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Abstract— Detecting blood vessels in retinal images with the 

presence of bright and dark lesions is a challenging unsolved 
problem. In this paper, a novel multi-concavity modeling 
approach is proposed to handle both healthy and unhealthy 
retinas simultaneously. The differentiable concavity measure is 
proposed to handle bright lesions in a perceptive space. The line-
shape concavity measure is proposed to remove dark lesions 
which have an intensity structure different from the line-shaped 
vessels in a retina. The locally normalized concavity measure is 
designed to deal with unevenly distributed noise due to the 
spherical intensity variation in a retinal image. These concavity 
measures are combined together according to their statistical 
distributions to detect vessels in general retinal images. Very 
encouraging experimental results demonstrate that the proposed 
method consistently yields the best performance over existing 
state-of-the-art methods on the abnormal retinas and its accuracy 
outperforms the human observer, which has not been achieved by 
any of the state-of-the-art benchmark methods. Most importantly, 
unlike existing methods, the proposed method shows very 
attractive performances not only on healthy retinas but also on a 
mixture of healthy and pathological retinas.  

 

 
Index Terms—Retinal vessel segmentation, retina image, multi-

concavity modeling, perceptive transform, regularization.  
 

I. INTRODUCTION 

right and dark lesions are the symptoms of retinal diseases 
arising from diabetic retinopathy, hypertensive 
retinopathy, solar retinopathy, retinal vein or artery 

occlusion, etc. [1-4]. Retinopathies can progress to blindness 
or severe loss of vision. However, half of the blindness can be 
prevented by regular screening and timely treatment [5]. This 
is a labor intensive process, which requires clinical experts to 
examine a large number of retinas. Several retina centers such 
as the Joslin Vision Network and Inoveon Corp. have shown 
that digital photography is an excellent tool for analyzing 
retina [6, 7] and computer algorithms are being developed for 

 
Manuscript received on July 21, 2009. This research is supported by the 

Australian Research Council (ARC) under Discovery Grants DP0451091 and 
DP0877929. B. Lam is with Griffith School of Engineering, Griffith 
University, Australia (e-mail: b.lam@griffith.edu.au). Y. Gao is with Griffith 
School of Engineering, Griffith University, Australia and National ICT 
Australia, Queensland Research Laboratory (e-mails: 
yongsheng.gao@griffith.edu.au, yongsheng.gao@nicta.com.au). A. Liew is 
with the School of Information and Communication Technology, Griffith 
University, Australia and National ICT Australia, Queensland Research 
Laboratory (e-mail: a.liew@griffith.edu.au). 

 

automatic retinal image analysis [8-23]. Blood vessel is one of 
the most important features in retina for detecting retinal vein 
occlusion [24], for grading the tortuosity for hypertension [25] 
and for early diagnosis of glaucoma [15]. The segmentation of 
blood vessels is an important preprocessing step for the 
detection of bright and dark lesions [26-30]. However, most 
existing blood vessel segmentation algorithms assume that the 
input retina is healthy and free of bright and dark lesions. The 
presence of lesions can significantly degrade their 
performances and even make them useless. 

Concavity in the intensity profile is one of the most 
important image properties in blood vessel segmentation and 
most existing methods assume that the intensity profile of a 
vessel has an elongated concave structure within a smooth and 
clean non-vessel region. However, when bright and dark 
lesions exist, the non-vessel region is not smooth anymore. 
Figures 1 (a) and (c) show retinal images having bright lesions 
and dark lesions respectively. Their cross sections intensity 
profiles are given in Figures 1(b) and (d) respectively. These 
lesions violate the basic assumption of existing methods and 
lead to a large number of false positives. 

  
(a)  (b) 

 

 
(c) (d) 

Figure 1.  (a) An abnormal retina with bright lesions. (b) Cross-section 
intensity profile of the abnormal region marked in (a). (c) An abnormal 

retina with dark lesions. (d) Cross-section intensity profile of the 
abnormal region marked in (c). 

Existing retinal vessel segmentation approaches can be 
classified into three categories: unsupervised methods, 
supervised learning methods and pathological retina based 
methods. For unsupervised methods, Chaudhuri et al. [31] 
proposed a template matching approach to measure the degree 
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of similarity between a given elongated inverse Gaussian 
template and the vessels. Hoover et al. [32] enhanced the 
above method by applying effective noise removal techniques. 
Jiang and Mojon [33] proposed an adaptive thresholding 
technique which partitions the input image into a finite number 
of levels according to pixel intensities. In each level, the 
vessels are extracted using the intensity, angle and length 
information based on a pre-defined elongated concave 
structure. Ricci and Perfetti [34, 35] proposed a fast and robust 
template matching algorithm which measures the output 
difference between a line filter and an averaging filter. Tolis et 
al. [36] proposed a tracking approach in which seed points are 
grown according to pre-defined rules to extract all concave 
regions as vessels. These methods work well on healthy retinas 
but fail to perform on abnormal ones because all non-vessel 
regions are assumed to be smooth, which is not true when 
bright and dark lesions exist.  

In contrast to unsupervised methods, supervised learning 
methods adopt human segmentation results to define the 
concave intensity structure of retinal vessels and the smooth 
characteristic of the non-vessel regions. Most state-of-the-arts 
supervised learning methods handle only healthy retina and 
reported that retina having lesions are challenging future work 
[37−39]. Staal et al. [37,38] is one of the very first research 
groups using the supervised learning strategy for vessel 
segmentation. Numerous features are used for training a 
classifier to classify pixels as either vessel or non-vessel. The 
method yields very good results on healthy retinal images. 
However, many of these features, such as the Laplacian of 
Gaussian features which detect concavity intensity profile in 
retinal vessels, require a high degree of smoothness in the non-
vessel region. If a bright lesion is present, the steep intensity 
transition pattern of the lesion will also be treated as vessels, 
producing a large number of artifacts. Soares et al. [39] 
proposed a Gabor feature based supervised learning method 
for vessel segmentation. They adopted the Gabor features 
which consider the low frequency elongated structure in the 
intensity profile of the retinal vessels in the training process. 
This approach has excellent performance on healthy retinas. 
However, due to the detection of low frequency features, the 
vessels located near the high frequency bright lesions are 
discarded.  

Pathological retina based methods are the only class in 
which pathology in retinas is considered during vessel 
detection. There are few publications in this category and they 
only handle bright lesions. Mendonça and Campilho [40] 
adopted different color space for different retinal images and 
used the L*a*b* color space to handle bright lesions. Their 
method produces better results on the pathological retina than 
most of the existing algorithms. Recently, Lam and Yan [41] 
proposed a divergence vector field approach to handle the 
bright lesions by measuring the smoothness of the non-vessel 
regions in different orientations. Although the method can 
handle bright lesions, a thresholding technique is needed for 
artifacts removal. A large threshold leads to more artifacts 
removal near the bright lesions but also results in many normal 
vessels being incorrectly removed.  

