weaker
form given in Exercise 1.9.

1.3.3 The binary example

To illustrate the description of measurement in the Heisenberg picture, we use again the
example of a binary measurement. Rather than using X for the system and ¥ for the
apparatus, we use X and X . Similarly, we use Pg and Py for the complementary operators.
These are defined by the relation between the eigenstates |x) and | p) defined in Section 1.2.6.
The operators X and P each act as a displacement in the complementary basis, by which
we mean that, for binary variables k and n,

exp(itkX)|p) = |p ® k), (1.130)
exp(iznP)|x) = |x @ n). (1.131)

It is now easy to see that the measurement interaction between the system and the apparatus
may be realized by

G =exp(inXs ® Py). (1.132)
Exercise 1.24 Show that this does produce Eq. (1.63).

In the Heisenberg picture, this unitary operator transforms the operators according to
O(I + Ty) = Gt O(t)é, where O is an arbitrary operator. Thus we find

K5t + 1) = Xs(0), (1.133)
Ps(t + 1) = Ps(t) ® Pa(), (1.134)
Xalt +T1) = Xs(t) ® Xa0), (1.135)
PA(t +Th) = PA). (1.136)
The binary addition @ is defined for operators by, for example,
Xs @ Xa ZZ(XGBy)Ms(xI ® [y)ayl. (1.137)
Xy

If we make the identifications
X = Xs, Y = Xa(t + Ty), E = Xa(?), (1.138)

then Eq. (1.135) is identical in form and content to the classical Eq. (1.2). The noise
term is seen to arise from the initial apparatus state. Note that X is unchanged by the
interaction. This quantity is a QND variable and the measurement interaction realizes a
QND measurement of Xs. However, unlike in the classical case, the system is affected by
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the measurement. This quantum back-action is seen in the change in the complementary
system quantity, Ps, in Eq. (1.134). The ‘quantum noise’ added to the system here is Py,
which is another QND variable. Clearly, if one were to measure 15A, one would gain no
information about the system. (Indeed, one gains most information about the system by
measuring the apparatus in the X 5 basis, which is a basis complementary to the P, basis).
However, by measuring P, one directly finds out the noise that has affected the system, as
discussed in Section 1.2.6. We see now that, in the Heisenberg picture, both interpretations
of the interaction, namely in terms of gaining information about the system and in terms of
adding noise to the system, can be seen simultaneously.

Exercise 1.25 Analyse the case of a generalized position measurement from Exercise 1.14
in the same manner as the binary example of this subsection.

Hint: First show that P generates displacements of position X and vice versa. That is,
ela? |x) = |x + ¢q) and e_ik}?|p) = |p + k) (see Section A.3). Note that, unlike in the binary
example, there is no w in the exponential.

1.4 Most general formulation of quantum measurements
1.4.1 Operations and effects

The theory of measurements we have presented thus far is not quite the most general, but
can easily be generalized to make it so. This generalization is necessary to deal with some
cases in which the initial meter state is not pure, or the measurement on the meter is not
a von Neumann measurement. In such cases the conditioned system state may be impure,
even if the initial system state was pure. We call these inefficient measurements.

To give the most general formulation* we must dispense with the measurement operators
M, and use only operations and effects. The operation O, for the result  is a completely
positive superoperator (see Box 1.3), not restricted to the form of Eq. (1.81). It can never-
theless be shown that an operation can always be written as

O, =) T, (1.139)
i

for some set of operators {2,. it

For a given operation O,, the set {fl,, j: J} is not unique. For this reason it would be
wrong to think of the operators 2. ;j as measurement operators. Rather, the operation is
the basic element in this theory, which takes the a-priori system state to the conditioned
a-posteriori state:

bt +T)=0,p(t). (1.140)

4 It is possible to be even more general by allowing the apparatus to be initially correlated with the system. We do not consider
this situation because it removes an essential distinction between apparatus and system, namely that the former is in a fiducial
state known to the experimenter, while the latter can be in an arbitrary state (perhaps known to a different experimenter). If the
two are initially correlated they should be considered jointly as the system.
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The state in Eq. (1.140) is unnormalized. Its norm is the probability g, for obtaining the
result R =r,

g, = Tr[O, p(1)], (1.141)
so that the normalized state is
pr@+T) = O,p(t)/ 6. (1.142)

As for efficient measurements in Section 1.2.5, it is possible to define a probability operator,
or effect, E,, such that, for all p,

Tr[O,p] = Tr[pE.]. (1.143)
It is easy to verify that

E, =)0 Q. (1.144)
J

which is obviously Hermitian and positive. The completeness condition

ZE, =1 (1.145)

is the only mathematical restriction on the set of operations O,.
The unconditional system state after the measurement is

pt +T) =Y O,p(t) = Op(t). (1.146)

Here the non-selective operation can be written

0= T (1.147)
rJ

In terms of the unitary operator U (7}) coupling system to apparatus, this operation can also
be defined by

Op = Tea[U(T1)(p ® p1)U (1Y), (1.148)
where p4 is the initial apparatus state matrix.

Exercise 1.26 By decomposing pa into an ensemble of pure states, and considering an
apparatus basis {|r)}, derive an expression for Q. j- Also show the non-uniqueness of the
set {2, ;1 j}.

