
1

Discrete Time Model and Algorithms for Container Yard Crane Scheduling

Wenkai Li*, Yong Wu, M. E. H. Petering, Mark Goh1
, Robert de Souza

The Logistics Institute—Asia Pacific, Block E3A, Level 3, 7 Engineering Drive 1, Singapore

117574

Abstract

Container terminal (CT) operations are often bottlenecked by slow YC (yard crane)

movements. PM (prime mover) queues in front of the YCs are common. Hence, efficient YC

scheduling to reduce the PM waiting time is critical in increasing a CT’s throughput. We

develop an efficient model for YC scheduling by taking into account realistic operational

constraints such as inter-crane interference, fixed YC separation distances and simultaneous

container storage/retrievals. Among them, only inter-crane interference has ever been

considered in the literature. The model requires far fewer integer variables than the literature

by using bi-index decision variables. We show how the model can be solved quickly using

heuristics and rolling-horizon algorithm, yielding close to optimal solutions in seconds. The

solution quality and solution time are both better than the literature even with additional

constraints considered. The proposed formulations and algorithms can be extended to other

problems with time windows and space constraints.

Keywords: Scheduling, Rolling-horizon algorithm, Container yard, MILP

1. Introduction

Today, 90% of the world’s trade is transported via containers (Henwood 2006), mostly on

containerships (Kim and Kim 1999, Steenken et al. 2004), leading to greater volume flows at

the ports. Coupled with increased demand for speed to market, the container terminal (CT)

operator faces constant pressure to reduce turnaround time and increase flow efficiency.

Hence, CT operators need better and efficient computational tools which can de-bottleneck a

CT’s container flow and increase container box throughput.

*

Corresponding author. E-mail: tlilw@nus.edu.sg Telephone: (65)65168987 Fax: (65)67753391
1 Also at NUS business school. E-mail: mark_goh@nus.edu.sg

2

Vessels mooring at the berths wait for quay cranes (QCs) to upload/ discharge their containers

(see Figure 1). The PMs shuttle between the QCs and YCs to move these boxes from the

berth to the container yard (CY), and vice versa. Upon arrival at the blocks, the PMs queue in

front of the YCs until they are served. As the typical YC to QC work rate is half (Ng and Mak,

2005), YC operations is a potential bottleneck. The efficiency of yard operations depends

heavily on the YCs’ operations (Zhang et al., 2002).

The CY, a container storage area inside the CT of a port, for planning purposes, is typically

partitioned as contiguous rectangular blocks (see Figure 2). A grid is painted on the pavement

indicating the x-y locations of the boxes. Bi-directional traffic lanes for the PMs occupy the

space between the blocks. The blocks are divided along their length into 20-foot sections

called slots. Each slot has several rows. Containers are stored alongside in each row and are

stacked on top of each other. A typical block is six rows (6 x 8.5 feet) deep and forty slots (40

x 20 feet) long. The YCs are used to transfer containers in and out of the slots, straddling

above the containers in each block and moving parallel to the length of the block. For a

transshipment CT, with 40 to 60 slots per block, up to 60 moves are expected to be handled at

each block (Ng 2005).

Generally, the terminal planners are informed of the vessel arrivals a few days prior. They

then start to plan the storage/retrieval locations for the containers in the CY (Ng 2005). Hence

the slot to be picked is already pre-determined in most CTs. However, due to the arrival

uncertainty of the vessels, the container loading/unloading sequence in the QC work list is

planned only several hours before the actual vessel arrival. This work list is then translated

Vessels

Quay Crane (QC)

PM

Yard Crane (YC)

Unloading

Loading Stack Yard

Fig. 1. Typical container terminal

operations

3

into an YC work list, using historical average container handling times for the QCs and YCs,

and travel times for the PMs respectively. The terminal schedulers then dispatch the YCs

manually, based on the actual container arrival pattern. Besides the import containers arriving

from vessels, in a transshipment CT, there are export containers arriving from the landside of

the terminal. Such export containers are stored at the stack yard temporarily and later moved

to quayside by YCs and PMs (Froyland et al. 2008). This will also generate storage and

retrieval moves for the YCs. Given this situation, it is optimal to generate an integrated YC

work list which includes the work list translated from both the landside planning and

quayside planning. However, in this paper, for ease of exposition, only the YC work list

translated from the QC work list is considered. Coordinating the movement of containers on

the quayside is already a difficult problem in itself.

The gross crane rate (GCR) measures the average rate at which the QCs transfer containers

between vessel and shore and is the most significant performance measure of a CT operation.

A high GCR, while desirable, is however constrained by the ability of the PMs to reach the

QCs, which in turn is constrained by the YCs’ work rate. In short, even though a QC is

technically capable of making 40 moves (load/discharge containers) per hour, the average QC

rate at most container ports is currently far less (more than 30%). An efficient YC schedule is

therefore key.

Some unique operation constraints exist in YC scheduling. First, two YCs sharing the same

bi-directional lane cannot cross gantry each other, i.e., an YC located at one position of a

block cannot move to another position in the same block if another YC is in its path. Some

studies (Ng 2005, Lim et al. 2007, Froyland et al. 2008) have considered this constraint.

