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Abstract. Modern dental implant is a biocompatible titanium device surgically placed into a 
jawbone to support a prosthetic tooth crown in order to replace missing teeth. Implants are 
superior to conventional prostheses, in both function and long-term predictability. However, 
placement of an implant changes the normal mechanical environment of jawbone, which 
causes the bone density to redistribute and adapt to the new environment through a process of 
remodelling. This study aims to predict the density distribution in human jawbone around 
osseointegrated dental implant. Based on two popular, yet distinctive theories for bone 
remodelling, a new remodelling algorithm is proposed. The proposed algorithm is verified by a 
two-dimensional (2D) plate model. Then, a 2D finite element model of implant and jawbone is 
studied. The effects of two parameters, viz the reference value of strain energy density (SED) 
and ‘lazy zone’ region, on density distribution, are also examined. This study has demonstrated 
that consideration of the lazy zone, is less important than consideration of the stress and strain 
(quantified as SED) induced within the bone. Taking into account both ‘lazy zone’ effect and 
self-organisational control process, the proposed bone remodelling algorithm has overcome the 
shortcomings of the two existing theories. 

1.  Introduction 
Development of an ideal substitute for missing teeth has been a major aim of dentistry for millennia. 
For 100 years, missing teeth have been replaced by “conventional” prostheses (fixed or removable), 
fabricated from plastic and/or metal alloys and supported by the remaining teeth and/or the soft 
tissues. These are often unsatisfactory because of lack of retention and/or psychological inability to 
accept removable appliances - or because of damage to remaining teeth and/or soft tissues. In these 
cases, prostheses retained by an implant are attractive. Implant bone restorations have become a 
clinically and scientifically accepted treatment modality over the past 30 years. The realization that 
implants made of commercially pure titanium attain direct bone to implant contact initiated this 
revolution in oral rehabilitation. This phenomenon of osseointegration was first described by 
Branemark et al. [1] and Schroeder et al. [2]. 
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As a living tissue, bone undergoes continuous adaptation and self-repair by resorption and 
formation, and is capable of optimising its internal structure under the influence of external loads. This 
self-adaptation process, or ‘remodelling’, has an enormous effect on the overall behavior of the entire 
bone tissue throughout an individual’s lifetime. Following an early publication of Wolff [3], many 
theories describing the bone-adaptation process have been proposed. Carter [4] suggested that bone is 
‘lazy’ in terms of poor reaction to mechanical signals, and there was recognition of the existence of a 
‘lazy zone’ representing the range of stimulus within which no remodelling occurs. The concept of 
‘lazy zone’, recognising that a threshold stimulus needed to be exceeded for bone adaptation to occur, 
was incorporated by Huiskes et al. [5] who used the term strain energy density (SED) to describe the 
stresses and strains that control bone remodelling through bone formation and resorption. This theory 
has been developed further by Weinans et al. [6] and Turner et al. [7]. Mullender et al. [8] and 
Mullender and Huiskes [9] suggested a physiological approach to simulate bone remodelling assuming 
that osteocytes are sensitive to mechanical loading and are active in controlling bone adaptation. 

Computer simulation of bone remodelling generally involves finite element analysis for calculating 
stresses, strains and SEDs within the bone thus determining how bone adapts itself in response to 
mechanical stimuli. The finite element method (FEM) was initially introduced to orthopedic 
biomechanics by Brekelmans et al. [10] and Rybicki et al. [11] to evaluate the stresses in human bone. 
Since then, the method has been successfully applied for stress analyses of bone and bone-related 
tissue. The above-mentioned theories of bone remodelling have been used successfully in conjunction 
with the FEM to predict density distribution in proximal femur [8,9,12] and bone adaptation following 
hip prosthetic implantation [5,13-16]. While these theories were essentially developed for orthopedics, 
they are generally applicable to jawbone surrounding a dental implant [17]. However, work in this 
area is limited. Mellal et al. [18] used three different stimuli (equivalent strain, equivalent stress and 
SED) to predict bone remodelling around a dental implant based on the existing theories and the 
results were compared with in vivo data. Li et al. [19] developed a new bone remodelling algorithm by 
introducing an additional quadratic term based on the theory of Weinans et al. [6], which can simulate 
both underload and overload resorption. The algorithm was applied in conjunction with the FEM to a 
practical case of dental implant treatment. Under steady conditions, no overall changes in bone would 
be observable due to balance in resorption and formation. However when the implant is placed into 
mandible, the mechanical environment of jawbone changes accordingly, hence the balance of bone 
resorption and formation is no longer maintained. From a clinical viewpoint, better understanding of 
the way that functional forces can affect the remodelling of bone is important in terms of identifying 
minimal and maximal loading forces required for the maintenance of stable osseointegration during 
function, as well as preventing overload that can lead to implant failure. 