This completes our formal description of quantum measurement theory. Note that the
above formulae, from Eq. (1.139) to Eq. (1.147), are exact analogues of the classical formu-
lae from Eq. (1.26) to Eq. (1.34). The most general formulation of classical measurement
was achieved simply by adding back-action to Bayes’ theorem. The most general formu-
lation of quantum measurement should thus be regarded as the quantum generalization of
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Table 1.1. Quantum measurement theory as generalized Bayesian analysis

Concept Quantum formula Bayesian formula
Initial state p(2), a positive operator (1), a positive vector
such that Trlp@)] =1 Yo =1
Measurement result R, arandom variable R, arandom variable
For each r define an operation O, a matrix O,
such that Pt +T)=0,p@)=>0. ©.t+T)=0O,p0@) >0
Pr[R =r] o(r) =Trlp,(t + )] )=, H it +T)
can be written as ©r) =Tr[p(t)E,] pr) = px;)E (x)
where Y E =1 Vi, Y E(x) =1
Conditioned state ot +T)=p,t+T)/p(r) Ot +T)=0,+T)/pr)
Interpretation a matter of debate! Bayes’ rule: E,(x) = o(r|x)

Bayes’ theorem, in which back-action is an inseparable part of the measurement. This dif-
ference arises simply from the fact that a quantum state is represented by a positive matrix,
whereas a classical state is represented by a positive vector (i.e. a vector of probabilities).
This analogy is summarized in Table 1.1.

We now give a final example to show how generalized measurements such as these
arise in practice, and why the terminology inefficient is appropriate for those measurements
for which measurement operators cannot be employed. It is based on Example 1 in Sec-
tion 1.2.5, which is a description of efficient photon counting if |n) is interpreted as the
state with n photons.

Say one has an inefficient photon detector, which has only a probability n of detecting
each photon. If the perfect detector would detect n photons, then, from the binomial
expansion, the imperfect detector would detect r photons with probability

prn)=n"(1—n"" (':) (1.149)

Thus, if » photons are counted at the end of the measurement, the probability that n photons
‘would have been’ counted by the perfect detector is, by Bayes’ theorem,

prin)(n|p)|n)

= . 1.150
P = S o rimymlo@m) (1150)
Hence, the conditioned system state is the mixture
J10)(nl]p(t)
N T 1.151
prt+T) = Zso( T (1.151)
prin)J[0){nl1p(?)
1.152
= 25 ot mymipoim) (1152
Orp(t) (1.153)

T Trlp(0 £’
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Table 1.2. Eight useful or interesting classes of quantum measurements

Symbol Name Definition

E Efficient vr,IM,, O, = JIM,]

C Complete Vo,Vr, O.p x (’),i

S Sharp Vr, rank(E,) = 1

o Of an observable X vr, E, = E/(X)

BAE Back-action-evading O with Vp,Vx € AMX), Tr[I1, p] = Tr[I1,Op]
MD Minimally disturbing E with Vr, M, = M

P Projective MD and O

VN von Neumann Pand S

where the operations and effects are, respectively,

O, = Z n(L—=n)"" (j)J[IO) (n]], (1.154)

E.=) (- ('r’)|n><n|. (1.155)

1.4.2 Classification of measurements

The formalism of operations and effects encompasses an enormous, even bewildering,
variety of measurements. By placing restrictions on the operations, different classes of
measurements may be defined. In this section, we review some of these classes and their
relation to one another. We restrict our consideration to eight classes, identified and defined
in Table 1.2. Their complicated inter-relations are defined graphically by the Venn diagram
in Fig. 1.2.

Some classes of measurement are characterized by the disturbance imposed on the
system by the measurement (‘efficient’, ‘complete’, and ‘minimally disturbing’). Others
are characterized by the sort of information the measurement yields (‘sharp’ and ‘of an
observable X’), and so can be defined using the effects only. The remainder are characterized
by both the sort of information obtained and the disturbance of the system (‘back-action-
evading’, ‘projective’, and ‘von Neumann’).

Some of these classes are well known (such as back-action-evading measurements) while
others are not (such as complete measurements). Below, we briefly discuss each of the eight.
This also allows us to discuss various concepts relevant to quantum measurement theory.

[E]: Efficient measurements. As already discussed, efficient measurements are ones for
which each operation is defined in terms of a measurement operator: O, = J [M,]. These
measurements take pure states to pure states. Any noise in efficient measurements can be
interpreted as quantum noise. The complementary set is that of inefficient measurements,
which introduce classical noise or uncertainty into the measurement.
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] S MD
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BAE

Fig. 1.2 A Venn diagram for the eight classes of quantum measurements described in Table 1.2.

It is only for the class of efficient measurements that one can derive the following
powerful theorem [NieO1, FJO1]:

Hlp0O] = ) o, Hlp,(t + T)1. (1.156)

Here, H[p] is any measure of the mixedness of p that is invariant under unitary transfor-
mations of p and satisfies

Hlwip1 +wz02] > wiH[p1] + waH[p3] (1.157)

for arbitrary state matrices p; and positive weights w; summing to unity. Examples of
such measures are the entropy —Tr[plogp] and the ‘linear entropy’ 1 — Tr[p?].% The
interpretation of this theorem is that, as long as no classical noise is introduced in the
measurement, the a-posteriori conditional state is on average less mixed than (or just as
mixed as) the a-priori state. That is, the measurement refines one’s knowledge of the system,
as one would hope. Note that it is not true that the conditional a-posteriori state is always
less mixed than the a-priori state.