YC 1 YC 2

PM1

Fig. 2. 160 feet separation distance between working YCs for a 28-slot block

PM2

handling lane

bypass lane

 160 feet

Slot

Row

4

Second, the literature does not consider a safety distance between YCs. Currently, the safety

distance between two YCs operating in the same lane must be at least 160 feet apart (Figure

2). This greatly limits access to the containers in the intervening slots. For instance, if an YC

is working at slot #8 in a block, then there can be no container handling in slots #1 to #15,

effectively reducing the block workspace by 37.5% for a 40-slot block. This safety distance is

intended for the PMs to park and move between the YCs, and to move from the handling lane

to a bypass lane and back. If YCs are closer than this, the PM (PM1 in Figure 2) leaving the

upstream YC (YC1 in Figure 2) will not be able to pull out of the handling lane and onto the

bypass lane through to the downstream YC (YC2 in Figure 2). Third, in a transshipment CT,

YCs often need to handle two kinds of moves, storage and retrieval, in a time window.

Containers should either be stored or retrieved from CY by YCs from/to PMs (Figure 1).

Froyland et al. (2008) have considered storage and retrieval moves using heuristics to

sequence container moves without setting a minimum YC separation distance. Other

literature (Ng 2005, Ng and Mak 2005, Ng and Tsang 2005) only consider storage moves.

2. Literature review

There are many papers on planning and scheduling problems in a container terminal. Vis et al.

(2003), Steenken et al. (2004) and Stahlbock et al. 2008 provide excellent surveys of CT

operations and research. For instance, Li et al. (2007) have developed models for allocating

empty containers among ports to better manage and control their containers. Similarly, Kim

et al. (2004) and Bish (2003) studied the scheduling for QCs. Many papers have considered

the scheduling of a single YC where containers are grouped and the YC must retrieve

containers from specified groups according to a fixed sequence, without due dates or release

times, while minimizing travel distance. Since containers belonging to a specific group may

be stored in multiple locations, both the YC route and the number of containers picked at

each slot are decision variables (Kim and Kim 1999, Kim and Kim 2003, Narasimhan and

Palekar 2002).

Scheduling algorithms for multiple YCs are rarely addressed in the literature (Steenken et al.

2004, Stahlbock et al. 2008). Cheung et al. (2002), and Zhang et al. (2002) have developed

5

methods for allocating YCs among the blocks in an entire CT and for scheduling cross-gantry

moves. However, they do not generate detailed work schedules for the YCs and individual

containers. Chen et al. (2007) have developed an integrated scheduling model for container

handling where a Tabu search algorithm was used to solved the model. Again, the detailed

work schedules for YCs was not generated. So far, most of the algorithms applied on the YC

scheduling problem (Ng 2005, Ng and Mak 2005, Ng and Tsang 2005) only treat storage

moves, probably because it is easier to develop algorithms for storage moves. Recently, Ng

(2005) has proposed a heuristic for constructing detailed work schedules for multiple YCs in

a block with inter-crane interference, albeit without retrieval moves and minimum

crane-distance separation.

2.1. Some Approaches to YC work schedules

Dispatching. The YC scheduling problem is NP-hard (Ng 2005). Currently, dispatching is

applied extensively in CTs using simple rules (e.g., SPT, EDD) for YC scheduling. However,

such rules are myopic in nature (Hopp et al., 2000).

Simulation. Another way to combat this NP-hard scheduling problem is through simulation,

and generates schedules by applying different dispatching rules. However, finding an

effective schedule is a time-consuming process and as dispatching rules are inherently

myopic, simulation may not generate good schedules (Hopp et al., 2000).

Heuristics-based algorithms. Some researchers (Ng 2005) apply heuristics-based algorithms

for YC scheduling. These algorithms can generate a schedule quickly. However, lacking an

efficient way to search for a globally good schedule, the final schedules generated by such

algorithms may be far from optimal.

Metaheuristics-based approaches. Another class of methods apply metaheuristics for YC

scheduling. Recently, Ng and Mak (2005) proposed a branch-and-bound algorithm to solve

the problem of storage moves, requiring about 444.7 seconds in average to solve YC

scheduling problem with 25 jobs. Their algorithm cannot be applied on retrieval moves at the

same time as the procedure fails to find the lower bound. Ng and Tsang (2005) later

developed a genetic algorithm to solve a single YC scheduling problem. Again, only storage

moves are considered.

6

MILP models for YC work schedules. Ng (2005) proposed an MILP model as the

benchmark for his heuristics-based algorithm considering inter-crane interference. Ng found

that CPLEX took about 10 minutes to find the optimal schedule for a problem with 2 YCs

and 10 jobs in a 40-slot block. Due to the exponential increase in solution time, solving

MILP-based models directly can be intractable for real-sized problems. All research thus far

use MILP-based models as benchmarks only.

