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Abstract 

Problem 

The number of genital tract Chlamydia trachomatis infections is steadily increasing 

worldwide, with approximately 50-70% of infections asymptomatic. There is currently no 

uniform screening practice, current antibiotic treatment has failed to prevent the increased 

incidence and there is no vaccine available. 

Method of Study 

We examined studies on the epidemiology of C. trachomatis infections, the effects infections 

have on the female reproductive tract and subsequent reproductive health and what measures 

are being taken to reduce these problems. 

Results 

Undetected or multiple infections in females can lead to the development of severe 

reproductive sequelae, including pelvic inflammatory disease and tubal infertility. There are 

two possible paradigms of chlamydial pathogenesis, the cellular and immunological 

paradigms. Whilst many vaccine candidates are being extensively tested in animal models 

they are still years from clinical trials. 

Conclusions 

With no vaccine available and antibiotic treatment unable to halt the increased incidence, 

infection rates will continue to increase and cause a significant burden on health care 

systems. 
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Introduction 

 

Chlamydia trachomatis is a Gram-negative bacterium, which has a unique biphasic 

developmental cycle. Genital tract C. trachomatis infections, caused by serovars D-K, are the 

most common bacterial, sexually transmitted infection, costing health care systems billions of 

dollars to treat not only the acute infections, but also the complications they cause.1 A major 

concern with Chlamydia infections are that 70% of infected women and 50% of infected men 

are asymptomatic. In women this can lead to severe sequelae such as pelvic inflammatory 

disease (PID), which can then cause ectopic pregnancies and tubal infertility,2, 3 and men can 

suffer from prostatitis and epididymitis.4 Repeat or multiple infections with C. trachomatis 

increase the likelihood of these same sequelae, with a 2 – 4.5 fold increase in the risk of 

ectopic pregnancy, and a 4.5 – 6.4 fold increase in the chance of PID development5. Risk 

factors for contracting infection include age, with those aged 15-24 most affected, gender, 

with females at more risk than men, and race6.  

 

Recent reports from the Centre for Disease Control and Prevention (CDC) state that, in the 

United States, there has been an increase in infections of 7.5% from 2006 to 2007.7 It is 

possible that these increases are due to the development of more specific testing procedures,8 

however a study controlling for the effects of new testing methods and demographic and 

sexual risk behaviours showed an independent 5% per year increase in C. trachomatis 

positivity between 1997 and 2004.9 Even though the rates of genital tract infections continue 

to rise, there are no uniformly accepted screening practices, with the majority being 

opportunistic. Systematic reviews of the cost effectiveness of screening young asymptomatic 

women suggested screening is cost effective, due to the reduction in long term health costs.10, 

11  



 

This highlights that while infection rates continue to increase and cost health care systems 

billions of dollars annually, there are currently few options available to prevent the increasing 

incidence of infections. This emphasises the urgent need for the development of an 

efficacious vaccine. 

 

Chlamydia infection and immunity 

 

Infection 

The primary site of chlamydial infections of the genital tract is the columnar epithelial cells 

of the endocervix of women and the urogenital epithelia of men.12 In males, ascending 

infection can cause prostatitis and epididymitis,13 this has been extensively reviewed by 

Cunningham and Beagley13 and will not be addressed in this review. In females the infection 

can ascend the reproductive tract and cause PID and ectopic pregnancies.11 The development 

of disease sequelae in women following chlamydial infection is associated with ascension of 

Chlamydia from the lower reproductive tract (LRT) into the upper reproductive tract (URT). 

The mechanisms that lead to this ascension are not fully understood, neither is the rate at 

which this happens. It is thought that Chlamydia can gain access to the URT of women by 

attachment to sperm.14, 15 It is also possible that movement along the reproductive tract is 

from general flow of fluids (Fig. 1), with studies demonstrating that particles approximately 

the same size of sperm,16 or radio-labelled sperm,17 deposited into the vagina of women, 

could be found in the uterus within 2 min, demonstrating that rapid ascension of bacteria 

could occur. 