This paper aims to propose a new algorithm for bone remodelling based on the existing theories of 
Huiskes et al. [5], Weinans et al. [6], Mullender et al. [8] and Mullender and Huiskes [9]. The 
proposed algorithm is verified by a 2D plate model studied previously by Weinans et al. [6] and 
Mullender et al. [8], which confirms its accuracy and reliability. To demonstrate the ability of the 
proposed algorithm in predicting the density distribution of bone surrounding a dental implant, a 2D 
FE model of implant and jawbone is studied. The effects of two parameters viz the reference value of 
SED and ‘lazy zone’ region, on density distribution are also examined and discussed in some detail. 
 
2.  The existing bone remodelling theories 
Among a number of bone remodelling theories [5-9,12,13,20-23], two popular yet distinctive ones are 
summarised herein. 
 
2.1.  Huiskes and Weinans Theory 
A popular bone remodelling theory suggested by Huiskes et al. [5] and Weinans et al. [6] states that: 
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where dρ/dt is the rate of change in density; ρ is the apparent density of bone tissue; B is a constant 
regulating the rate of the remodelling process; s is in percentage denoting the region of the ‘lazy zone’ 
around the threshold value K, which is a reference value for SED (see figure 1); the ‘lazy zone’ 
describes the bone not having a net change in apparent density, and is defined as U/ρ; U is the SED 
which can be expressed as: 

εσ ⋅=
2
1U       (2) 

 
where σ and ε are respectively the stress and strain tensors of the bone tissue. 

For multiple-load cases, the SED can be expressed as: 
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where n is the number of load cases and Ui is the SED under load case i. 

 

 
Figure 1. The assumed local bone adaptation as a function of SED with ‘lazy zone’ effect 

 
This algorithm was applied to predict the density distribution in normal proximal femur with 

results showing a discontinuous pattern [6]. As discussed by Ruimerman and Huiskes [24], only when 
the density distributions were locally averaged from discontinuous density patterns in the femoral head 
where the trabecular bone is located, the resulting density distributions correlate well with those in a 
real proximal femur. This algorithm showed an unstable condition in its mathematical operation. Due 
to the nature of differential equations used in the algorithm to describe the adaptive remodelling 
process, the simulation produces discontinuous configurations, a phenomenon called ‘checker-board’. 
 
2.2.  Mullender et al. and Mullender and Huiskes Theory 
Not having intrinsically different biological nature from the theory of Huiskes et al. [5] and Weinans 
et al. [6], Mullender et al. [8] and Mullender and Huiskes [9] suggested a new algorithm which 
simulated bone remodelling as a self-organisational control process. In their theory, the bone is 
assumed to have N sensor cells distributed uniformly over its volume. An arbitrary sensor i measures a 
signal Si , which is given as: 
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where Ui is the SED and ρi is the density at the location of the sensor. The density ρ(x,t) at location x is 
regulated by the stimulus value Ф(x,t), to which all sensor cells contribute, relative to their distance 
from x. Hence, 
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where N is the total number of sensors; K is a reference signal of SED and fi(x) is a spatial influence 
function given as: 

( ) / ][( ) xx i Dd
if e−=      (6) 

 
where di(x) is the distance between sensor i and location x, D is the rate of the spatial influence 
reduction. Note that D represents the distance from a sensor at which location its effect is reduced to e-1, 
i.e. 36.8%. This is illustrated in figure 2. 
 

               

1 mm

10N/mm2

 
Figure 2. Relationship between f(x) and d(x). Figure 3. 2D plate model simulating bone ti

(Carter and Hayes [26], Weinans et al. [6]). 
 

The density ρ(x,t) is now governed by the rate: 
 

( , ) ( , )x xd t t
dt
ρ τ= Φ , with 0 ( ) maxxρ ρ< ≤    (7) 

 
where ρmax is the maximum density of cortical bone, and τ is a time constant regulating the rate of the 
process. 