This paper develops an efficient model for YC work schedules by treating actual operation

constraints such as inter-crane interference, fixed YC separation distances and simultaneous

storage/retrieval jobs handling. By detailed formulating and exploiting the structure of the

problem, the model size is dramatically decreased. An effective heuristic is integrated into the

model to further reduce the model size. We then apply a rolling-horizon algorithm to

sequence jobs based on job target times. Jobs are scheduled at each iteration until all jobs are

fixed. This allows unscheduled new jobs to be inserted among the existing set of jobs. The

rolling-horizon algorithm can find near-optimal solutions. Thus far, the solutions of many

scenarios tested are optimal. Since the number of jobs involved at each iteration is set to a

small value (7 jobs/iteration is used in this paper), the problem size of each iteration is small,

reaching solution in less than one second usually. As the total problem size increases, the total

solution time only increases linearly in n, i.e., JNPIn
(*e)

JFPI
O , where n (> 7) is the total

number of jobs to be scheduled, JFPI is the number of jobs fixed at each iteration (2 is used in

this paper) and JNPI is the job number per iteration (7 is used here). The exponential term,

e
JNPI

, is much smaller compared to en.

3. The model (DMIP1)

An MILP model is developed to handle the problem of scheduling single or multiple yard

cranes in a yard block. Storage or retrieval moves arrive at the block with different target

times. For retrieval jobs, the target time interval is the latest time interval during which a

retrieval job can be handled and still meet the deadline set by the QCs. For storage jobs, the

target time interval is the earliest time interval following the release of the job (i.e. the arrival

7

of the corresponding PM) in the yard. In order to reduce the number of integer variables in

our IP model, we discretize the time axis into 3.5-minute intervals. Because an YC takes

about 2~4 minutes to make a container transfer, we assume a three-minute handling time per

container move. Each container is scheduled to take place in exactly one interval and shall

consist of 0.5 minute of YC gantrying followed by 3 minutes of container handling. In the

model, each YC handles at most one container per interval. In any given interval, all gantry

moves start and end simultaneously and all container moves start and end simultaneously for

all YCs.

Assumptions

The following assumptions are used in the model.

Target times and locations of container moves are assumed known and fixed. The target

times can be translated from the QC work list.

The job handling time of an YC is usually 2~4 minutes (Ng and Mak, 2005). We assume

that the job handling time of all YCs is 3 minutes (i.e., 20 moves/hour).

20 to 30 moves in a two-hour time window are used in the scenarios tested in this paper.

Each yard block contains 40~60 container slots.

In a CT, YC-YC interference is usually more serious than PM-PM interference as YCs

have more difficulty substituting for each other than PMs during actual operations (e.g.

there are fewer YCs than PMs, YCs are much slower than PMs, and the minimum

separation distance is larger for two YCs than for two PMs). Thus, more attention should

be paid to scheduling YCs than to dispatching PMs. YCs also exhibit less variable travel

and handling times than PMs, which means that they can follow a predetermined

sequence of moves with a less variable result than PMs. Thus, generating YC schedules

with the assumption that PMs are always available becomes very worthwhile.

the minimum difference in slot numbers allowed for two YCs at the same time is

assumed to be 8 slots (160 feet) in this paper (SEP=8).

Objective Function

8

The notations used for the indices, sets, parameters and variables in the mathematical

formulation are defined in Appendix I. The objective is to minimize a linear combination of

the retrieval earliness and storage and retrieval delays, namely,

Minimize = re m rd m sd m

m R m R m S

TC W RE W RL W STL (obj)

As a retrieval delay by the YC directly leads to the QC schedules and berth operations being

delayed, and the storage delay only affects the yard operations, the weight for the total

retrieval delay, Wrd, is set larger. Hence, we set Wre =Wsd =1 and Wrd=2.

3.1 Constraints

Each move takes place during exactly 1 time interval

1, mt

t T

m MX (1)

where T is the set of time intervals scheduled. It is determined by dividing the upper bound of

the makespan of the optimal schedule by the interval length. The upper bound of the

makespan (assumed to be a known value in Ng (2005)) is decided by trial-and-error. In this

paper, we set this upper bound to the maximum target time of all moves plus 50 minutes.

That is, we reasonably assume that, in the optimal schedule, no move will be handled 50

minutes after the largest target time:

{ : * 50}tT t Ord IntLen MaxH

where { : }mMaxH Max m M Tgt , Ordt is the relative position of time interval t in set T

and IntLen is the length of time interval.

Each move should be assigned to one crane

1, , 1mc

c C

m M NCW (2)

When the number of YCs is greater than one, constraint (2) ensures that each move is

9

assigned to exactly one YC. If there is only one YC, the value of Wmc is fixed to 1,

, 1 1, , NC=1m c m MW

A storage move can take place no earlier than its target time interval

, *(1)*t mt m m

t T

m SIntLen Ord X Tgt (3)

At time t, at most NC YCs can work simultaneously

, mt

m

NC tX T (4)

NC is the total number of YCs scheduled.