Clearly, there is a need to develop new vessel segmentation 

methods that are effective for both normal and pathological 
retinas with bright and dark lesions. In this paper, we present 
an effective algorithm that, for the first time, is able to handle 
both normal and pathological retinas with bright and dark 
lesions simultaneously. Three different concavity measures are 
proposed to detect blood vessels and each of these measures is 
designed for addressing the negative impact produced by the 
lesions for identifying the normal vessels. Using Weber’s law, 
we propose a perceptive transform to model human visual 
perception in retinal image analysis. As the bright lesion has a 
steep intensity transition pattern, measuring the degree of 
concavity based on differentiability (Section II) can effectively 
distinguish the bright lesions from the vessels and non-vessels. 
Since dark lesions have an irregular shape intensity structure 
while blood vessels have a line-shape intensity structure, a 
line-shape concavity detection method (Section III) is 
developed to prune the dark lesions while keeping the line-
shape blood vessels. As retinal image has a spherical intensity 
variation, the relative intensities of noise in different parts of 
the retinal image are different. A locally normalized concavity 
detection method (Section III) is proposed to normalize the 
strengths of noise removal in different regions. Finally, these 
concavity measures are combined according to their statistical 
and geometrical properties (Sections IV and V). A flow-chart 
of the proposed method is given in Figure 2. The effectiveness 
and robustness of the proposed method are evaluated on two 
publicly available databases (STARE and DRIVE) and are 
compared with the state-of-the-art methods. 

 
Figure 2.  Flow-chart of the proposed method. 

The rest of the paper is organized as follows. Section II 
describes the perceptive differentiable concavity measure to 
handle the bright lesions. Section III presents the line-shape 
concavity measure to handle dark lesions and the locally 
normalized concavity measure for noise removal. Section IV 
describes how the features obtained from these concavity 
measures are combined and Section V describes the lifting 
technique for optimizing the regularized solution toward the 
ideal vessel shape. The experimental results are given in 
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Section VI. Finally, the conclusions are given in Section VII. 

II. PERCEPTIVE DIFFERENTIABLE CONCAVITY 
In this section, a differentiable concavity measure ZDiff(z) is 

designed to robustly detect retinal blood vessels in the 
presence of bright lesions. This measure is constructed on our 
proposed perceptive space, which mimics human perception in 
retinal image analysis.  

A. Perceptive Transform 
Ernst Weber [42] examined the relationship between the 

physical intensity magnitude and its perceptive intensity. He 
observed that the just noticeable change of physical magnitude 
by human perception can be described by the equation 

( )
( )

*δ k
zf
zf

=  (1) 

where ( )zf  is the physical magnitude at z, ( )zfδ  is its rate of 
change and k* is the Weber’s constant. If the quantity on the 
left hand side of the equation is smaller than k* at z = z*, 
human cannot notice the change of the physical magnitude.  

Given a perceptive intensity 0v , the rate of change of the 
perceptive intensity and the physical magnitude is related by 
[43] 

( )
( ) ( )zvk
zf
zf 0δδ

×= . (2) 

Obviously, if 0vδ  is small, it is hard to notice the change of 
the physical magnitude, and vice versa. In this research, the 
physical magnitude is the intensity of a two dimensional image 
and the rate of change ( )zfδ  is defined as gradient of the 

physical magnitude. Transforming an input image 0I   to its 
perceptive intensity 0v  can be achieved by the following 
theorem. 
Theorem 1: Assume ( )0 0,0v  = 0 and ( )0,0f  = 1. Given 

the physical magnitude function ( ),f x y  in Equation (2), 

when the rate of change ( )yxδf ,  at (x,y) is small enough, the 

perceptive intensity ( )yxv ,0  is expressed as 

( ) ( )( ) kyxfyxv /,ln,0 =  . 
Proof: In Equation (2), when the rate of change ( )yxδf ,  at 
(x,y) is small enough, the gradient operator ∇  can be used as 
an estimate of δ. That is, Equation (2) can be rewritten as  

( )
( ) ( )( )yxvk

yxf
yxf ,

,
, 0∇=

∇
. (3) 

The x and y components of the gradient operator is separable. 
At y = y0, the x-component of Equation (3) becomes 

( )
( ) ( )( )0

0

0

0 ,
,
, yxvdk
yxf
yxfd

x
x = . (4) 

By integrating both sides of the above equation from x = 0 to x 
= x0, we have 

( )( ) ( )( ) ( ) ( )( )0
0

0
0

00 ,0,,0ln,ln yvyxvkyfyxf −=−  (5) 
where ln(•) is the natural logarithm. Similarly, for the y-

component, we have 
( )( ) ( )( ) ( ) ( )( )0,,0,ln,ln 0

0
0

0
00 xvyxvkxfyxf −=−  (6) 

By taking y0 = y in Equation (5) and x0 = 0 in Equation (6) and 
summing up these two equations, we get 

( )( ) ( )( ) ( ) ( )( )0,0,0,0ln,ln 00 vyxvkfyxf −=−  (7) 

As ( )0 0,0v  = 0 and ( )0,0f  = 1, we have 

( )( ) ( )( )yxvkyxf ,,ln 0= . (8) 
� 

There are two assumptions ( ( )0 0,0v  = 0 and ( )0,0f  = 

1) in the above theorem. If we take ( )f z  = 1+ ( )0I z  with z 
= (x,y), the assumptions will be satisfied automatically. In a 
retinal image, the pixels along the border of the image (outside 
the field of view (FOV)) has zero intensity, that is, ( )00I = 0. 

This means that ( )0f  = 1 and ( )00v  = ln(1+0) = 0.  Thus, the 

equation transforming the input image 0I  to the perceptive 
image v0 can be expressed as  

( ) ( )( )0 0ln 1 /v z I z k= +  (9) 

where k is a constant. The constant k is taken to be one in our 
experiments. A different value of k does not affect the 
segmentation result as k can be digested by the normalization 
process and the user-defined parameter of the TV model. More 
details will be given in Section II−E.  Non-retinal images (or a 
cropped retinal image) may not have a zero intensity pixel or 
the zero intensity pixels may not be located at the border of the 
image. If that is the case, the transform will become 

( ) ( ) ( )( )0 ln ln 0 /v z f z f k= − . (10) 

The unknown parameter ( )0ln f  can be ignored as the 
constructions of the two planes CSI and CSD are invariant under 
translation to the perceptive intensity as will be shown in 
Section II-E. Now that a transform to obtain a perceptive 
intensity has been formulated, we apply this technique to 
analyze the concavity profile with the presence of bright 
lesions.  