5 An even stronger version of this theorem, using majorization to classify the relative mixedness of two states, has also been
proven [NieO1, FIO1].
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Exercise 1.27 Prove the foregoing statement, by finding an example for a binary system.
Hint: This is a classical phenomenon, so the measurement operators and state matrix in
the example can all be diagonal in the same basis.

[C]: Complete measurements. The definition of complete measurements in Table 1.2 implies
that, for all results r, the conditioned a-posteriori state

pr(t +T) = O, p(t)/Trl E, p(1)] (1.158)

is independent of p(#). In other words, at the end of the measurement, no information
remains in the system about its initial state. This is the sense in which the measurement
is complete: no further measurements could yield any more information about the initial
system state.

The definition of complete measurements implies that the operations must be of the form

O, = T[16w) (1] (1.159)
ok
where 6 and ¢ denote (possibly unnormalized) system states. From this, it is easy to see
that the conditioned state, independently of p(z), is

oot +T) = 2006l (1.160)

Zk(erk|9rk) .
The concept of complete measurements (or, more particularly, ‘incomplete measure-
ments’) will be seen to be very useful when discussing adaptive measurements in Sec-
tion 2.5.

[S]: Sharp measurements. The definition of sharp measurements in Table 1.2 implies that the
effects are rank-1 positive operators. That is to say, each effect is of the form E, = |¢,) (¢, |,
for some (possibly unnormalized) state |¢, ). This implies that the operations must be of the
form

Oy =) T0) (@11 (1.161)
k

From this it is apparent that sharp measurements are a subclass of complete measure-
ments. Also, it is apparent that, for efficient measurements, sharpness and completeness are
identical properties.

The significance of sharpness is that a sharp measurement cannot be an unsharp version of
a different measurement [MdM90a, MdM90b]. That is, the results of a sharp measurement
cannot be generated by making a different measurement and then rendering it ‘unsharp’
by classically processing the results. Mathematically, a sharp measurement {E,} is one for
which there is no other measurement { £ ': s} such that

E, = wE], (1.162)
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where w, |, is the probability that r is reported as the measurement result when the second
measurement result is s. The object {wm} is sometimes called a stochastic map from {s}
to {r}. We also require that this stochastic map {wm} be nontrivial. A trivial stochastic
map is a deterministic one for which wf‘s = w,|, for all r and s, which simply relabels
measurement results.

Another fact about sharp measurements is that it is always possible to prepare the system
in a state such that a given result » cannot be obtained. Note, however, that there is no
requirement that the effects be orthogonal, so it is not necessarily possible to prepare the
system such that a given result r is guaranteed.

[O]: Measurements of an observable. If an effect E, is a function of an Hermitian operator
X, then the probability of obtaining the result r is given by

or = TI[E(Dp0] = Y ET([fL00)]., (1.163)

where {x} are the (assumed discrete for simplicity) eigenvalues of X and I1, the corre-
sponding projectors. If all of the effects are functions of the same operator X, then it is
evident that the measurement is equivalent to a (possibly unsharp) measurement of the
observable X. That is, the result R could be obtained by making a projective measurement
of X and then processing the result. Note that this definition places no restriction on the
state of the system after the measurement.

The class labelled O in Fig. 1.2 should be understood to be the class of measurements
that are measurements of some observable X. Note that, by virtue of the definition here, a
measurement in this class may be a measurement of more than one observable. For example,
it is obvious from the above definition that any measurement of X? is also a measurement of
X. However, if X has eigenvalues of equal magnitude but opposite sign, then the converse
is not true. This is because, for example, it is not possible to write the effects for a projective
measurement of X, which are

A

Ey = |x){x| =83, (1.164)

as a function of § = X2. This is the case even though the projectors for the latter are
functions of X:

By =) 8 lx)(x| =685 . (1.165)

By binning results (corresponding to values of X with the same magnitude), one can
convert the measurement of X into a measurement of X2. However, it is not permissible
to allow such binning in the above definition, because then every measurement would be
a measurement of any observable; simply binning all the results together gives a single
E =1, which can be written as a (trivial) function of any observable.

[BAE]: Back-action-evading measurements. Consider a measurement of an observable X
according to the above definition. A hypothetical projective measurement of X before
this measurement will not affect the results of this measurement, because the effects are
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a function of X. However, the converse is not necessarily true. Because the definition of
‘measurement of an observable X’ is formulated in terms of the effects alone, it takes no
account of the disturbance or back-action of the measurement on the system. A back-action-
evading (BAE) measurement of X is one for which a projective measurement of X after
the measurement will have the same statistics as one before. If the total (i.e. non-selective)
operation for the measurement in question is O = ) O,, then the requirement is that, for
all p and all eigenvalues x of X,

Tr[I1, p] = Tr[I1,Op]. (1.166)

This is the condition in Table 1.2, where we use )L()A( ) to denote the set of eigenvalues of X.