Computing the retrieval earliness, REm, of move m:

, *(1)*m m t mt m

t T

m RRE Tgt IntLen Ord X (5)

Computing the retrieval lateness, RLm, of move m:

, *(1)*m t mt m m

t T

m RRL IntLen Ord X Tgt (6)

Computing the storage lateness, STLm, of move m:

, *(1)*m t mt m m

t T

m SSTL IntLen Ord X Tgt (7)

Identifying the status of YC c at time t

, , , 1, 1mct mt mc m M c C NC tYY X W T (8a)

, , , 1,mct mc m M c C NC tYY W T (8b)

, , , 1,mct mt m M c C NC tYY X T (8c)

Constraints (8a)-(8c) enforce that, if YC c is handling move m at time t (i.e., Xmt = Wmc =1),

YYmct takes a value of 1. Note that constraints (8a)-(8c) ensure that the value of YYmct is either

0 or 1. Thus, YYmct can be defined as a continuous variable. Constraints (8a)-(8c) are only

10

valid for multi-crane scenarios.

Moves handled by neighboring YCs

, 1, , , , , , 1 1
mn

n c t mct

n PLJ

c C t m M c NC NCYY YY T (9)

Constraint (9) is only valid for multi-crane scenarios. It states that, if job m is being handled

by YC c at time interval t (i.e., YYmct =1), then YC c+1 cannot handle moves which belong to

PLJmn.

Without loss of generality, the slots of a block are ordered from left to right. We also assume

that moves are ordered according to the slot number they are located in, i.e., if m < n, then

slotm slotn. With the above assumptions, we define set PLJmn as:

{ , : () }mn n mPLJ m n M slot slot SEP m n

That is, those moves that are placed to the left of move m and those moves that are placed to

the right of move m but their slot difference against move m is less than SEP belongs to

PLJmn (Figure 3). For example, in Figure 3, YC 2 cannot handle moves that belong to PLJmn

when YC 1 is handling move m. This is required by SEP apart of YCs and inter-crane

interference.

 LJ HJ

 PLJ

 SEP SEP

YC 1 YC 2

 SEP
move m

Fig. 3. Definitions of PLJ, HJ and LJ

11

At time t, an YC can handle at most one move

1, , , 1mct

m M

c C t NCYY T (10)

Constraint (10) is only valid for multi-crane scenarios.

Consecutive moves handled by an YC

We do not allow any crane to gantry more than TVL (e.g. 8) slots between container handling

operations. In other words, if YC c is handling move m at interval t (i.e., YYmct=1) and the slot

position of move n is too far (farther than TVL), then YC c cannot handle move n at interval

t+1 (i.e., YYnc,t+1=0). This is enforced by constraint (11) as follows.

, , 1 , , , , , , 1 1 n c t mct mnc C t T t NT m n NCYY YY FJ (11)

NT is the total number of time intervals in set T. Constraint (11) is only valid for multi-crane

scenarios. Set FJmn is defined as:

{ , : }mn n mFJ m n M slot slot TVL m n

That is, those moves that are TVL slots away from move m belong to FJmn.

If there is only one YC, the following constraint is used to replace (11):

, 1 , , , , 1 1 n t mt mnt NT m n NCX X FJ (12)

Moves located at the first and last SEP slots

Moves located at the first SEP slots (see Figure 3) can only be assigned to the first YC, due to

inter-crane interference. Similarly, moves at the last SEP slots can only be assigned to the last

YC. This is enforced as follows:

,

,

 1 , 1

 1 ,

mc m

mc m

m LJ

m HJ

W c

W c NC

Set LJm is defined as:

12

{ : }m mLJ m M slot SEP

LJm includes moves located at the first SEP slots (see Figure 3). Similarly, HJm is defined as:

{ : ()}m mHJ m M slot NSL SEP

where NSL is the total number of slots. HJm includes moves located at the last SEP slots (see

Figure 3).

As the storage moves can only be handled after their target times, we can fix some Xmt to 0:

, , 0mt mtm t XSX

where set XSmt denotes time intervals t which are earlier than the target time of storage move

m. It is defined as:

{ , : *(1) 0}mt m t mXS m S t T IntLen Ord Tgt

3.2 Results of DMIP1

The number of YCs in each block varies from 1 to 4. Thirty test scenarios with 20~32 moves

in 40-slot blocks and thirty test scenarios with 20~32 moves in 60-slot blocks are randomly

generated. ILOG CPLEX 9.0 is used to solve all the models developed in this paper on a

Pentium 1.6GHz computer. The MILP relative optimality gap of CPLEX is set to 0 (optcr =

0.0). No priority branching for the binary variables is used (PriorOpt = 0). All other settings

follow directly from system default.

An illustrative example (EX1), which contains 2 YCs, 60 slots and 32 jobs, is used to

generate the results for DMIP1. Table 1 contains the dataset for EX1. The start time of the

scheduling horizon is 168 minute. Using the formulations described in Section 3, DMIP1

involves 1,291 binary variables (49 time intervals), 4,813 single variables and 84,212 single

equations. The solution time is 8,604.7 seconds. The total PM waiting time is 106.647

minutes.