B. Bright Lesion 
Existing retinal vessel segmentation methods assume vessels 

in a retina have a concave shape intensity profile within a 
smooth and clean non-vessel region. The non-smooth bright 
lesions having a steep intensity transition pattern can therefore 
be wrongly classified as vessels. Figure 1(a) shows an example 
of bright lesions with its cross-section intensity profile shown 
in Figure 1(b). Figure 3 is the result of a well-known concavity 
detection algorithm [44] which computes the second order 
directional derivatives in a multi-scale manner. Due to the 
steep intensity transition pattern of the bright lesions, the 
method falsely classifies the non-smooth pixels as vessels and 
a ringing effect is produced in the lesion regions.  

To deal with the negative effect of the steep intensity 
transition pattern in the bright lesions, a differentiable 
concavity measure is proposed to describe vessels. The input 
retina is first transformed into the proposed perceptive space 
(see Section II−A). Then, the problem of ringing effect is 
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resolved by constructing two planes using regularizations: 
smooth imaging plane CSI (see Section II−C) and structurally 
differentiable plane CSD (see Section II−D). The smooth 
imaging plane classifies the smooth regions as non-vessel 
region while the structurally differentiable plane classifies the 
non-smooth steep intensity transition pattern of bright lesions 
as non-vessel region. Together, these two planes can 
categorize the bright lesions and the smooth background 
region as non-vessel and the smooth concave regions as 
vessels. In the next section, we will first introduce the concept 
of smooth imaging plane (CSI). 

 
Figure 3.  Vessel segmentation result using the multi-scale method [44] with 

(fpr,tpr) = (0.0943,0.7225) to the retinal image in Figure 1(a). 

C. Smooth Imaging Plane  
The smooth imaging plane CSI is constructed by measuring 

the concavity strength in a low perceptively noticeable 
environment. In the perceptive domain, the degree of 
noticeable change is given by Equation (2), whose right hand 
side is the gradient of the perceptive image ( )yx,0v . By 
minimizing this term, the degree of noticeable change is 
minimized and pixels with non-noticeable change are 
smoothed out. To preserve the detailed information of the 

input retina, a fitting term (
20vv − ) which measures the 

degree of similarity of the solution v(x,y) and the input image 
v0(x,y) is applied. The regularized solution v(x,y) can be 
obtained by minimizing the following objective function [45, 
46] 

( ) { }22 0E  λ dxdySI SIv v v v
Ω

= ∇ + −∫  (11) 

where Ω is the domain, λSI is a user-defined parameter. ESI(v) 
is the Mumford-Shah (MS) model [45,46], which consists of 
two terms, the regularization term and the fitting term 
measuring the difference between the solution and the input. 
Using the calculus of variation, the minimum vSI of the 
objective function ESI(v) satisfies the following equation 

( ) 0λ 02 =−+∇− vvv SI
SI

SI . (12) 
In this equation, the isotropic Laplacian operator ∇2 is used as 
regularization and this equation is solved by the numerical 
scheme given in the Appendix A, in which the regularization is 
applied to both the magnitude and the orientation of the 
solution vSI. It behaves like a diffusion process smoothing out 
noise.  

The strength in the smooth imaging plane CSI is obtained by 
computing the squared maximum principal curvature mSI  [44]. 
The principal curvature dθθvSI with respect to a given principal 
direction θ is defined as [44] 

[ ] 



















=

θ
θ

θθθθ sin
cos

  sincosd SISI

SISI
SI

yyxy

xyxx

vv
vv

v . (13) 

The subscripts in Equation (13) denote the partial derivatives 
of vSI along the x and y coordinates. Then, CSI = mSI can be 
obtained by the following equation [44] 

( ) ( )
2

2SI2SISISISI
SI

2
4















 +−++
== xyyyxxyyxx

SI

vvvvv
mC  (14) 

which is the squared maximum eigenvalue of the Hessian 
matrix given in Equation (13). Figure 4 shows the 
segmentation result in the smooth imaging plane for the retina 
image of Figure 1(a). Compare to the segmentation result in 
Figure 3, it can be seen that CSI is able to reduce the artifacts 
due to the bright lesions (fpr reduced by 0.0292) while 
revealing more vessels (tpr increased by 0.0417). To handle 
the artifacts near the bright lesions, a structurally differentiable 
plane is proposed in the next sub-section.  

 
Figure 4. Segmentation result in CSI at (fpr, tpr) = (0.0651,0.7642). 

D. Structurally Differentiable Plane 
The concept of constructing the structurally differentiable 

plane CSD is to perform regularization to the input v0 so that 
the output ignores the contributions of all steep intensity 
transition patterns while revealing the smooth concave-shape 
vessels. That is, CSD should give low responses to highly 
discontinuous signals such as bright lesions and high responses 
to smoother signals such as vessels. The negation of CSD can 
be obtained by minimizing the total variation (TV) model [46, 
47] which preserves sharp edges (such as bright lesions) of the 
input image while performs strong smoothing to the smoother 
signals (such as vessels). 

The TV model is given by  

( ) 20λE   dxdy
2
SD

SD v v v v
τ

Ω

 = ∇ + − 
 ∫  (15) 

where ||∇v||τ = 
22 vτ + ∇  and λSD is a user-defined 

constant. τ is a parameter to avoid the non-differentiability at v 
= 0 and we take τ=10-4 in all the experiments. The key 
difference between Equation (15) and Equation (11) is in the 
regularization term. The regularization in the MS model is the 
square of the gradient amplitude while the regularization in the 
TV model does not have a square. Using the calculus of 
variation, the minimum vSD of the objective function of 
Equation (15) satisfies 

( ) 00 =−+
∇
∇

⋅∇ SD
SDSD

SD

vv
v
v λ

τ

. (16) 
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The solution vSD is computed by the scheme given in the 
Appendix A. The regularization computes the curvature (the 
rate of change of orientation) of the solution vSD. If a pixel and 
its neighborhood have a steep intensity transition pattern, 

τ

SDv∇
1  will be very small and the regularization term 

(
τ

SD

SD

v
v

∇
∇

⋅∇ ) to this pixel is greatly reduced, and thus the 

solution SDv of the pixel will be equal to its original input 0v . 
Compare to the highly discontinuous steep intensity transition 
pattern in bright lesions, a vessel in a retina is much smoother. 
Because of this smoothness, the regularization term in the 
vessel region is much stronger than that in the non-smooth 
bright lesions. Figure 5(a) shows the output of the TV model. 
The bright lesions are preserved while other concave blood 
vessels are smoothed out. By subtracting the original input v0 
from vSD, the structurally differentiable plane CSD (i.e. CSD = 
vSD− v0) could be obtained. If vSD has a large value (such as 
bright lesions), CSD = vSD− v0 will return a low value and vice 
versa. Figure 5(b) shows the vessel segmentation result in the 
structurally differentiable plane, in which no ringing effect is 
produced. In the next section, we combine this structurally 
differentiable plane with the smooth imaging plane to form the 
differentiable concavity measure, which is robust for detecting 
blood vessels with the presence of bright lesions.   