 



Murine studies using C. muridarum have greatly expanded the knowledge of infection 

kinetics, including the differential cell infiltration between the lower and upper genital tract, 

the rate at which this occurs,18-24 and also the rate of infection ascension.24-26 The infectious 

dose of Chlamydia is known to modulate the innate immune response, with greater 

inoculating doses causing a greater innate immune response.26 It has been suggested that due 

to the greater immune responses elicited by high infectious challenge doses, the infection 

does not cause as great a degree of hydrosalpinx.26 However, it has also been shown that 

while the infectious dose affects the degree of ascension of infection along the female 

reproductive tract of mice, it does not affect the pathological outcomes, such as hydrosalpinx 

development and cellular infiltrate.24 This suggests that, if a similar situation occurs in 

humans, the development of pathological sequelae may not be affected by the sexual 

transmission dose. Although the number of Chlamydia required to establish an infection in 

different strains of mice,27 and the number of C. caviae transmitted by an infected male 

guinea pig during mating is known28 there is no data on these parameters in human infections.  

 

Immunity 

The regulation of immune responses against genital tract C. trachomatis infections in humans 

is largely unknown, due to the difficulty in obtaining samples and monitoring patients long 

term. Natural immunity to a single infection is known to be short lived, and serovar 

specific,29 however multiple infections with different serovars induces longer term, cross 

serovar immunity.30 Immune responses to infections are linked to genetic variations, with 

specific polymorphisms in immune response genes influencing the magnitude of immune 

responses to microorganisms.31  

 



There have been reports indicating that women have spontaneously cleared a genital infection 

without medical intervention, however the exact duration of an infection cannot be 

determined.32 It is also believed that antibiotic intervention increases the longer term rates of 

re-infection due to the inability of the person to develop protective immunity against 

Chlamydia.33 It is widely accepted, based on animal studies, that to resolve a chlamydial 

genital tract infection in females, both a Th1 and Th2 response needs to be mounted. The 

infiltration and activation of CD4+ T cells is required for the development of protective 

immunity and clearance of a primary infection.34 While clearance of a primary infection is 

dependent on the development of cell mediated immunity, clearance of a secondary infection 

requires the presence and production of antibodies.12, 35 Also an increase in infiltration of 

CD8+ T cells,36, B cells,37 neutrophils38 and dendritic cells39 (DCs) is required. This ensures 

effective clearance of both the intracellular reticulate bodies and extracellular elementary 

bodies in the genital tracts of infected individuals. Recent studies examining cytobrush 

samples from the endocervix demonstrated that women infected with C. trachomatis had an 

increase in CD3+, CD4+ and CD8+ cells and neutrophils,40, 41 and an increase in recruitment 

of myeloid and plasmacytoid DCs.41  

 

The first line of defense against a Chlamydia infection within the female reproductive tract is 

the mucosal barrier. Initial infection of epithelial cells causes a cascade of events leading to 

the increased production of pro-inflammatory cytokines and chemokines including IL-1, IL-

842 IL-1219, IL-6 and GM-CSF,43 which then induces an influx of innate immune cells (Fig. 

1) such as natural killer (NK) cells,44 dendritic cells (DCs),39 and neutrophils.38 These cells 

then produce more cytokines such as IFN-γ and TNF-α, which impede further chlamydial 

growth. Production of various cytokines has, however, proven to be detrimental to the 



mucosal barrier, with their presence linked to various tissue pathologies,12 and this has been 

termed the cellular paradigm45 (Fig. 1).  

 

Tissue destruction leading to the development of tubal infertility and ectopic pregnancy is 

caused by the production of cytokines (Fig. 1), including IL-1 and IL-8, in response to 

infection.42 Fallopian tube biopsy samples infected with C. trachomatis, with or without IL-1 

receptor antagonist present, revealed that the production of IL-1 leads to destruction of the 

ciliated epithelium.42 Toll-like receptor 2 (TLR-2) has also been implicated in the 

development of chronic pathology development in the mouse model of genital infection,46 

with TLR-2 KO mice producing lower levels of TNF-α and MIP-2, and developing 

significantly less oviduct pathology.46 This supports the idea that it is the host’s immune 

response to infection that is responsible for the damage rather than the infection itself.  