13

Table 1 Data for the illustrative example (EX1)

moves Target time (minute) slotm Type*

m1 270.56 2 S

m2 261.317 3 S

m3 226.336 6 S

m4 198.957 8 S

m5 168.451 9 S

m6 214.004 11 S

m7 272.078 13 S

m8 217.108 15 S

m9 200.291 16 S

m10 250.959 20 S

m11 171.535 22 S

m12 204.811 23 S

m13 172.899 24 S

m14 260.132 26 S

m15 204.783 27 S

m16 262.883 31 S

m17 192.807 32 S

m18 261.393 33 S

m19 212.644 36 S

m20 261.324 37 S

m21 290.849 37 R

m22 220.24 42 R

m23 246.347 43 R

m24 174.536 44 R

m25 230.677 47 R

m26 207.904 47 R

m27 217.201 51 R

m28 290.617 52 R

m29 221.771 54 R

m30 180.469 58 R

m31 204.882 59 R

m32 224.63 60 R

*R: retrieval move; S: storage move

We note that in the MILP model developed in Ng (2005), three tri-index binary variables,

Xmnc, YcSLt, Wmct are defined which involves 32*32*2+2*60*49+32*2*49=11,064 binary

variables in a 49-time interval horizon. Furthermore, to increase the accuracy, each interval is

14

defined to be the time YCs required to travel a slot in Ng’s model. On average, an YC takes 4

seconds to gantry one slot. Thus, in a 2-hour time window, there are 1800 time intervals. The

number of binary variables involved in Ng’s model is now

32*32*2+2*60*1800+32*2*1800=333,248, which is considerably larger than DMIP1.

The results of DMIP1 are shown in Table 2. Due to the isolated cases of extremely large

maximum solution times, the mean solution time to solve 40-slot blocks with 2 YCs is

1,917.5 seconds. For 60-slot blocks, the mean solution time is 7,007.3 seconds. DMIP1 can

yield a good solution in 450.5 seconds on average for scenarios with pure storage moves.

This is better than the average of 10 minutes to solve smaller problems with only 10 pure

storage jobs in Ng (2005). Note that the solution time may increase exponentially when the

number of jobs increases from 10 to 20~32. Generally, DMIP1 takes much longer (about

7,137.1 seconds) to obtain a good solution when retrieval moves are involved in the

scenarios.

Table 2 Results of DMIP1

Scenario Solution Time, seconds

Mean Maximum Minimum

40 slots 1,917.5 50,208.2 0.6

60 slots 7,007.3 146,374.7 2.5

Pure storage moves 450.5 4,815.7 0.6

Storage + Retrieval 7,137.1 146,374.7 0.7

4. Model Integrated with Heuristics (DMIP2)

Though the number of binary variables has been reduced significantly by defining only two

bi-index binary variables, Wmc and Xmt, in DMIP1 compared to defining tri-index binary

variables (see Ng 2005), the size of the model still increases significantly as the number of

moves increases. We propose a heuristic to narrow the search space in DMIP2. We observe

that, for both storage and retrieval moves, the larger the difference between the job finish

time of a move and its target time, the larger the total PM waiting time. Since the total PM

waiting time is to be minimized, the job finish time is arranged around its corresponding

target time as near as possible in an optimal solution. We can reasonably assume that the job

15

finish time of each move is placed inside a certain range (job handling range) around its

target time. To apply the above heuristic into the model, we first define set TSmt for storage

moves as follows:

{ , : *(1) 0

 *(1) * }

mt m t m

t m

TS m S t T IntLen Ord Tgt

IntLen Ord Tgt SU IntLen

That is, the time intervals between the target time and SU*IntLen above the target time of

move m belongs to set TSmt. Similarly, we define set TRmt for retrieval moves and TSRmt for

both of them.

{ , : *(1) *

 *(1) * }

mt m m t

m t

TR m R t T Tgt IntLen Ord RL IntLen

Tgt IntLen Ord RU IntLen

mt mt mtTSR TS TR

We force move m to be handled within TSRmt by:

, , , 0 ; 0,mt mt mct mtm t TSR m t TSRX YY

SU, RL and RU are parameters used to define the job handling range. Their values can be

adjusted according to the density of the planned job arrivals. If a lot of moves arrive within a

short period of time, the YCs will be quite busy. Hence it is possible that some moves may be

scheduled far from their target times. We set the values of SU, RL and RU higher in this case.

SU, RL and RU are all set to value of 8.0, which is conservative and satisfies all the scenarios

tested in this paper. Some constraints should be modified when applied to set TSRmt. For

example, constraint (9) is defined within TSRmt:

, 1, , , , , , 1, , 1 .
mn

n c t mct mt

n PLJ

c C t m M c NC NC m tYY YY T TSR (9)

Similarly, constraints (8a)-(8c), (10), (11), (12) should also be defined within TSRmt.

4.1 Results of DMIP2

For EX1 described in Section 3.2, DMIP2 involves 398 binary variables, 4,548 single

variables and 30,572 single equations. The model size is significantly reduced compared to

DMIP1. EX1 was solved in 676.5 seconds with a total PM waiting time of 106.647 minutes.

16

In Table 3, all scenarios are solved to optimality by setting the MIP relative optimality gap to

zero. The mean solution time needed to solve 40-slot blocks is 208.3 seconds. For 60-slot

blocks, the mean solution time is 1,703.5 seconds. Generally, scenarios can be solved in

several seconds. The average solution time is lengthened by 2~3 scenarios with very long

solution times. To compare the results with the literature, we calculate the lower bounds

(TCTLB in Table 3) for the scenarios with pure storage moves by applying the evaluation

procedure proposed by Ng (2005). The average/maximum/minimum TCT gaps for pure

storage scenarios from our model are 5.1%/14.4%/2.4%. That is, even with additional

constraints (YC safety distance, simultaneous storage/retrieval moves) considered in our

paper, the solution quality is still better than the current literature (7.3% gap achieved in Ng

2005).