  
(a)  (b)  

Figure 5.  Segmentation in the structurally differentiable plane. (a) The output 
of the TV model. (b)The vessel segmentation result in CSD at (fpr,tpr) = 

(0.0389,0.7124).   

E. Differentiable Concavity 
The two imaging planes are combined to form a 

differentiable concavity measure. It is observed that a retinal 
pixel belongs to a non-vessel region when both planes have 
low strengths. It is also obvious that a pixel belongs to a vessel 
when both planes show high responses. For the case of high 
strength in CSI and low strength in CSD, a pixel is observed as 
the ringing effect due to its high response to the smooth plane 
but not to the structurally differentiable plane. As noise can 
have a concave intensity profile but is not smooth, a pixel is 
considered as noise when it has low strength in CSI and high 
strength in CSD. Based on the above observations (summarized 
in Table 1), a new differentiable concavity measure ZDiff is 
defined as the conditional probability 

( ) ( ) ( ) ( )( )0Pr ,Diff SD SIZ z C z C z I z=  (17) 

where 0I  is the input image. The differentiable concavity 
measure ZDiff inherits the strengths of both planes. When the 
two image planes CSI, CSD are independent, the above function 
can be written as  

( ) ( ) ( )( ) ( ) ( )( )0 0Pr PrDiff SD SIZ z C z I z C z I z= . (18) 

The independence can be justified as follows. The maximum 
eigenvalue of the Hessian matrix is used to determine the 
strength of CSI (Equation (14)) while the curvature 

(
τ

SD

SD

v
v

∇
∇

⋅∇  in Equation (16)) is used to construct CSD. The 

curvature here only involves the rate of change of orientation 
and does not involve other variables. Any change of 
orientation does not influence the magnitude of the maximum 
eigenvalue of a Hessian matrix. Thus, CSD and CSI are 
orthogonal to each other.  
 

Table 1. The combined effects of the two planes 
Image planes Strengths Effect 

(CSI, CSD) (low, low) Non-vessel 
(CSI, CSD) (high, high) Vessel 
(CSI, CSD) (high, low) Ringing effect 
(CSI, CSD) (low, high) Noise 

The two probability maps Pr(CSI| 0I ) and Pr(CSD| 0I ) are of 
the same size as the original input image, in which each pixel 
is now of a probability value. By Equation (14), squared 
maximum eigenvalue is used and CSI must be positive. The 
computation of the probability map Pr(CSI| 0I ) can be obtained 
by normalizing CSI as 

( ) ( )( ) ( )0

constant

Pr SI
SI

C z
C z I z

n
=  (19) 

where nconstant is the normalization constant and is equal to the 
summation of CSI over the field of view (FOV). In retinal 
image analysis, FOV is defined as the circular retinal region 
located in the middle of a rectangular image and the region 
outside is the dark non-retina background.  We now discuss 
the effect of the two unknown parameters ( )0ln f  and k in 
Equation (10) to the construction of CSI. Obviously, the 
objective function Equation (11) has a linear relationship 
between the input v0 and the output vSI. That is, if vSI is a 
minimum of ESI(v) with input v0, svSI+b is the minimum of 
ESI(v) with input s v0+b. As CSI is obtained by making use of 
derivatives (Equation (13)), CSI is invariant under a translation 
of the perceptive intensity of v0. Moreover, the use of 
normalization constant given in Equation (19) makes the 
probability Pr(CSI| 0I ) invariant under a scaling of the 
perceptive intensity of v0. Thus, the two parameters ( )0ln f  
and k given in Equation (10) can be ignored. By Equation 
(16), the output vSD can have either a larger or smaller value 
than the original input v0 and CSD = vSD− v0 can be negative. 
The construction of the probability map Pr(CSD|

0I ) can be 
obtained by discarding the negative part of CSD 

( ) ( )( )

( ) ( )
constant

0

    0

Pr
0        otherwise

SD
SD

SD

C z
if C z

d
C z I z


>

= 




 
(20) 

where dconstant is the normalization constant and is equal to the 
summation of CSD over FOV. Next, we discuss the effect of 
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( )0ln f   and k to the construction of CSD. The optimization 
function in Equation (16) has the following translation 
relationship: if vSD is a minimum of ESD(v) with input v0, vSD+b 
is the minimum of ESD(v) with input v0+b. The construction of 
CSD is given by vSD− v0, which implies CSD is invariant under a 
translation of v0. Hence, the translation parameters ( )0ln f  
can be ignored. Regarding the scaling parameter k in Equation 

(10), note that the regularization term τ

SD

SD

v
v

∇
∇

⋅∇

  in 
Equation (16) is scaling invariant for the variable vSD. That is, 
if vSD is a minimum of ESD(v) with input v0 and user-defined 
parameter λSD, (vSD)/k is the minimum of ESD(v) with input 
(v0)/k and kλSD. By setting kλSD as a user-defined parameter, 
the scaling parameter k can be ignored. Figure 6(a) shows the 
segmentation result using the differentiable concavity measure 
ZDiff. It can be seen that the ringing effect around the bright 
lesions are largely eliminated and the effect of noise is reduced 
in the non-vessel region. In the next section, we will propose a 
locally normalized concavity measure to further remove the 
noise around the bright lesions and at the non-vessel region. 
Moreover, a line-shape concavity is proposed to detect vessels 
with the presence of dark lesions.  

  
(a) (b) 

Figure 6. (a) Segmentation result of using the differentiable concavity 
measure ZDiff at (fpr,tpr) = (0.0318, 0.7073). (b) Ground truth. 

III. LINE-SHAPE CONCAVITY AND LOCALLY NORMALIZED 
CONCAVITY 

Other than bright lesions, a pathological retina can also 
appear in the form of dark lesions, e.g., due to hemorrhages, 
having concavity intensity profile similar to vessels. Figure 
7(a) shows an example retina with dark lesions. Due to the 
concavity intensity profile of dark lesions, many vessel 
detectors give a large response to the dark lesions. Figure 7(b) 
is an example segmentation result showing many false positive 
dots which are incorrectly detected as vessels. To distinguish 
the dark lesions from the vessels, a line-shape concavity 
measure ZLine based on the geometric structural difference of 
the two regions is proposed.  