 

It has also been suggested that the pathologies seen after an infection are linked to antigen-

specific adaptive cellular responses, this is termed the immunological paradigm47 (Fig. 1). 

The exact mechanism or antigen behind the immunological paradigm has yet to be 

determined. There are conflicting reports that pathogenesis may be linked to chlamydial heat 

shock protein-60 (cHSP-60) through delayed type hypersensitivity (DTH) or autoimmunity.  

Chlamydia can enter a dormant, persistent state, where, in the absence of a productive 

infection, there is still a low level of immune stimulation from antigen recognition. This low 

level stimulation is believed to cause chronic inflammatory cell infiltration.48, 49 Originally, 

guinea pigs sensitized with Triton-X-100 soluble chlamydial EBs, had greater ocular delayed 

hypersensitivity when re-exposed to infection at other sites, including vaginal and intestinal 

infections.50 Similarly, monkeys immunized against C. trachomatis developed a greater 

follicular response in the eye upon re-exposure than non-immune controls,51 highlighting the 



significance of repeated infections in terms of a delayed hypersensitivity response. T cells 

isolated from endometrial and salpingeal tissues, removed from PID and tubal factor 

infertility (TFI) patients, responded to stimulation with cHSP-60 to a greater degree than with 

chlamydial EBs, further supporting cHSP-60’s role in DTH 52, 53 (Fig. 1). The presence of 

cHSP-60 antibodies has also been correlated with PID severity,54-56 TFI57 and more severe 

salpingeal pathology.58  

 

It has also been debated as to whether or not autoimmunity plays a role in the pathogenesis of 

chlamydial infections (Fig. 1), due to the high sequence homology between self and 

chlamydial HSP-60.48 A study where mice were immunized with either cHSP-60, mouse 

(self) HSP-60, or a combination of the two, demonstrated that T cell proliferation in response 

to self-HSP-60 was only observed after immunization with both HSP-60s. A shift in cytokine 

secretion following in vitro stimulation was also observed, changing from anti-inflammatory 

IL-10 secretion when immunized with self-HSP-60, to pro-inflammatory IFN-γ when 

immunized with both.59 This suggests that a chlamydial infection can induce autoimmunity, 

and this is supported by recent findings that human HSP-60 and cHSP-60-1 from C. 

trachomatis serovar D contain 4 potential T cell epitopes that display 100% identity.59, 60 

There is still some doubt over how involved cHSP-60 is in the development of autoimmunity, 

as, in these same experiments, immunization of mice with cHSP-60 alone did not induce 

cross-reactive autoimmune T cells,59 however during an actual chlamydial infection it is 

highly likely that both host and chlamydial HSP-60 are produced.  

 

This highlights that it is not necessarily the damage caused by the infection itself that leads to 

the development of reproductive sequelae such as PID, but rather the host’s immune response 

to infection that may actually cause the damage. 



 

Treatment or Prevention? 

 

The current recommended treatments for genital tract infections caused by C. trachomatis are 

azithromycin or doxycycline.61 Azithromycin is considered more effective due to it being a 

single 1g dose compared to a 7 days course of doxycycline, thereby enhancing compliance.61 

There is emerging evidence that C. trachomatis is developing antibiotic resistance, with 

clinical isolates having single and multidrug resistance when cultured in vitro.62-65 Isolates 

have been individually resistant to tetracyclines, macrolides, fluoroquinolones,64 or resistant 

to doxycycline, azithromycin and ofloxacin.65 In addition, a study of infected women, who 

completed antibiotic treatment, found that 10% of the cohort was re-infected within 1 month 

of treatment completion, and 13% by 3 months, even though abstinence or 100% condom use 

was reported.66 While the shortened duration of infections from early antibiotic treatment has 

reduced infection-associated reproductive sequelae, the number of case rates continues to 

increase.67 This has been suggested to occur because early intervention with antibiotics 

interferes with the development of protective immune responses,33 thereby increasing the risk 

of re-infection, and this has been termed the arrested immunity hypothesis.67  

 