We note that DMIP2 generally takes a much longer time (average of 1,558.6 seconds) to

obtain a good solution when retrieval moves are involved while DMIP2 can yield a good

solution in about 51.9 seconds for scenarios with pure storage moves, making it much more

efficient than the model developed by Ng (2005). This may be because retrieval moves can

be either handled before and after their target times while storage moves can only be handled

after.

Table 3 Results of DMIP2

scenario Solution Time, seconds Gap, %

Mean Maximum Minimum (TCT-TCTLB)/TCTLB

40 slots 208.3 5,390.6 0.2 NA

60 slots 1703.5 36,842.6 0.4 NA

Pure storage moves 51.9 924.0 0.2 5.1

Storage+Retrieval 1,558.6 36,842.6 0.3 NA

5. Rolling-horizon algorithm for DMIP2 (DMIP3)

Though DMIP2 has reduced the model size and the solution time significantly, it is unstable

and sometimes still requires very long solution time for some scenarios. As observed in

Section 4, the job finish time of a move should be scheduled as near as possible around its

target time. In other words, a move n which arrives much later than move m is very likely to

17

finish later than move m, otherwise a large gap between the job finish time and target time

will be incurred. This gives us the opportunity to divide the jobs into many groups. Moves

with near job target times are grouped together and their handling sequence can be

interchanged. All moves in a higher group (moves with bigger job target times) will be

handled later than a lower group (moves with smaller job target times). For example in Figure

4, all scheduled job handling times of moves in group H are bigger than moves in group M

and L. Thus, we can divide the problem into several sub-problems; each sub-problem

involves moves of only one group. Because each sub-problem involving fewer moves can be

solved quickly, the entire YC scheduling problem can be solved quickly.

In Figure 4, we observe that, the moves in group M which have big target times and moves in

group H which have small target times are actually near jobs. Their handling sequence can

possibly also be interchanged. Thus, when implementing the algorithm, all sub-problems are

generated in a rolling horizon fashion. In Figure 5, the first sub-problem includes moves m1

to m5. After solving this small sub-problem, two moves (m1 and m2) with the smallest

handling times are fixed. In the second sub-problem, moves m3 to m5 are also included

because their handling sequence may possibly be interchanged with the two new added

moves (m6 and m7). In sub-problem 2, if several retrieval moves have very near target times,

m

n1

Fig. 4. Definition of neighboring moves

Time

slot

n3

n2

Job handling

Range

H

M

L

18

it is possible to insert one or several of these moves into the empty space among the jobs

fixed. For example, if moves m3 to m5 are retrieval jobs and their target times are almost the

same, we may need to insert one of these moves into the space between moves m1 and m2

which have been fixed in sub-problem 1. After solving sub-problem 2, we can fix two more

moves and add two new moves into the sub-problem 3. The algorithm stops when all moves

have been fixed.

5.1 Constraints and sets used in the rolling-horizon algorithm

To implement the rolling-horizon algorithm, some sets and constraints in Sections 3 and 4

need to be modified. We first define set PMm to include moves involved in a sub-problem.

Then we redefine sets FJmn, PLJmn, HJmn, LJmn and TSRmt under set PMm. For example, set

FJmn is redefined as:

{ , : }mn n m m nFJ m n M slot slot TVL m n PM PM

Note that in the above definition, only “ m nPM PM ” is added from the previous definition.

Related constraints should be modified under set PMm in DMIP3. For example, constraint (2)

is replaced by (2):

1, , 1mc m

c C

m PM NCW (2)

m1

m3

Fig. 5. Definition of rolling sub-problems

Time

slot

m4

m5

3

2

1m2

m6

m7

19

We allow unscheduled free jobs (i.e., PMm) to be inserted among the existing set of fixed jobs

(i.e., FxJm) in the rolling-horizon algorithm. Several constraints should also be added to

define the relationship between free moves and fixed moves. These constraints are similar to

(4), (9)-(12) except that they are defined under sets PMm and FxJm.

5.2 Flow diagram of rolling-horizon algorithm

Read include files, Set JNPI, SU, RL, RU.

Set FxJm = 0; TsFinm = 0; WFinmc =0;

XFinmt=0; YYFinmct=0

Define Orderm, PMm

Update sets:

FJmn, PLJmn, HJmn, LJmn, TSRmt

Fix variables: Wmc,Xmt, YYmct

Solve DMIP3

Identify two jobs with smallest and the

next smallest finish time. Fix the jobs.

Add the two fixed jobs into FxJm.

Set TsFinm, WFinmc, XFinmt, YYFinmct

Record RE, RL, STL and handling YC

of the two fixed jobs.

Are there any jobs left

in Orderm that need to

be scheduled?

Update PMm

Delete the two fixed jobs from PMm and

add two new jobs with the smallest and

least smallest target time from Orderm.