A concept closely related to BAE measurement is QND measurement. Recall from
Section 1.3 that X is a QND (quantum non-demolition) observable if the operator X is a
constant of motion (in the Heisenberg picture). Thus, we can talk of a QND measurement
of X if the effects are functions of X and

X =01 1m)HX0), (1.167)

where U(T) is the unitary operator describing the coupling of the system to the meter, as
in Section 1.3.2, so that X is to be understood as )A(S ® TA.

The condition for a back-action-evading measurement (1.166) is implied by (and hence
is weaker than) that for a quantum non-demolition measurement. To see this, first note that
a unitary transformation preserves eigenvalues, so that Eq. (1.167) implies that, for all x,

1, ® 1a = OT(T)(IL, ® 1A)U(TY). (1.168)

Now post-multiply both sides of Eq. (1.168) by p ® pa, where pa is the initial apparatus
state. This gives

(T1:0) ® pa = UN(T)IL, @ 1T (T(0 ® pa). (1.169)
Now pre- and post-multiply by U(7}) and UT(T}), respectively. This gives
U(T)[(M.0) ® pa]UT(T1) = (11, ® 1)U (T (p ® pa)UT(TY). (1.170)

Taking the total trace of both sides then yields Eq. (1.166), from the result in Eq. (1.148).

Often the terms back-action-evading (BAE) measurement and quantum non-demolition
(QND) measurement are used interchangeably, and indeed the authors are not aware of
any proposal for a BAE measurement that is not also a QND measurement. The advantage
of the BAE definition given above is that it is formulated in terms of the operations and
effects, as we required.

It is important not to confuse the non-selective and selective a-posteriori states. The
motivating definition (1.166) is formulated in terms of the non-selective total operation
. The definition would be silly if we were to replace this by the selective operation O,
(even if an appropriate normalizing factor were included). That is because, if the system
were prepared in a state with a non-zero variance in X, then the measurement would in
general collapse the state of the system into a new state with a smaller variance for X.
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That is, the statistics of X would not remain the same. The actual definition ensures that on
average (that is, ignoring the measurement results) the statistics for X are the same after
the measurement as before.

[MD]: Minimally disturbing measurements. Minimally disturbing measurements are a
subclass of efficient measurements. The polar decomposition theorem says that an arbitrary
operator, such as the measurement operator M,, can be decomposed as

M, =0,V,, (1.171)

where U, is unitary and V, = \/ETV is Hermitian and positive. We can interpret these two
operators as follows. The Hermitian V, is responsible for generating the necessary back-
action (the ‘state collapse’) associated with the information gained in obtaining the result r
(since the statistics of the results are determined solely by E,, and hence solely by V,). The
unitary U, represents surplus back-action: an extra unitary transformation independent of
the state.

A minimally disturbing measurement is one for which U, is (up to an irrelevant phase

factor) the identity. That is,
M, =/ E,, (1.172)

so that the only disturbance of the system is the necessary back-action determined by
the probability operators E,. The name ‘minimally disturbing’ can be justified rigorously
as follows. The fidelity between an a-priori state of maximal knowledge [¢) and the
a-posteriori state g, = O, |y) (|, averaged over r and v, is

Fayerage = /dMHaar(W)Z(WIﬁrIW- (1.173)

Here dupaar(¥) is the Haar measure over pure states, the unique measure which is invariant
under unitary transformations. For a given POM {E,}, this is maximized for efficient
measurements with measurement operators given by Eq. (1.172) [BanO1].

Exercise 1.28 Show that, for a given POM and a particular initial state v, a minimally
disturbing measurement (as defined here) is in general not the one which maximizes the
fidelity between a-priori and a-posteriori states.

Hint: Consider a QND measurement of &, on a state | ) = alo, := —1) + B
Compare this with the non-QND measurement of G, with measurement operators
V) (o: := —1| and |} (o, := 1|.

For minimally disturbing measurements, it is possible to complement the relation (1.156)
by the following equally powerful theorem:

o, :=1).

Hlp(t +T)] = H[p(1)], (1.174)

where p(t + T) = ", o, p-(t + T). That is, the unconditional a-posteriori state is at least
as mixed as the a-priori state — if one does not take note of the measurement result,



1.4 Most general formulation of quantum measurements 41

one’s information about the system can only decrease. This does not hold for measure-
ments in general; for the measurement in Example 1, the a-posteriori state is the pure
state |0) regardless of the a-priori state. However, it does hold for a slightly broader
class than minimally disturbing measurements, namely measurements in which the surplus
back-action U, in Eq. (1.171) is the same for all r. These can be thought of as minimally
disturbing measurements followed by a period of unitary evolution.

A minimally disturbing measurement of an observable X is a BAE measurement of
that observable, but, of course, minimally disturbing measurements are not restricted to
measurements of observables. Finally, it is an interesting fact that the class of minimally
disturbing measurements does not have the property of closure. Closure of a class means
that, if an arbitrary measurement in a class is followed by another measurement from the
same class, the ‘total’ measurement (with a two-fold result) is guaranteed to be still a
member of that class.

Exercise 1.29 Find an example that illustrates the lack of closure for the MD class.

[P]: Projective measurements. These are the measurements with which we began our
discussion of quantum measurements in Section 1.2.2. They are sometimes referred to as
orthodox measurements, and as Type I measurements (all other measurements being Type
IT) [Pau80]. From the definition that they are minimally disturbing and a measurement of
an observable, it follows that the measurement operators M, and effects E, are identical
and equal to projectors IT,.