The vessel has an intensity profile uniformly distributed 
along a line with direction Θ while the dark lesion has an 
intensity profile uniformly distributed on an irregular patch. 
Likelihood ratio is used to model this shape difference. The 
line-shape concavity measure ZLine is defined as the likelihood 
ratio 

( )
( ){ }
( ){ }1

0

:Prsup

:Prsup

Θ∈

Θ∈
=

SSZ

SSZ
zZ

Diff

Diff
Line  (21) 

where sup is the supremum, Pr(ZDiff|S) is the conditional 
probability ZDiff (z) given the shape S. This likelihood ratio 
returns a large response value at pixel z if ZDiff(z) contains the 
shape pattern of Θ0  more strongly than that of Θ1. Otherwise, 
it gives a small value. Θ0 is the space of line shapes containing 
a collection of lines with different orientations, which are 
taken from 0 to π with an interval of π/12. This kind of line 
shapes is shown to be robust for detecting linear structure [34, 
35, 48]. Θ1 is the space of square shapes. The probability 
Pr(ZDiff |S) is computed by applying a filter S to ZDiff(z) in the 
shape space Θ0 or Θ1. In Θ0, the set of line filters with window 
size 15 [34] is adopted. In Θ1, the square shape average filter 
with window size 15 [34] is used. Figure 7(d) shows the 
segmentation result of using the line-shape concavity measure, 
in which most of the false positives from using the ZDiff 
measure (Figure 7(c)) are removed. Figure 8(a) shows the 
segmentation result using the line-shape concavity measure for 
the retinal image of Figure 1(a) with bright lesions.  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 7. (a) A retina image having dark lesions. (b) Segmentation using the 
multi-scale method [44] at (fpr,tpr) = (0.0531, 0.7640). (c) Segmentation 

using the differentiable concavity measure ZDiff at (fpr,tpr) = (0.0553, 0.7693). 
(d) Segmentation using the line-shape concavity measure ZLine at (fpr,tpr) = 
(0.0270, 0.7535). (e) Segmentation using the locally normalized concavity 

measure ZLocal at (fpr,tpr) = (0.0262, 0.7495). 
Next, we discuss the noise problem. The shapes due to noise 

always appear as tiny dots and are very different from the 
vessels. Noise intensity also varies in different part of the 
retina, e.g. the noise intensities at the high intensity bright 
lesions are larger while they are smaller near the low intensity 
macula. To suppress the effect of noise, a locally normalized 
concavity measure ZLocal is proposed based on the shape and 
local intensity information.  

Line structure carries effective information to suppress noise 
and preserve the vessels. However, due to the varying intensity 
of noise in different parts of the retina, line information alone 
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is not enough. To normalize this intensity variation in different 
regions, the original input intensity (which has the same 
intensity variation as noise) is embedded in the probability 
Pr(ZDiff |S). The new probability is defined as  

( ) ( )
constant

Pr
Pr

r

Diff
local Diff

Z S
Z S

m
=  (22) 

where ( ) ( )( )0
1

1
r

I
=

+
z

z
 and mconstant is a normalization 

constant. The use of 1+ 0I is to avoid division by zero when 
( )0I z  = 0. The exponent r(z) is inversely proportional to the 

input intensity. Hence, if the computation is made at the bright 
lesion, the high intensity noise value is suppressed by the high 
input intensity. If it is in the macula (a large concave region 
having low intensity value), the low intensity noise value is 
normalized by the low input intensity. Line-shape detection 
technique can then be used for noise removal using the 
following equation  

( )
( ){ }
( ){ }

0

1

sup Pr :

sup Pr :

local Diff

Local

local Diff

Z S S
Z z

Z S S

∈Θ
=

∈Θ
 (23) 

where Θ0 and Θ1 are defined the same as in Equation (21). 
Figure 7(e) and 8(b) show results of ZLocal(z) on the retina 
images having bright and dark lesions, respectively. In Figure 
8(b), the noise due to the bright lesions is completely removed 
obtaining a clean non-vessel region. Next, we combine all 
three concavity measures (differentiable concavity, line-shape 
concavity and locally normalized concavity) into one blood 
vessel segmentation system. 
 

  
(a)  (b)  

Figure 8. Segmentation results for the retinal image of Figure 1(a) having 
bright lesions using: (a) the line-shape concavity measure ZLine for (fpr,tpr) = 
(0.0365, 0.7308), and (b) the locally normalized concavity measure ZLocal for 

(fpr,tpr) = (0.0181, 0.7144). 
 

IV. FEATURE COMBINATION 
An effective feature should produce a high response for 

vessels and a low response for all other non-vessel regions and 
artifacts. We see earlier that the three concavity measures 
(ZDiff, ZLine and ZLocal) have different responses to different 
regions in a retinal image. Let Fvess(z) and Fnon-vess(z) be the 
normalized vessel feature and the normalized non-vessel 
feature, respectively. The three concavity measures can be 
used to construct Fvess(z) and Fnon-vess(z) as follows. We first 
normalize the three measures so that they are statistically the 
same. The measures (ZDiff, ZLine and ZLocal) are assumed to 

follow the log-normal distribution with different means and 
standard derivations, which have a high occurrence near zero 
value and decreases dramatically [50]. The log-normal 
distribution property is demonstrated by the histograms given 
in Appendix B. In order to standardize the distributions of the 
three measures, statistical normalization is applied to each of 
the measures by first taking logarithm and then normalizing 
the output to zero mean and unit variance [51]. Since the 
response strength of ZDiff for vessels is the strongest among the 
three concavity measures, Fvess(z) is taken to be equal to ZDiff. 
Since concavity measures ZLine and ZLocal have the lowest 
response to dark lesions and noise around the bright lesions in 
the non-vessel region, respectively, Fnon-vess(z) is taken to be 
equal to min(ZLine, ZLocal). The effective feature Feff (z) can 
then be formulated as 

( ) ( ) ( ) ( ) ( )eff vess vess non vess non vessF F Fφ φ− −= +z z z z z  (24) 
where φvess(z) and φnon-vess(z) are binary indicator functions 
indicating the locations of vessels and non-vessel regions, 
respectively.  

It was observed that statistically, an average of 12.7% of 
retina pixels in the FOV is vessels [33]. Based on the 
standardized normal distribution table [52], the probability for 
a feature having a vessel shape is given by Pr(r > 1.14) = 
0.127. A product rule from fusion theory [53] is adopted to 
define the vessel region φvess(z). 

( ) ( ) ( ) ( )1.14 1.14 1.14vess Diff Line LocalB Z B Z B Zφ = > > >z  

(25) 
where B(•) is the Boolean function acting as a classifier that 
returns one at a pixel z if the corresponding expression in the 
bracket is true, or zero otherwise. The product rule fusion 
theory is a strict rule [53], where all the classifiers agree on the 
decision. Finally, the non-vessel region φnon-vess(z) can be 
obtained by φnon-vess(z) = 1−φvess(z). Figures 9 (a) and (b) show 
the vessel region φvess(z) of the retinal images having dark and 
bright lesions, respectively. In the next section, a lifting 
technique is proposed to optimize the vessel shape toward its 
ideal form.  