Fig. 6. Rolling-horizon algorithm

END

NO

YES

20

Figure 6 shows the flow diagram of the rolling-horizon algorithm. First, the include files are

read first to define the whole problem (number of moves, target time, job type, slot position,

YC number, etc.). Then we set the value of parameters JNPI (=7) and SU, RL, RU (=8). JNPI

can be adjusted according to the tradeoff between the solution quality and time. The solution

quality increases as JNPI, the solution time of each iteration and hence the total solution time

may increase. Sets FxJm, TsFinm, WFinmc XFinmt, YYFinmct are set to empty at the beginning.

All moves are sorted according to their target times and saved in set Orderm. Set PMm

includes moves involved in an iteration. At the beginning, PMm includes the first JNPI moves

with the smallest target times. With PMm defined, sets FJmn, PLJmn, HJmn, LJmn and TSRmt are

updated. DMIP3 is then solved to obtain the schedule for the first JNPI moves. This usually

takes less than 0.1 second to obtain an optimal solution because the size of DMIP3 is very

small at each iteration. Two moves with the smallest job handling times are fixed and added

into the set FxJm from the result of DMIP3. Their job finishing times and handling YCs are

recorded into sets TsFinm and WFinmc, respectively. The RE (retrieval earliness), RL (retrieval

lateness), STL (storage lateness) are also recorded. Next, we check whether there are moves

left in the set Orderm. If NO, the algorithm terminates. Otherwise, the set PMm is updated by

deleting moves fixed and adding new moves from Orderm. With updated PMm, sets NJmn,

PLJmn etc. are updated accordingly and the algorithm continues until all moves in Orderm are

scheduled.

5.3 Results of DMIP3

The results of the model with rolling-horizon algorithm are shown in Table 4. For EX1

described in Section 3.2, DMIP3 involves 74 binary variables, 617 single variables and 1,606

single equations at the first iteration. DMIP3 obtains the solution for EX1 in 3.1 seconds with

a total PM waiting time of 106.647 minutes which is also optimal. DMIP3 obtains a near

optimal solution in 3.9 seconds on average for all scenarios tested. This is much faster than

the solution time (444.72 seconds on average) required in the paper of Ng and Mak (2005)

solving for 25 moves in a block. DMIP3 is very robust because the maximum solution time is

only 9.5 seconds. By applying the lower bound evaluation procedure proposed by Ng (2005),

the average/maximum/minimum TCT gaps for pure storage scenarios are 5.2%/16.6%/3.0%.

21

Again, this is smaller than the current literature. Because TCTLB is usually 1~3% lower than

the optimal TCT, the actual average TCT gap for pure storage scenarios is less than 5.2%. A

noticeable feature of DMIP3 is that it finds optimal solutions for all scenarios with pure

storage moves in only 3.0 seconds on average. From the 60 scenarios tested, the

average/maximum/minimum ratio of the optimal DMIP3 objective to the optimal DMIP1

objective is 2.6%/26.2%/0.0%. We note that DMIP3 obtained optimal solutions for 49 out of

the 60 tested scenarios.

Table 4 Results of DMIP3

Scenario Solution Time, seconds Gap, %

Mean Maximum Minimum (TCT-TCTLB)/TCTLB

40 slots 3.6 9.5 0.7 NA

60 slots 4.3 7.5 1.6 NA

Pure storage moves 3.0 6.4 0.7 5.2

Storage+Retrieval 4.6 9.5 1.7 NA

Although the decrease in size is accompanied by an increase in the number of sub-problems

to solve, the total solution time still reduces dramatically. The results suggest that it is much

better to solve a larger number of sub-problems than to solve the MILP model as a whole. As

the number of jobs involved at each iteration is set to a small value, the model size of each

iteration is very small. As the total problem size increases, the total solution time only

increases linearly in n, i.e. (*)JNPIn
O e

JFPI
. With JNPI much smaller than n, the exponential

term, e
JNPI

, is much smaller compared to e
n
.

6. Conclusion

This paper develops efficient models for container YC work schedules. By applying

heuristics and a rolling horizon algorithm, we show that the model size is greatly reduced

systematically and the solution time is shortened from days to seconds. The algorithm yields

higher solution quality in a very short time compared to other heuristics used in the literature.

The proposed formulations and algorithms can be extended to problems with time windows

and space constraints such as quay crane scheduling or berth allocation (Wang et al., 2007).

22

For future research, we suggest developing robust YC scheduling models by taking into

account uncertain PM arrival times. Another future research development can consider the

effect of landside conditions.

Acknowledgements

We thank the two anonymous referees for their comments and suggestions which have helped

to improve this paper.

References

Bish E. K. A multiple-crane-constrained scheduling problem in a container terminal.

European Journal of Operational Research 2003;144; 83-107.

Chen L., Bostel N., Dejax P., Cai J., Xi L. A tabu search algorithm for the integrated

scheduling problem of container handling systems in a maritime terminal. European Journal

of Operational Research 2007;181; 40-58.

Cheung R. K., Li C., and Lin W. Interblock crane deployment in container terminals.

Transportation Science 2002;36; 79-93.

Froyland G.., Koch T., Megow N., Duane E., Wren H. Optimizing the landside operation of a

container terminal. OR Spectrum 2008;30; 53-75.