[VN]: Von Neumann measurements. Sometimes the term ‘von Neumann measurement’
is used synonymously with the term ‘projective measurements’. We reserve the term for
sharp projective measurements (that is, those with rank-1 projectors). This is because von
Neumann actually got the projection postulate wrong for projectors of rank greater than 1,
as was pointed out (and corrected) by Luders [Lud51]. Von Neumann measurements are
the only measurements which are members of all of the above classes.

1.4.3 Classification exercise

Appreciating the relations among the above classes of measurements requires a careful
study of Fig. 1.2. To assist the reader in this study, we here provide a prolonged exercise.
The Venn diagram in Fig. 1.2 has 17 disjoint regions. If there were no relations among the
eight classes, there would be 28 that is 256, regions. Thus the fact that there are only 17
testifies to the many inter-relationships among classes.

Below, we have listed 17 different measurements, defined by their set of operations{Q, }.
Each measurement belongs in a distinct region of ‘measurement space’ in Fig. 1.2. The
object of the exercise is to number the 17 regions in this figure with the number (from 1 to
17) corresponding to the appropriate measurement in the list below.

All of the measurements are on an infinite-dimensional system, with basis states
{ln): n =0,1,2,...}, called number states. Any ket containing n or m indicates a number
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state. Any ket containing a complex number £«, B or y indicates a coherent state, defined as

@) = e P2y A 1.175
|ot) ;mu (1.175)

See also Appendix A. It is also useful to define sets E and O, the even and odd counting
numbers, respectively. If the result » is denoted n, then the resolution of the identity is
>, E,. Ifitis denoted « then it is [ d?a E,. If denoted E, O then it is £ + Eo.

We also use the following operators in the list below. The operator Dﬁ denotes a dis-
placement operator defined by how it affects a coherent state:

Dglar) = |a + B), (1.176)
for some non-zero complex number 8. The number operator N has the number states as its
eigenstates. The two operators [1g and I1q are defined by

fgo = Z In)(n|. (1.177)
nek,0

Finally, ,(n|m) is as defined in Eq. (1.149) for some 0 < n < 1.
Here is the list.

1. Oy =7 'Tla) ]

2. Oy = [dBr e T8 AN

3. O, = 7' J1I0)(al]

4. O, = [dy a2 Tlly)all

5. Ou=[dyale "’ [dBr—2e e T(|y)(B]
6. Oy = J[EV?]. Ey = Qr) ()| + |—a) (—a])
7. Ou = J[DsE?], E, = Qu) ()| + |—a)(—al)
8. O, = Jlln)(nl]

9. O, =X oynlm)T[|Im)(m]]

10. O, =Y 0 9,(nlm)T [Dglm)(m|]

11. O, = J[[0)(n]]

12. O, =2, 274D T{|m) (n]]

13. Ogo = j[ﬁ]E@]

14. Ogo = J[explin N)I1g o]

15. Op = ¥, JN0V (], Op =Y,.0J01)nl]

16. Oz = J[Dpllg 0]

17. Ozo =Y ,z0 J0)(n]]

1.5 Measuring a single photon

In this section we give an experimental example of the quantum measurement of a binary
variable, as introduced in Section 1.2.4. This experiment was realized as a ‘cavity QED’
system, a term used to denote the interaction between a discrete-level atomic system
and a small number of electromagnetic field modes, which are also treated as quantum
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systems. In the experiment performed by the Haroche group in Paris in 1999 [NRO199],
the measured system was the state of an electromagnetic field in a microwave cavity. Apart
from small imperfections, the preparation procedure produced a pure state containing
no more than a single photon. Thus the state of the cavity field may be written as [) =
¢0|0) 4 ¢1|1). The measured variable is the photon number with result O or 1. The apparatus
was an atom with three levels: ground state |g), excited state |e), and an auxiliary state
|i). The final readout on the apparatus determines whether the atom is in state |g) by
a selective ionization process, which we will describe below. This final readout is not
ideal and thus we will need to add an extra classical noise to the description of the
measurement.

We begin with a brief description of the interaction between the cavity field and a single
two-level atom in order to specify how the correlation between the system and the apparatus
is established. If, through frequency or polarization mismatching, the cavity mode does not
couple to the auxiliary level |i), then we can define the atomic lowering operator by
6 = |g)(e|. The field annihilation operator is a (see Section A.4). The relevant parts of the
total Hamiltonian are

H=ow.d'a + wglg)(gl + wele)el + wili)i| + (/26" + )@ — ab), (1.178)

where €2 is known as the single-photon Rabi frequency and is proportional to the dipole
moment of the atom and inversely proportional to the square root of the volume of the cavity
mode. We work in the interaction frame (see Section A.1.3) with the free Hamiltonian

Hy = 0.47a + w,12)(g] + (0g + @c)le){e] + (0 + 0)li) (il (1.179)

where oy is the frequency of a ‘driving field’, a classical microwave field (to be discussed
later). The ‘interaction Hamiltonian’ V = H — H, becomes the time-dependent Hamilto-
nian Vig(¢) in the interaction frame. However, the evolution it generates is well approximated
by the time-independent Hamiltonian

Vie = QG6Ta —i6a’)/2 + A6T6 + 81i) (i, (1.180)

where A is the detuning w, — w; — w of the |e) <> |g) transition from the cavity resonance,
and § = w; — wg — wy is thatof the |i) < |g) transition from the classical driving field. The
necessary approximation (called the rotating-wave approximation) is to drop terms rotating
(in the complex plane) at high frequencies ~w, > A, §, Q. This is justified because they
average to zero over the time-scale on which evolution occurs in the interaction frame.