  
(a) (b) 

Figure 9. (a) The vessel region φvess(z) for the retina image in Figure 7(a). (b) 
The vessel region φvess(z) for the retina image in Figure 1(a). 
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V. LIFTING TECHNIQUE 
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(a) (b) 

Figure 10. (a) Dash and solid lines illustrate the ideal and regularized 
solutions, respectively. (b) The difference between the ideal and regularized 

solutions. 
 

As regularization is adopted in generating all the measures, 
the boundary of Feff(z) given in Equation (24) is smoothed out 
like the solid line shown in Figure 10(a). The dash line in 
Figure 10(a) illustrates the ideal solution for the vessel region. 
The difference between the two solutions forms a double peak 
shape as shown in Figure 10(b). In order to optimize the vessel 
shape toward its ideal solution, a lifting technique is proposed 
in this work. Our lifting strategy is to perform a modified 
diffusion process so that the vector field of Feff(z) is lifted 
iteratively to the ideal solution. The classical diffusion 
equation (or heat equation) [54] is given as follows 

( ) ( )2,
,

u t
u t

t
∂

= ∇
∂
z

z  (26) 

where ( ) ( ) ( )0, ,inv effu t I F t= −z z z . The inverted input 

image 0
invI  (taken as 0I− ) is used as an approximation to the 

ideal solution. Because 0
invI  is static when the image is given, 

Equation (26) can be rewritten as  
( ) ( ) ( )( )2 0,

,eff
eff inv

F t
F t I

t
∂

= ∇ −
∂

z
z z . (27) 

A time dimension t∈[0, t*] is added to Feff(z) and it is denoted 
as Feff(z,t), which will be used to iteratively capture the shape 
difference between Feff(z) and the ideal solution. At t = 0, 
Feff(z,0) = Feff(z). At t = t*, Feff(z, t*) is the estimated ideal 
solution. As the curve of 0

invI  is above Feff(z), this implies 

( ),effF t
t

∂

∂

z
 for t < t*  must be positive to allow lifting Feff(z) 

towards 0
invI . That is,  

( ) ( )
* *

, ,
0    0  eff effF t F t

for t t and for t t
t t

∂ ∂
> < < >

∂ ∂

z z
 

(28) 
or equivalently, 

( ) ( )
* *

, ,
0    0  

u t u t
for t t and for t t

t t
∂ ∂

< < > >
∂ ∂
z z

. 

(29) 
In Appendix C, we show that Feff(z,t) reaches 0

invI  in the 

diffusion process for t ≥ t1= ( )2 / 4g m  with 

( ) ( ) ( ) ( ){ }0max max ,0inv effg g I F= = −
z z

m z z z , which 

can be obtained by taking the maximum among g(z) in the 
vessel region φvess(z)  (Section IV). Next, we insert an anti-
diffusion function C(z,f(t)) to the diffusion equation so that the 

sign of the 
( )( ),u f t

t
∂

∂

m
 is positive for t ≥ t1, where f(t) is a 

function of t, and the positive condition stated in Equation (29) 
is satisfied. The anti-diffusion function C(z,t) is taken as 

( ) 2g tβ m as shown in Theorem 2 below.  

Theorem 2: Assume a single peak shape follows a Gaussian 
distribution with mean m and variance t0>0. The modified 
diffusion 

process
( )( )

( ) ( )( ) ( ) ( )2 2,
,

u f t
u f t g f t

f t
β

∂
= ∇ +

∂

z
z m >

0 when f(t) ≥ 1 at z = m and
1

4
β

π
= . 

 
The proof of theorem 2 is given in Appendix D. In the 
theorem, if we take f(t) = t/t1 and apply the chain rule [54], the 

sign of 
( )( ),u f t

t
∂

∂

m
will be positive for t ≥ t1. Also, the 

theorem is still valid for very small t0, for which the peak 
shape is in the form of a delta-function. This means our 
algorithm still performs lifting even if the vessel region of 
Feff(z) is closely beneath the 0

invI . Finally, a vector field 

matching function ( ) ( ) ( )
( ) ( )

0

0

,1, 1
2 ,

eff inv

eff inv

F t I
M t

F t I

 ∇ •∇
 = −
 ∇ ∇ 

z z
z

z z
 is 

imposed onto the modified diffusion process as 
( )( )

( ) ( )( ) ( )( ) ( ) ( )2 2,
, ,

u f t
u f t M f t g f t

f t
β

∂
= ∇ +

∂

z
z z m . 

(30) 
M(z,f(t)) measures the degree of shape similarity between 
Feff(z,f(t)) and 0

invI  by their vector fields. If both shapes at z 
are not matched, the two vectors will be in opposite directions 
and M(z,f(t)) = 1. Otherwise, it is zero. In real application, the 
single peak shape may not strictly follow the Gaussian 
distribution as assumed by Theorem 2. The role of M(z,f(t)) is 
to allow lifting in the modified diffusion process while 
preserving the shape similarity between Feff(z,f(t)) and 0

invI . 
For the pixels having low shape similarity, M(z,f(t)) = 1 and it 
will penalize lifting in Equation (30) for f(t) ≥ 1.  For the 
pixels having high shape similarity, M(z,f(t))=0 and further 
lifting would proceed. By substituting 

( )( ) ( ) ( )( )0, ,inv effu f t I F f t= −z z z  into Equation (30), 
we have  

( )( )
( ) ( )( ) ( )( ) ( )( ) ( ) ( )2 0 2,

, ,eff
eff inv

F f t
F f t I M f t g f t

f t
β

∂
= ∇ − −

∂

z
z z z m . 

(31) 
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Now, the time variable ( ) ( )2

2
g

f t t=
m  is converted to time t 

by the chain rule [54]: 
( )( ) ( )( )

( )
( )

( )( ) ( )( ) ( )( ) ( ) ( ){ } ( )2 0 2

, ,

, ,

eff eff

eff inv

F f t F f t df t
t f t dt

df t
F f t I M f t g f t

dt
β

∂ ∂
=

∂ ∂

= ∇ − −

z z

z z z m

 

(32) 
where ( ) ( )2

1
2

df t g
dt

γ= =
m . The solution of Equation (32) can 

be obtained numerically by discretizing the time variable of 

the term ( )( ),effF f t
t

∂

∂

z  with a step size of ξ (which is taken as 

0.5 in our experiments). The implementation is given in Table 
2. Figures 11(a) and 11(d) show the difference between 
Feff(z, t∗ ) and Feff(z,0), in which darker color represents more 
lifting yielded by the technique.  Figures 11(b) and (e) show 
the segmentation results using the proposed method, where the 
final segmentation is done by thresholding Feff(z) with a 
threshold chosen such that the false positive rate (fpr) is 0.023. 
In the next section, experiments will be conducted to evaluate 
the performance of the proposed method in comparison with 
the state-of-the-art techniques.  