This algorithm was used to predict the density distribution for a 2D plate model previously studied 
by Mullender et al. [8]. The model produced trabecular-like structures without the ‘checker-board’ 
patterns. It should be noted that the checker-board effect produced by the phenomenological models 
like the one of Weinans et al. [6] has been completely solved by different techniques including 
extrapolation to the nodes [23] or using non-local stimuli [8,9]. The checker-board phenomenon is 
believed to be attributable to the softening induced by resorption rather than remodelling itself. When 
using the non-local definition of the stimulus as a sum of the signal of different osteocytes near the 
point under concerned, Mullender et al.'s model [8,9] does not produce ‘checker-board’ patterns. 
 
3.  The proposed algorithm 
The above-mentioned two existing theories have both shown to exhibit advantages and disadvantages. 
Huiskes and Weinans’s theory takes into account the ‘lazy zone’ effect but it is unstable in its 
mathematical operation leading to a discontinuous and an inevitable ‘checker board’ pattern. 
Mullender’s theory, on the other hand, is physiologically and mechanically more consistent and the 
‘checker board’ phenomena can be effectively eliminated. However the effect of ‘lazy zone’ was not 
considered. The ‘lazy zone’ effect, initially proposed by Carter [4] based on experimental 
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investigation, has been verified by Rubin and Lanyon [25] to be an important factor which should be 
considered in the simulation of the remodelling process. 

To overcome the shortcomings of the above two theories, a new algorithm combing these two 
theories is proposed herein. For an arbitrary sensor i, 
 

( , )
( , )

x
xi

i

d t
t

dt
ρ

τ= Φ      (8) 

and 

( )

( ) (1 )
1

( ) 1
1

(1 )

( , ) 0 (1 ) (1 )

(1 )

x

x

x

N Ui if s Ki
i ii

i
i i

N Ui if s Ki
i ii

Uif s K

Ut if s K s K

Uif s K

ρ

ρ

ρ

ρ

ρ

− +∑
=

− −∑
=

⎧ ⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠
⎪
⎪
⎨
⎪
⎪ ⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

> +

Φ = − ≤ ≤ +

< −

, with 0 ( )i maxxρ ρ< ≤  (9) 

 
where fi(x) is the spatial influence function in the same form as in equation (6). 

In finite element simulation, it is assumed that each element contains one sensor which is located at 
the center of the element. As the apparent density of bone tissue changes during the process of 
remodelling, the Young’s modulus changes accordingly. Some empirical relationships between the 
apparent density and the mechanical properties of bone have been established experimentally [26-29]. 
The Young’s modulus E at location x is calculated according to Currey [27] and Rice et al. [29] as 
 

( , ) ( , )x xE t C t γρ=     (10) 
 
where ρ is the apparent density of bone tissue; C and γ are the constants. 

In the iterative finite element analysis process, the governing equation (8) is necessary to be 
rewritten as: 

( ) ( ) ( )i i it t t t tρ ρ τ+ Δ = + Δ Φ     (11) 
 
where Δt is the time step in the iteration process; Ф(t) is in the same form as in equation (9). The 
iteration is continued until no more significant changes occur in density distribution. 
 
4.  Verification 
The proposed algorithm is verified against a 2D plate model (see figure 3), studied by Weinans et al. 
[6] and Mullender et al. [8] to simulate the density distribution within a bone tissue. All the parameters 
are the same as those adopted by Weinans et al. [6] and Mullender et al. [8]. For the purpose of 
comparison, the value s is set to zero meaning that the effect of ‘lazy zone’ is not considered in the 
analysis. 

Figure 4 compares the density distribution outcomes due to Mullender et al.’s [8] theory and the 
proposed algorithm. The predicted result shown in figure 4b bears a strong resemblance to that of 
Mullender et al. (figure 4a), confirming the accuracy of the proposed algorithm. To evaluate the effect 
of ‘lazy zone’, a further analysis is carried out by setting s=0.1 while other parameters remain 
unchanged. When the ‘lazy zone’ effect is considered (figure 4c, s=0.1), the pattern of density 
distribution becomes smoother in shape as compared to that of s=0 (figure 4b), although the 
morphology is almost the same. The total area of grey regions (representing cancellous bone) is larger 
in figure 4c than in figure 4b suggesting that less bone adaptation (viz resorption and formation) 
occurs if the ‘lazy zone’ effect is considered. 

The predicted density distributions for the plate model agree well with the Mullender’s results, 
confirming the reliability of the proposed algorithm when taking into account both the ‘lazy zone’ 
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effect and mathematical stability. The proposed algorithm is hence applied to simulate density 
distribution within a mandibular bone surrounding a dental implant. 