Exercise 1.30 Derive Eq. (1.180) and convince yourself of the validity of the rotating-wave
approximation.

Hint: Finding Vip(t) is the same as solving for this operator in the Heisenberg picture with
the Hamiltonian Hy. Since Hy splits into a part acting on the atom and a part acting on
the field, the Heisenberg equations of motion for the atom and field operators in Vig can be
solved separately.
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Let us now assume that the atom is resonant with the cavity (A = 0), in which case
the Hamiltonian (1.180) (apart from the final term) is known as the Jaynes-Cummings
Hamiltonian. If this Hamiltonian acts for a time 7 on an initial state |1, g), the final
state is

exp(—iVirD)|1, g) = cos(7/2)|1, g) + sin(Q7/2)[0, e), (1.181)

where |n, g) = |n)|g) and |n, e) = |n)|e).

Exercise 1.31 Show this and the analogous result for the initial state |0, e).
Hint: Derive the equations of motion for the coefficients of the state vector in the above
basis.

If the total interaction time T = 27/ €2, then the probability that the atom is in the ground
state again is unity, but the quantum state has acquired an overall phase. That is to say, for
this interaction time, the state changes as |1, g) — —|1, g). However, if the field is initially
in the vacuum state, there is no change: |0, g) — 10, g).

Exercise 1.32 Show this by verifying that |0, g) is an eigenstate of Vig with eigenvalue
zero.

This sign difference in the evolution of states |0) and |1) provides the essential correlation
between the system and the apparatus that is used to build a measurement. If the field is
in a superposition of vacuum and one photon, the interaction with the atom produces the
‘conditional’ transformation

(col0) +¢111) @ [8) > (col0) — c1[1) ® |g). (1.182)

It is called conditional because the sign of the state is flipped if and only if there is one
photon present. Note that we are not using the term here in the context of a measurement
occurring.

As it stands this is not of the form of a binary quantum measurement discussed in
Section 1.2.4 since the meter state (the atom) does not change at all. In order to configure
this interaction as a measurement, we need to find a way to measure the relative phase
shift introduced by the interaction between the field and the atom. This is done using the
‘auxiliary’ electronic level, |i), which does not interact with the cavity mode and cannot
undergo a conditional phase shift. We begin by using a classical microwave pulse R; of
frequency wy, to prepare the atom in a superposition of the auxiliary state and the ground
state: |g) — (|g) + Ii))/\/f. For the moment, we assume that this is resonant, so that § = 0
in Eq. (1.180). After the conditional interaction, C, between the atom and the cavity field,
another microwave pulse R; of frequency w,; again mixes the states |g) and |i). It reverses
the action of R, taking |g) — (|g) — |i))/~/2 and |i) — (|g) + |i))/~/2.

Exercise 1.33 Show that this transformation is unitary and reverses R.
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Fig. 1.3 A schematic diagram of the Haroche single-photon measurement [NRO*99]. A single
atom traverses three microwave fields R;, C and R,, the middle one being described by a single-
mode cavity field. It then encounters two ionization detectors, D, and D,, which detect whether
the atom is in the excited state or ground state, respectively. The driving fields R; and R, are
produced by the same microwave source, which locks their relative phase. Adapted by permission
from Macmillan Publishers Ltd: G. Nogues et al., Nature 400, 239-242 (1999), (Fig. 1), copyright
Macmillan Magazines Ltd 1999.

Finally, a projective readout of the ground state |g) is made, as shown in Fig. 1.3. The full
measurement protocol can now be described:

: 1Py
(col0) + er[1))]g) =% (col0) +c|I1>)ﬁ(|l> +18)

5 %(colo)(li) +1g) + il (i) — 1g))

5 ol0)lg) + c1]1)i). (1.183)

An ideal measurement of the ground state of the atom gives a yes (no) result with probability
lcol? (Je1]?), and a measurement of the photon number has been made without absorbing
the photon.

To compare this with the binary measurement discussed in Section 1.2.4, we use the
apparatus state encoding |g) <> |0)a, |i) <> |1)a. The overall interaction (R, o C o R;)
between the system and the apparatus is then defined by Eq. (1.62). We can then specify
the apparatus operators X 5 and P, used in Section 1.2.6,

Xa = li)l, (1.184)
N 1
Pa = S(18) = liN(gl = (D). (1.185)

Likewise the equivalent operators for the system can be defined in the photon-number basis,
Xs = |1)(1], Ps=(|0) — [1))({0] — (1])/2. Provided that the atom is initially restricted to
the subspace spanned by {|g), |i)}, the action of R; o C o R; can be represented in terms
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of these operators by the unitary operator
Ur,ocor, = explim XsPa]. (1.186)

Certain aspects of the Paris experiment highlight the kinds of considerations that dis-
tinguish an actual measurement from simple theoretical models. To begin, it is necessary
to prepare the states of the apparatus (the atoms) appropriately. Rubidium atoms from a
thermal beam are first prepared by laser-induced optical pumping into the circular Rydberg
states with principal quantum numbers 50 (for level g) or 51 (for level e). The e — g
transition is resonant with a cavity field at 51.1 GHz. The auxiliary level, i, corresponds to
a principal quantum number of 49 and the i — g transition is resonant at 54.3 GHz.