  
(a)  (b)  

  
(c)  (d) 

  
(e) (f) 

Figure 11. Lifting and segmentation results in the proposed system on retinas 

having dark and bright lesions respectively. (a) The strength of Feff(z, t∗ ) 

−Feff(z,0) on the retinal image shown in Figure 1(a). (b) Final result of the 
proposed method (fpr,tpr) = (0.0234, 0.7450). (c) Ground truth 1. (d) The 

strength of Feff(z, t∗ ) −Feff(z,0) on the retinal image shown in Figure 7(a). (e) 

Final result of the proposed method (fpr,tpr) = (0.0230, 0.7864). (f) Ground 
truth 1. 

 
 

 
Table 2. Lifting technique 

Step 0: Normalize Feff and 0
invI  to the same range by subtracting their 

minimum values and then multiply 0
invI  by a constant 

( ) 20arg min ,0eff invs F sI= −z .  Set t = 0, Feff(z,0) = Feff  and It = 0
invI . 

Compute 
( )2

1
2

g
γ =

m
; 

Step 1: t = t+ξ. 
For the z th pixel, do   
Step 2: Compute ( )f t tγ=  and Γt(z) 

= ( ) ( )( ) ( ) ( ) ( )2 0 2, ,eff invF t I M t g f tβ∇ − −z z z m . 

Step 3: If Γt(z)>0, Feff(z, t+ξ) = Feff(z,t) +Γt(z)γξ.  
Otherwise, Feff(z, t+ξ) = Feff(z,t). 
End do 

Step 4: If ( ) ( ) 2
, ,eff effF t F tξ

∈Ω
+ −∑ z

z z  > ε, go to step 1. Ω here is the 

image domain. Otherwise, terminate and output Feff(z, t*) = Feff(z,t). 

VI. EXPERIMENT 

A. Databases: The performance of the proposed method is 
evaluated on two publicly available databases, STARE and 
DRIVE, which are widely used by most existing methods. The 
STARE1 database contains 20 images with 10 pathological 
and 10 normal retinal images. Each of the images has a size of 
700×605 pixels with 8 bits per color channel. The DRIVE2

B. Experimental Evaluation: Three measures are used for 
performance evaluation. The accuracy and the receiver 
operating characteristic (ROC) curve are used as evaluation 
measures in the same way as used by existing methods [37, 
39]. The performance in the pathological region (PUR) [41] is 
also used as a measure for evaluating the performance on 
pathological regions of a given retinal image. The accuracy on 
a retinal image is defined as the number of true positive vessel 
pixels plus the number of true positive non-vessel pixels 
divided by the total number of pixels in the FOV. The ROC is 
constructed by the true positive rate (tpr) as the vertical axis 
and the false positive rate (fpr) as the horizontal axis [55]. The 
closer the ROC curve approaches the top left corner, the better 
the performance of the method. A common single measure to 
quantify the performance of a method is to compute the area 
Rarea under the ROC curve. An area closer to one means a 
better performance. The PUR is defined as the number of true 
positive pixels plus the number of true positive non-vessel 
pixels that are at least T pixels (which ranges from 0 to 25 as 
in [41]) away from the true positive blood vessels pixels, 

 
database consists of 40 images, which are divided into training 
and test sets with 20 images in each. The retinal images in 
DRIVE databases are mainly healthy with some of them 
containing a few mild lesions. Both databases provide two 
ground truths manually marked by two independent observers. 
All the results presented in this paper are obtained by using the 
first human observer in the database as ground truth.  

 
1 http://www.parl.clemson.edu/stare/probing/ 
2 http://www.isi.uu.nl/Research/Databases/DRIVE/ 
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divided by the total number of pixels in FOV. A larger PUR 
indicates a better performance of the method. 

The green channel of a retinal image is used as input 
because it is often adopted in the research community [34, 37, 
39] and has been shown empirically to give the best 
segmentation results. To reduce the artifacts produced near the 
border of the camera aperture by a segmentation method, a 
border extension pre-processing technique [37] is utilized. 
Figure 12 is an example of the preprocessing result. The 
region inside the green contour is the green channel image 
while the outside non-dark region is the extended pixels 
generated by the inside pixels. 

 
Figure 12. Result of extending the border. 

 
C. Results: Tables 3, 4 and 5 show the results of the proposed 
method together with the benchmark methods obtained on the 
complete STARE database, the complete DRIVE database and 
the abnormal images in the STARE database, respectively. We 
also study the effect of the perceptive transform. The results 
with the transform (denoted as Proposed Method) and without 
the transform, which is in the original image space (denoted as 
Proposed Method (ImS)), are shown in the tables. The 
comparative results of the benchmark methods in the tables are 
obtained from [34-35, 37-41]. For the DRIVE database, there 
are two different results for the line detector method as 
reported in [34] and [35]. Both of them are shown in Table 4 
for reference together with the result from our own 
implementation of the line detector algorithm of [35], denoted 
as Line (Impl.). Ideally, the results of Line (Impl.) should be 
identical to the results of [35]. However, we were unable to 
achieve the results reported in [35] due to unknown reason. 
Line (Impl.) is also reported in Tables 3 and 5. The results of 
another state-of-the-art method, the supervised learning 
method proposed by Soares et al.[39], are available on their 
website3

Table 3 shows the results on the complete STARE database. 
The proposed unsupervised method achieves the highest Rarea 
among all the methods including the three supervised learning 
methods. The accuracy of the proposed method is among the 
best and even outperforms the human observer. Figure 13(a) 
shows the ROC curves of the proposed method and the 
supervised learning methods. The proposed method is 
completely above the other two methods and passes through 
the (fpr, tpr) of the human observer. Table 4 shows the results 
on the complete DRIVE database. The proposed method and 

. It consists of two sets of results obtained by two 
implementations of their method, which are trained by STARE 
and DRIVE databases respectively. They are denoted as 
Soares et al. (STARE) and Soares et al. (DRIVE) in this 
paper.  