 

 (a) (b) (c) 

Figure 4. Comparison of density distribution: (a) Mullender et al.’s [8] prediction with s=0; (b) 
predicted result with s=0; (c) predicted result with s=0.1. 

 
5.  Simulation of density distribution in mandibular bone 
Studied herein is a 2D representation of an implant and mandible. The modelling scheme follows that 
of a previous study [30]. It should be noted that this is a preliminary study dealing with a new 
remodelling algorithm aimed at overcoming the limitations of the existing methodologies. For the 
purpose of initial verification, 2D analysis is undertaken to obtain fundamental understanding of the 
remodelling process. 3D analysis will be conducted in the future so that detailed implant geometry can 
be considered and more accurate solutions be obtained. 

Different types of bone, i.e. cortical and cancellous bone are identified in the model based on CT 
images. The implant dimensions shown in figure 5a are based on those of Neoss implant (Neoss 
Limited, UK). The implant is conical with 2 degrees of taperage and has a helical thread. The load and 
boundary conditions shown in figure 5b are based on the work of Chou et al. [31] in which the implant 
system is loaded with an occlusal load of 100N on the crown at an angle of 11° and a uniformly 
distributed pressure of 500kPa on the outer surface of the cortical bone. The pressure load is applied to 
simulate more realistically the boundary conditions. 
 

(a)

21mm

11mm

4.5mm

 (b)     

Implant
E=105GPa

Cancellous Bone
E=7.93GPa

Cortical Bone
E=13.7GPa

Fixed Constraint

Crown
E=172GPa

Abutment Screw
E=93GPa

Abutment
E=105GPa

11°100N

500kPa

 

Figure 5. Finite element model of implant and jawbone: (a) dimensions; (b) load, 
boundary conditions and material properties. 

1.74 g/cm3 

0.01 g/cm3 
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An extensive literature review by van Staden et al. [32] indicates that the assumed range of 

Young’s modulus for cortical bone varies from 5.57 to 22.8GPa and that of cancellous bone from 0.08 
to 7.93GPa. Typical values of Young’s modulus (E) of bone and implant for the analysis are selected 
based on the work of Papavasiliou et al. [33], which are also detailed in figure 5b. The Poisson’s ratio 
for all components is taken as 0.3. The bone tissue and implant are assumed to be isotropic materials. 
Note that in this study a perfect connection between the implant and jawbone is assumed. 

The remodelling is considered for cancellous bone only with a uniform initial density distribution 
of ρ=1.4 g/cm3 which corresponds to E=7.93 GPa. In this case, a specific relationship between E and 
density ρ is chosen based on Carter and Hayes’ study [26], i.e: 
 

33790),( ρ×=txE      (12) 
 
where x is the location of sensors; t is the remodelling time. The maximum and minimum densities are 
respectively ρmax=1.5347 g/cm3 and ρmin=0.064g/cm3 which corresponds to Young’s modulus of 13.7 
GPa and 1 kPa. The ‘lazy zone’ effect s in equation (9) is taken as 0.1, the constant τ=1(g/cm3)2/(MPa 
time-unit). The influence parameter D=0.25 mm. 
 

 
(a) (b) (c) (d) 

Figure 6. Influence of ‘lazy zone’ effect on the density distribution of jawbone 
surrounding dental implant: (a) s=0.1; (b) s=0.2; (c) s=0.3; (d) s=0.4. 

 
To evaluate the effect of ‘lazy zone’ on the density distribution, different values of s are considered 

with a constant SED value K=0.0052 J/g. The predicted results are shown in figure 6. When parameter 
s increases, the region of ‘lazy zone’ expands accordingly - hence more bone tissue remains ‘lazy’, i.e. 
neither resorption nor formation. This corresponds to a larger ‘grey’ region on the lingual side of the 
implant (figure 6d). Although more ‘lazy zone’ is evident when s increases, the overall morphology 
does not vary significantly. 

Different reference values K in equation (9) are also considered to evaluate the effects of threshold 
value of SED on density distribution outcomes. The results shown in figure 7 indicate that when K 
increases, more bone tissue is resorbed in the surrounding jawbone, especially on the lingual side of 
the implant due to the oblique loading condition. 