Next it is necessary to control the duration of the interaction between the system and the
apparatus in order to establish the appropriate correlation. To do this, the atoms transiting the
cavity field must have a velocity carefully matched to the cavity length. The optical-pumping
lasers controlling the circular states are pulsed, generating at a preset time an atomic
sample with on average 0.3—0.6 atoms. Together with velocity selection, this determines
the atomic position at any time within =1 mm. The single-photon Rabi frequency at the
cavity centre is Q/(27) = 47 kHz. The selected atomic velocity is 503 ms~! and the beam
waist inside the cavity is 6 mm, giving an effective interaction time t such that Qt = 2x.
Finally, a small external electric field Stark-shifts the atomic frequency out of resonance
with the cavity. This gives rise to an adjustable detuning A in Eq. (1.180), which allows
fine control of the effective interaction.

The experiment is designed to detect the presence or absence of a single photon. Thus it
is necessary to prepare the cavity field in such a way as to ensure that such a state is typical.
The cavity is cooled to below 1.2 K, at which temperature the average thermal excitation of
photon number 7 in the cavity mode is 0.15. The thermal state of a cavity field is a mixed
state of the form

pe =1+ e |n)n], (1.187)
n=0

where B = hw,/(kgT). At these temperatures, 8 < 1 and we can assume that the cavity
field is essentially in the vacuum state |0). The small components of higher photon number
lead to experimental errors.

In order to generate an average photon number large enough for one to see a single-
photon signal, it is necessary to excite a small field coherently. This is done by injecting
a ‘preparatory’ atom in the excited state, |e), and arranging the interaction time so that
the atom-plus-cavity state is |0, e) + |1, g). The state of this atom is then measured after
the interaction. If it is found to be |g), then a single photon has been injected into the
cavity field mode. If it is found to be |e), the cavity field mode is still the vacuum.
Thus each run consists of randomly preparing either a zero- or a one-photon state and
measuring it. Over many runs the results are accumulated, and binned according to what
initial field state was prepared. The statistics over many runs are then used to generate the
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Fig. 1.4 The experimental results of the Paris single-photon experiment, showing the probability
of measuring the atom in the ground state versus detuning of the cavity field. The dashed line
corresponds to an initial field with a single photon, whereas the solid line is for an initial vacuum
field state. Reprinted by permission from Macmillan Publishers Ltd: G. Nogues et al., Nature 400,
239-242 (1999), (Fig. 2), copyright Macmillan Magazines Ltd 1999.

conditional probability of finding the atom in the state |g) when there is one photon in the
cavity.

Another refinement of the experiment is to use the detuning § of the fields R; and R,
to vary the quality of the measurement. This is a standard technique in atomic physics
known as Ramsey fringe interferometry, or just Ramsey interferometry. This is explained
in Box 1.4, where |e) plays the role of |i) in the present discussion. The extra Hamiltonian
81i)(i| causes free evolution of the atomic dipole. Its net effect is to introduce an extra
phase factor 87, proportional to the time 7 between applications of each of these fields.
The probability of finding the atom in state |g) at the end of measurement is then given by

g = pop + P11 — p), (1.188)

where g and g; are the probabilities that the cavity contains no or one photon, respectively,
and p = cos?(87). If g0 = 1 or O at the start of the measurement, then g, is an oscillatory
function of the detuning §, and the phase of the oscillation distinguishes the two cases.

In Fig. 1.4 we show the experimental results from the Paris experiment. Two cases are
shown: in one case (dashed line) the initial state of the field was prepared in a one-photon
state (the preparatory atom exited in the ground state), whereas in the second case (solid
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Box 1.4 Ramsey fringe interferometry

Ramsey interferometry was developed to measure accurately the frequency w,, of an
atomic transition. It works by producing a signal that depends on the difference §
between the unknown frequency and a known frequency w,. It is a standard technique
for atomic frequency standards with application to time standards [Maj98]. We here
give a simplified treatment of the essential physics behind the technique.

Consider a two-level atom, with ground and excited states |g) and |e), described in
the interaction frame with respect to

Hy = w,lg) (gl + (w5 + wa)le) el. (1.189)

The atom is prepared in the ground state and injected through a classical field R; with
frequency wy that differs from the atomic resonance frequency w,, by a small detuning
8. The atomic velocity is chosen so that the atom interacts with the field for a precise
time t. The interaction induces a superposition between the ground and excited states
of the form

lg) — alg) + Ble), (1.190)

where the coefficients depend on 7 and é and the Rabi frequency for the transition. (The
Rabi frequency is roughly the dot product of the classical electric field with the electric
dipole moment of the atomic transition, divided by &. It also equals the single-photon
Rabi frequency times the square root of the mean number of photons in the field. For a
classical field in a mode with a large mode volume (as here), the former is very small
and the latter very large, giving a finite product.) If the detuning § is small enough, one
can arrange to obtain o = 8 = 1/+/2.