 
3 http://retina.incubadora.fapesp.br/portal/downloads/results 

the method of Soares et al. (DRIVE) yield the largest Rarea 
compared to the others. The accuracy of the proposed method 
is also among the best. Figure 13(b) shows the ROC curves of 
the proposed method and the two supervised learning systems. 
The curves obtained by the proposed method and the method 
of Soares et al. (DRIVE) are almost the same. But the 
proposed method is closer to the 2nd observer than Soares et al. 
(DRIVE). Table 5 shows the results on the abnormal images in 
the STARE database. Both the accuracy and Rarea of the 
proposed method are the best among all the unsupervised and 
supervised learning methods. The Rarea of the proposed method 
is larger than the second best method by 0.01. The method of 
Lam and Yan [41] is specially designed to handle abnormal 
retinas. However, our method still outperforms it by nearly 
0.01 in accuracy and 0.03 in Rarea, respectively. Figure 13(c) 
shows the ROC curves of the proposed method, the two 
supervised learning methods, and the method of Lam and Yan 
[41]. The proposed method is able to yield the ROC curve 
significantly above all the other methods and even above the 
human observer, which is not achieved by any of the state-of-
the-art benchmark methods. Figure 14 shows the overall PUR 
measure for the abnormal retinas in the STARE database. The 
proposed method is the best and its PUR curve is completely 
above those of the other methods.  
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(c) 

Figure 13. The ROC curves obtained by the proposed method, the two 
supervised systems [39] and the method of Lam and Yan [41] on (a) the 
complete STARE database, (b) the complete DRIVE database and (c) the 

pathological retinal images only in the STARE database. The dark dot 
indicates the true and false positive rates of the second human observer given 

in the database. 
 

Table 3. Results on the complete STARE database. 
STARE Accuracy Rarea 

Unsupervised Methods 
Jiang and Mojon [33] 0.9009 0.9298 

Hoover et al. [32] 0.9275 0.7590 
Line (Impl.) 0.9422 0.9615 

Line (TMI) [34] 0.9584 0.9602 
Mendonça and Campilho [40] 0.9479 N/A 

Proposed Method (ImS) 0.9454 0.9562 
Proposed Method 0.9567 0.9739 

Supervised Learning Methods 
Staal et al. [37] 0.9516 0.9614 

Soares et al. (DRIVE) [39] 0.9469 0.9629 
Soares et al. (STARE) [39] 0.9480 0.9671 

2nd Observer from the 
database 0.9351 N/A 

 
Table 4. Results on the complete DRIVE database. 
STARE Accuracy Rarea 

Unsupervised Methods 
Jiang and Mojon [33] 0.8911 0.9327 

Line (C&S) [35] 0.9261 0.9348 
Line (Impl.) 0.9320 0.9410 

Line (TMI) [34] 0.9563 0.9558 
Mendonça and Campilho [40] 0.9463 N/A 

Proposed Method (ImS) 0.9383 0.9519 
Proposed Method 0.9472 0.9614 

Supervised Learning Methods 
Matched filter k-NN [38] 0.9416 0.9294 

Staal et al. [37] 0.9441 0.9520 
Soares et al. (DRIVE) [39] 0.9466 0.9614 
Soares et al. (STARE) [39] 0.9445 0.9494 

2nd Observer from the 
database 0.9473 N/A 
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Figure 14. The performance evaluation measure PUR for 

different methods using all the pathological images. 
 

Table 5. Results on the abnormal retinas only in the STARE database. 
STARE Accuracy Rarea 

Unsupervised Methods 
Vermeer et al. [56] 0.9287 0.9187 

Jiang and Mojon [33] 0.9337 0.8906 
Line (Impl.) 0.9352 0.9343 

Mendonça and Campilho [40] 0.9426 N/A 
Lam and Yan [41] 0.9474 0.9392 

Proposed Method (ImS) 0.9435 0.9460 
Proposed Method 0.9556 0.9707 

Supervised Learning Methods 
Soares et al. (DRIVE) [39] 0.9428 0.9455 
Soares et al. (STARE) [39] 0.9425 0.9571 

2nd Observer from the 
database 0.9410 N/A 

 
Table 6. Running Times for Different Methods.  
 Time PC Software 

Line (Impl.) 30 sec 
Duo CPU 1.83 
GHz, 2.0 Gb of 

RAM 
Matlab 

Mendonça and 
Campilho [40] 2.5 to 3 mins 

Pentium-4 PC, 
3.2 GHz, 960 
Mb of RAM 

Matlab 

Soares et al. [39] 3 mins (9hrs for 
training) 

PC (2167 MHz 
clock) with 1-
GB memory. 

Matlab 

Lam and Yan 
[41] 8 mins 

Duo CPU 1.83 
GHz, 2.0 Gb of 

RAM 
Matlab 

Proposed Method 13 mins 
Duo CPU 1.83 
GHz@, 2.0 Gb 

of RAM 
Matlab 

Staal et al. [37] 15 mins 

Pentium-III PC, 
running at 1.0 

GHz with 1-GB 
memory 

N/A 

 
In Tables 3, 4 and 5, we observe that there is an 

improvement of around 0.01 to 0.02 in both accuracy and Rarea 
when perceptive transform is used. This is in accordance with 
the argument of Mendonça and Campilho [40] that the 
geometric operation is more robust to noise than the arithmetic 
operation. In this work, the arithmetic operations in the 
perceptive space are equivalent to geometric operations in the 
original image space:  
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The running times of different methods are given in Table 6 
where the running times of the methods of Mendonça and 
Campilho [40], Soares et al. [39] and Staal et al. [37] are 
obtained from their papers. The proposed method takes on 
average 13 mins to get a segmentation result. Most of the time 
is spent on computing CSD and CSI. Boosting up the 
convergence rates of the two widely adopted TV and MS 
models can significantly shorten the running time and this is 
our future work. Also in real applications, the computation 
time can be significantly reduced by implementing the 
algorithm in C/C++ programming. 

VII. CONCLUSION 
This paper presents a novel regularization-based multi-

concavity approach for effectively segmenting blood vessels in 
both normal and pathological retinas with bright and dark 
lesions in a single system. A perceptive transform derived 
from Weber’s law is proposed to map an input image into a 
perceptive space for robust vessel segmentation. Our results 
show that system performances of both accuracy and Rarea 
tested on grey-scale intensity, RGB and L*a*b* color channels 
are consistently better in the perceptive space than in the 
image space, demonstrating the broader effectiveness of the 
proposed perceptive space method. As the bright lesion has a 
steep intensity transition profile, measuring the degree of 
concavity can effectively distinguish the bright lesions from 
the vessels and non-vessels. Dark lesions have an irregular 
shape intensity structure while blood vessels have a line-shape 
intensity structure. The line-shape concavity is modeled to 
prune the dark lesions while preserving the regions of blood 
vessels. The relative intensities of noise in different parts of 
the retinal image are different due to the fact that a retinal 
image has a spherical intensity variation. A locally normalized 
concavity scheme is proposed to normalize the strengths of 
noise removal in different regions. The lifting scheme is 
designed to perform a modified diffusion process ensuring the 
detected vessel shape is optimized iteratively to the ideal 
solution. 

In contrast to the existing methods, the proposed method 
can identify vessels in pathological retinal images with both 
bright and dark lesions. More importantly, it can work 
simultaneously for health and pathological retinas. Extensive 
experimental results on STARE and DRIVE databases 
demonstrated the superior performance of proposed method on 
both healthy and abnormal retinas.  As an interesting future 
work, the proposed techniques may be extended to solve the 
challenging problem of lesion detection. 
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