In light of the increasing rates of C. trachomatis genital infections, the asymptomatic nature 

of infections and the possibility of antibiotic resistance developing, there is an urgent need for 

the development of a vaccine that protects both from infection and from the development of 

pathology. Mathematical modelling has suggested that even a partially protective vaccine will 

dramatically decrease the rate of spread of infections and reduce economic burden.68, 69 An 

efficacious vaccine will need to induce both a strong Th1 cell mediated response and a 

humoral response.70 Chlamydia vaccine research has been ongoing for over 20 years, 



exploring the efficacy of sub-unit, cellular and DNA vaccines,70, 71 with many advances 

occurring, but as yet, no fully protective vaccine exists.  

 

The greatest amount of Chlamydia vaccine research to date has focused on sub-unit vaccines. 

The use of MOMP as a vaccine candidate has been extensively studied, with varying 

success.72-79 The use of this antigen has resulted from the fact that it constitutes 

approximately 60% of the outer membrane protein mass of the chlamydial EB.47 However 

MOMP contains 4 variable domains, that are surface exposed and are antigenically variable 

between serovars.80 This means any vaccine utilizing MOMP as the main antigen will elicit 

only serovar specific immunity, which is not appropriate considering there are 9 genital 

serovars (D-L) alone. This highlights that a vaccine containing only MOMP is unlikely to be 

successful however MOMP could be used as part of a multi-subunit vaccine. However, our 

recent studies of the serovar distribution of C. trachomatis infections in regional New South 

Wales suggest that a MOMP-based vaccine, containing MOMP from serovars E, F and G 

could potentially protect against >80% of infections in this region.81  

 

The vaccine candidate at the forefront of current chlamydial vaccine research is chlamydial 

protease-like activity factor (CPAF), and is possibly the candidate closest to human clinical 

trials. CPAF has been extensively studied in the murine model of genital infection,82-87 and 

has proven, with the use of adjuvants such as IL-12 and CpG-ODN,82, 85 to be able to reduce 

the level of Chlamydia shed from the genital tract and prevent the development of pathology, 

thereby preserving reproductive health.82, 84-86, 88 Due to CPAF being highly conserved 

between chlamydial species89 and the fact that transgenic mice expressing human leukocyte 

antigen (HLA)-DR4 molecules, rather than mouse major histocompatibility complex class II 

molecules, are able to mount robust protective immune responses,87 suggests CPAF could be 



a good candidate for an efficacious vaccine, especially when used in combination with other 

protective antigens. 

 

Any chlamydial vaccine candidate needs to be able to not only protect the individual from 

infection but also prevent the development of pathological sequelae such as infertility. This 

requires a vaccine to induce CD4+ T cell mediated immunity, along with neutralising 

antibodies and importantly long lasting immunity. As yet, no single candidate is able to do 

this effectively and will likely require the development of a multi-subunit vaccine. 

 

Problems with vaccine development 

The advancement of molecular techniques and availability of immunologically defined 

animals has allowed the development of vaccine candidates and identified the likely 

mechanisms of protection. However, there are still many unresolved issues, including how 

efficacious does a vaccine have to be to prevent further spread and pathology development? 

As mentioned previously, mathematical modelling has indicated that even a partially 

protective vaccine will significantly reduce the health care burden,68, 69 however, in light of 

the ability of cytokines secreted from non-immune cells to cause significant reproductive 

tract tissue destruction, even a low level infection has the ability to cause damage.90 This 

suggests that a vaccine designed to prevent pathology development rather than infection may 

be more cost effective. 

 

There are very few studies that have examined the effects of the timing of vaccination. For 

example it is unknown if any candidate vaccines have a therapeutic effect, or if immunization 

after a previously resolved infection will provide additional protection against re-exposure. 

Very early studies in humans indicated that individuals that had had previous ocular 



infections, that were then immunized with a killed whole cell vaccine developed enhanced 

pathology of the eye upon re-exposure, compared to those that were not immunized.91 This 

occurrence was thought to be linked to the high homology seen between cHSP-60 and self-

HSP-60, contributing to autoimmunity and pathology development. Due to this, 

investigations using whole cell vaccines were not continued. This highlights the need to 

select vaccine antigens that elicit protective immunity but do not enhance pathology, 

particularly in individuals who might have an asymptomatic infection at the time of 

vaccination, or who may have had an infection prior to vaccination. 