The atom then evolves freely for a time 7 during which the Hamiltonian in the
interaction frame is Vir = 8|e)(e|. This changes B to Be 7. After this it interacts with
another classical field, R, of the same frequency, which undoes the transformation R;.
This means that we have to adjust 7" and/or the phase of R; so that, if § = 0, all atoms
emerge in the ground state. Then the state of the atom after the second field is

cos(6T/2)|g) —isin(6T/2)|e). (1.191)
The probability that an atom will emerge in the excited state when § # 0 is thus
©.(8) = sin* (8T /2). (1.192)

By varying the frequency wy of the driving fields R; and R,, and sampling this
probability by repeated measurement, we produce interference fringes with a spacing
proportional to 7. A complicating effect is that, for large detuning, the coefficients
o and B are not exactly 1/ V2, but also depend on the detuning § in both amplitude
and phase, and this causes the interference-fringe visibility to decrease.
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line) the field was prepared in a zero-photon state (the preparatory atom exited in the excited
state). In both cases the probability of finding the apparatus atom in the ground state, |g),
is plotted as a function of the detuning of the R; and R, fields. Note that the two cases are
7 out of phase, as expected.

It is quite apparent from the data that the measurement is far from perfect. The
probabilities do not vary from zero to unity, so the contrast or visibility, defined as
(max — &min)/(®max + £min), 1S NOt unity. A primary source of error is the efficiency
of the ionization detectors, which is as low as 30%. Also, the interaction that correlates
the field and the apparatus is not perfect, and there is a 20% residual probability for the
apparatus atom to absorb the photon, rather than induce a 7 conditional phase shift. Other
sources of error are imperfections of the 7 /2 Ramsey pulses, samples containing two atoms
in the cavity, the residual thermal field in the cavity and the possibility that the injected
photon will escape from the cavity before the detection atom enters.

Exercise 1.34 What is the effect of imperfect ionization detection on the readout? Calculate
the mean and variance of the readout variable Y in terms of the system (X) mean and
variance for the binary asymmetric measurement defined by the conditioned probabilities
©(y|x) below:

D) =n=1-pO[1),
#(110) = € = 1 — p(0]0).

Here 1 is the detection efficiency, while € is related to the rate of so-called dark-counts.

1.6 Further reading

Bayesian inference is named after its discoverer, the Reverend Thomas Bayes, who pub-
lished the idea in 1764. For a modern treatment, see Bayesian Theory by Bernardo and
Smith [BS94]. It is also covered in Introduction to Control Theory by Jacobs [Jac93], and
Optimal Control Theory by Whittle [Whi96], which are useful references for later chapters
as well.

For good introductions to quantum mechanics, see the textbooks by Peres [Per95] and
Jauch [Jau68]. Both are notable for discussion of the interpretation of Gleason’s theorem.
An on-line (in 2009) text that contains a good introduction to the quantum formalism using
the Dirac notation is that of Preskill [Pre97].

The theory of generalized measurement has a long history. Early work by Davies and
Kraus is summarized in Quantum Theory of Open Systems [Dav76], and States, Effects,
Operations: Fundamental Notions of Quantum Theory [Kra83], respectively. However,
both these sources are rather mathematical in style. A more readable book (for physicists)
is Quantum Measurement by Braginsky and Khalili [BK92]. This is particularly good
at helping to build intuition based on simple ideas such as the Heisenberg uncertainty
principle. It also contains a detailed discussion of quantum non-demolition measurements.
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A different approach to obtaining a formal analogy between classical measurement
theory and quantum measurement theory has been developed by Hardy in Ref. [Har02].
In this he derives, for systems with a finite number of distinguishable states, both quantum
theory and classical theory from a small number of plausible axioms. The extra axiom
that leads to quantum theory rather than classical theory is that there is a continuous
reversible transformation between any two pure states (pure states having been operationally
defined). As suggested by our presentation, the essential difference that follows is one of
dimensionality. In the classical case, K, the number of probabilities needed to specify the
state, is equal to N, the maximum number of states that can be reliably distinguished in
a single shot. In the quantum case, K is equal to N2, reflecting the fact that quantum
states are represented most naturally as matrices. Note, however, that, in the quantum case,
Hardy’s map from the K probabilities defining the state to the probabilities of a particular
measurement outcome is not a positive map — another difference from the classical case.

The consistency of states, both classical and quantum, is much more involved than the
treatment we have given (which is equivalent to that in Ref. [BFMO02]). The definitions we
have given can be viewed as simply one definition in a hierarchy of operational definitions.
Interestingly, the hierarchy has a different structure in the quantum and classical cases.
This is discussed in detail by Caves, Fuchs and Schack in Ref. [CFS02a]. In this and other
papers [CFS02b], these authors strongly argue for interpreting quantum theory using the
analogy with classical Bayesian inference. A related question is that of how two or more
observers can pool their states of knowledge. For a review of work in this area, and some
special results in the quantum case, see Ref. [SWO07].

Finally, we note that the work on QND photon detection has advanced far beyond that of
Ref. [NRO199] described above. See for example Refs. [GKG*07, GBD*07], also from
the laboratory of Haroche, in which back-action-evading measurements of photon number
are performed. This enabled the experimentalists to distinguish several different photon
numbers with great accuracy, and to observe quantum jumps between them.