Henwood Rachel, The practitioner's definitive guide: seafreight forwarding, SNP Reference;

2006.

Hopp W. J., Spearman M. L. Factory Physics: foundations of manufacturing management,

Irwin/McGraw-Hill; 2000.

Kim K. H. and Kim K. Y. An optimal routing algorithm for a transfer crane in port container

terminals. Transportation Science 1999;33; 17–33.

Kim K. Y. and Kim K. H. Heuristic algorithms for routing yard-side equipment for

minimizing loading times in container terminals. Naval Research Logistics 2003;50; 498-514.

Kim K. H., Park Y. A crane scheduling method for port container terminals. European

Journal of Operational Research 2004;156; 752-768.

Lim A., Rodrigues B., Xu Z. A m-Parallel Crane Scheduling Problem with a Non-crossing

Constraint. Naval Research Logistics 2007;54; 115-127.

Li J., Leung S., Wu Y., Liu K. Allocation of empty containers between multi-ports. European

Journal of Operational Research 2007; 182; 400-412.

Narasimhan A. and Palekar U. S. Analysis and algorithms for the transtainer routing problem

in container port operations. Transportation Science 2002;36; 63-78.

Ng, W. C. Crane scheduling in container yards with inter-crane interference. European

Journal of Operational Research 2005;164; 64-78.

Ng W. C. and Mak, K. L. Yard crane scheduling in port container terminals. Applied

Mathematical Modelling 2005;29; 263-275.

Ng W. C. and Tsang, W. S. Scheduling yard crane in a port container terminal using genetic

algorithm. The First International Conference on Transportation Logistics (T-Log 2005),

27-29 July 2005; Singapore.

Stahlbock R., Voß S. Operations research at container terminals: a literature update. OR

Spectrum 2008;30; 1-52.

23

Steenken D., Voß S., Stahlbock R. Container terminal operation and operations research—a

classification and literature review. OR Spectrum 2004;26; 3-49.

Vis I. F. A., Koster R.D. Transshipment of containers at a container terminal: an overview.

European Journal of Operational Research 2003;147; 1-16.

Wang F., Lim A. A stochastic beam search for the berth allocation problem. Decision Support

Systems 2007;42; 2186-2196.

Zhang C., Wan Y., Liu J., and Linn R. J. Dynamic crane deployment in container storage

yards. Transportation Research B 2002;36; 537-555.

24

Appendix I: Definition of Sets and Parameters

The notations used in the mathematical formulation are as follows.

(a) Indices

c,c = yard cranes, c,c =1,2,…,C

m,n = container moves, m,n=1,2,…,M

SL = slot number, SL=1,2,…,TSL

t = time interval

(b) Sets

C = number of YCs working in the CY.

FJmn = moves n that are TVL slots away from move m

FxJm= jobs that have been fixed after the current iteration and all previous iterations

HJm = includes moves located at the last SEP slots in CY

LJm = includes moves located at the first SEP slots in CY

M = set of container moves to be scheduled

Orderm = all jobs sorted by their target times

PLJmn = moves that locate on the left side of move m and moves that locate at the right side

of move m but their slot difference against move m are less than SEP

PMm = moves involved in a sub-problem of rolling-horizon algorithm

Rm = set of yard retrieval moves

Sm = set of yard storage moves (the total number of items in Rm and Sm is M)

T = set of time intervals scheduled

TSL = number of slots in the CY

XSmt = time intervals t which are earlier than the target time of storage move m

TSRmt = time intervals t which belong to job handling range of storage or retrieval move

(c) Parameters

IntLen = length of time interval

SU, RU, RL = parameter used to defined the job handling range

JNPI = job number per iteration

MaxH = the maximum target time of moves.

NC = total number of YCs scheduled

NSL=total number of slots in the CY

NT = total number of time intervals in set T

SEP = minimum difference in slot numbers allowed for two YCs at the same time. SEP is

assumed to be 8 slots in this paper

Slotm = Slot number where move m takes place. Without loss of generality, we assume that if

m < n, then slotm slotn

TVL = Maximum number of slots an YC can gantry in half minute (8 is used here)

Tgtm = target time for move m in the CY. For retrieval moves, this is the latest job start time

that meets the deadline set by the QCs. For storage moves, this is the earliest job

start time following the release of the job in the CY

TsFinm = Job start time (Tsm) of moves that have been fixed

Wre = weight assigned to total retrieval earliness in the objective function

25

Wsd = weight assigned to total storage delay in the objective function

Wrd = weight assigned to total retrieval delay in the objective function

WFinmc = Wmc of moves that have been fixed

XFinmt = Xmt of moves that have been fixed

YYFinmct= YYmct of moves that have been fixed

(d) Variables

REm = amount of retrieval earliness for move m

RLm = amount of retrieval lateness for move m

STLm = amount of storage lateness for move m

TC = the linear combination of retrieval earliness and storage and retrieval delays. It is the

objective value to be minimized.

Wmc = 0-1, binary variable to denote if container move m is assigned to YC c

Xmt = 0-1 variable to denote if move m is scheduled to take place during time interval t

YYmct = 0-1, continuous variable to denote if YC c handles moves m at time interval t