 

There have been no studies that have examined the effects of vaccine administration during 

an acute chlamydial genital infection. Therefore, it is unknown if any experimental 

chlamydial vaccine candidates could have a therapeutic effect, if they might reduce or 

enhance pathological sequelae, or if they could cause chronic, persistent infections, when 

administered during an infection. Knowing that Chlamydia can enter a persistent state when 

put under various pressures, including cytokine production,92-105 it is plausible that 

enhancement of infection-induced immune responses by vaccination may cause the 

Chlamydia to enter this state and promote both pathology development and future 

reactivation of infection. It is also unknown whether any vaccine candidates administered 

after resolution of a previous genital infection will further boost the individual’s infection-

induced immune response, provide a greater level of protection and prevent further pathology 

development. Herpes simplex virus-2 (HSV-2) vaccine trials in women revealed that those 

who were HSV-1 seropositive at the time of vaccination did not mount an immune response. 

However, women who were we seronegative for HSV-1 and 2 mounted strong anti-HSV-2 

immune responses.106 With genital tract Chlamydia infection rates on the continual rise and 



the asymptomatic nature of infections, these are important aspects that have yet to be 

examined in any way. 

 

A vaccine designed to target the mucosal surfaces of the female reproductive tract could also 

be affected by reproductive cycle-associated changes in female sex hormones.107 Studies in 

animal models have shown that progesterone and estradiol can affect many components of 

the immune response, including antigen presentation by DCs and macrophages,108 production 

and transport of antibody into the FRT109, 110 and also the induction of cell-mediated 

immunity.111-113 The stage of the hormonal cycle has also been shown to influence the 

effectiveness of vaccination. The ability of transcutaneous and intranasal vaccination to 

induce immune responses in the FRT of mice is hormonally regulated,114 with degree of 

antigen-specific T cell stimulation and local antibody secretion dependent on the stage of 

estrous when vaccination occurs.114 A study in women, examining the effect of the route of 

vaccination and how the stage of the menstrual cycle affects antibody secretions in the 

reproductive tract, demonstrated that immunization via the nasal route induced the greatest 

IgA antibody secretion in vaginal secretions. However, those immunized vaginally on days 

10 and 24 of their menstrual cycle had the greatest amounts of IgG and IgA in cervical 

secretions, compared to those immunized vaginally irrespective of cycle stage.115 With these 

factors in mind, any vaccine targeted to the female reproductive tract must induce a strong 

CMI and humoral response that is able to overcome the effects of hormonal fluctuations.  

 

Conclusions 

Chlamydia trachomatis genital infections are continually increasing, with females at the 

greatest risk of infection. Due to the asymptomatic nature of infections possibility of the 

development of severe reproductive impairment if multiple infections occur and antibiotic 



treatment failing, there is an urgent need for the development of a vaccine that prevents 

further spread of infection and pathological damage to the female reproductive tract. 

However, any vaccine candidate’s efficacy needs to not be affected by the infection status of 

the individual, and must be able to effectively target the reproductive mucosa, irrespective of 

the hormonal status. 
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Figure 1: The paradigms of chlamydial pathogenesis in the female reproductive tract. 

Chlamydia ascends the reproductive tract either by attachment to sperm or from the general 

flow of fluids, infecting the upper female reproductive tract, leading to the development of 

pathology. Pathogenesis is thought to occur through either an innate, non-immune cellular 

response (Cellular paradigm), or an antigen specific adaptive cellular response 

(Immunological paradigm). Green circles: Chlamydia particles; DTH: Delayed-type 

hypersensitivity; cHSP-60: chlamydial heat-shock protein-60; PID: Pelvic inflammatory 

disease; TFI: Tubal factor infertility; TLR: Toll-like receptor; IL: Interleukin; GM-CSF: 

Granulocyte-macrophage colony-stimulating factor. 

 