Figure 8 shows the relationship between the bone mass (for cancellous bone only) and the two 
parameters s and K. When s increases by 300%, the mass only increases by 2.08%. On the other hand, 
when K increases by 16.7%, the mass decreases by 4.5%. It can be deduced that the bone mass 
increases slightly with an increase in the ‘lazy zone’ effect s (figure 8a) and decreases more noticeably 
with an increase in the reference value K (figure 8b). Hence the parameter K has more significant 
effect than s on bone remodelling outcomes. 
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(a) (b) (c) (d) (e) 

Figure 7. Influence of reference SED value K on the density distribution of jawbone surrounding 
dental implant: (a) K=0.0048 J/g; (b) K=0.005 J/g; (c) K=0.0052 J/g; (d) K=0.0054 J/g; (e) 
K=0.0056 J/g. 
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Figure 8. Influence of two parameters on bone mass: (a) ‘lazy zone’ effect s; (b) reference value K. 
 
6.  Discussion 
The proposed algorithm takes into account both the ‘lazy zone’ effect and the self-organisational 
control process. It is shown to be accurate and reliable upon verification with a plate model. The 
algorithm is then used to predict density distribution in human jawbone surrounding a dental implant. 
The influence of two parameters viz the reference SED value K and the ‘lazy zone’ effect s on density 
distribution is also examined. The results indicate that K has more significant influence than s. 

With an increasing value of K, a reduction in bone formation and an increase in bone resorption are 
evident, and vice versa. There is no general rule or criterion in published literature on selection of the 
reference value K. It is found in this study that a median value among all the SEDs is appropriate to 
yield a satisfactory density distribution outcome. 

Figure 9 compares the predicted density distribution in cancellous bone surrounding a dental 
implant with a published clinical observation by Watzak et al. [34] and a numerical prediction by 
Chou et al. [31]. Figure 9a shows Watzak’s clinical observation of density distribution on baboons and 
figure 9b presents Chou et al.’s bone remodelling prediction around a dental implant. The predicted 
result (with K=0.0052 J/g) due to the proposed algorithm is re-produced in figure 9c. The overall 
density distributions are quite similar for three cases in terms of the trabecular-like pattern and the 
blank area below the implant. This is particularly true when comparing figure 9b and figure 9c. Lin et 
al’s [35] computational prediction indicates that the average density of peri-implant cancellous bone 
increases throughout the remodelling period, which are in agreement with our results. However, due to 
the simplification of the finite element model, discrepancies in density distribution do exist between 
the present computational modelling results and the clinical observation. 
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(a) 

 
(b) 

 
 

 
 

(c) 

Figure 9. Comparison of predicted result with clinical observations: (a) density distribution 
on baboons [34]; (b) Chou et al.’s prediction [31]; (c) predicted result with K=0.0052 J/g. 

 
As far as the implant/bone connection is concerned, Roberts [36] found that even ‘clinically 

successful’ implants had less than half of the intraosseous interface in direct contact with bone. Block et 
al. [37] found similar levels of osseointegration for loaded implants in dogs. In this study, a perfect 
connection between the implant and jawbone is assumed due to the difficulties in accessing accurate 
clinical data on contact percentage. This simplification on interface modelling may have some influence 
on the density distribution which should be investigated further. 

It should be noted that this study is a preliminary attempt in developing a new bone remodelling 
algorithm suitable for computer simulation of the highly complex processes of bone healing and 
remodelling. In addition to the assumed perfect implant/bone connection, this study also employs a 
simplified and fixed loading condition. This is considerably different from the actual masticatory forces 
which always vary in both magnitude and direction. Hence, a discrepancy between the resulting density 
distribution (figure 7) and true anatomy of jawbone is expected. Further work should be done to evaluate 
the effects of other parameters which may also affect the density distribution in jawbone surrounding a 
dental implant. 
 
7.  Conclusion 
A new algorithm for the study of bone remodelling in mandibular bone induced by dental implant is 
proposed in this study, which is a combination and further development of two existing and widely 
accepted bone remodelling theories. Whilst further optimisation of the proposed algorithm is desirable, 
our model has been shown to correlate well with clinical observations. An important consideration is 
that the ‘lazy zone’ is less important than consideration of the ‘strain energy density’. Improved 
understanding of the factors which influence bone remodelling around osseointegrated dental implants 
is important in quantifying the forces compatible with maintaining successful osseointegration and 
preventing overload leading to implant failure. To this end, the newly developed algorithm 
incorporating elements from previous theories more closely replicates the clinical situation. 
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