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Abstract 

Technologies have varied strengths and weaknesses which require careful assessment by the 

purchasers. One of the uses of Data Envelopment Analysis (DEA) is technology selection. The traditional 

models of DEA do not consider dual-role factors. The objective of this paper is to use a model for 

selecting the best technologies in the presence of dual-role factors. The model determines whether in a 

technology the factors are behaving predominantly like inputs, hence the technology would benefit from 

having less of the factors, like outputs where more of the factors are desirable, or where they are in 

equilibrium. A numerical example demonstrates the application of the method.  
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1. Introduction 

Today, manufacturing organizations need to implement advanced manufacturing technologies such as 

industrial robots, computer numerical control machines, flexible manufacturing systems, automated 

material handling systems to gain competitive advantage and to enhance their strategic capabilities. These 

technologies have varied strengths and weaknesses which require careful assessment by the purchasers. 

Technology selection models help decision maker choose between evolving technologies. The reason for 

a special focus on technology selection is due to the complexity of their evaluation which includes 

strategic and operational characteristics (Karsak, 2008). 

One of the uses of Data Envelopment Analysis (DEA) is technology selection. DEA was developed 

by Charnes et al. (1978) (Charnes, Cooper, Rhodes (CCR) model) to serve as a mechanism to evaluate the 

relative efficiencies of a set of similar decision making units (DMUs). In the usual setting, DMUs, for 

example, bank branches, hospitals, research projects, are evaluated relative to one another using a 

specified set of input and output factors. Outputs are meant to capture what the DMU generates; inputs 

represent the resources or circumstances that have led to the creation of those outputs. 

In some situations there is a strong argument for permitting certain factors to simultaneously play the 

role of both inputs and outputs. In technology selection context, personnel education can be considered as 

both an input and an output. Remembering that the simple definition of efficiency is the ratio of output to 

input, an output can be defined as anything whose increase will cause an increase in efficiency. Similarly, 

an input can be defined as anything whose decrease will cause an increase in efficiency. If the personnel 
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education is considered as an output, then the increase in the personnel education without a proportional 

increase in the cost of technology will increase the efficiency. Likewise, if the personnel education is 

considered as an input, then any decrease in the personnel education without a proportional decrease in 

the outputs will increase efficiency. So, depending on how one looks at it, either increasing or decreasing 

the personnel education can increase efficiency. 

Beasley (1990, 1995), in a study of the efficiency of university departments, treated research funding 

on both the input and output sides. However, as Cook et al. (2006) addressed, the model proposed by 

Beasley (1990, 1995) has two limitations. The first limitation is that in the absence of constraints (e.g., 

assurance region or cone ratio) on the multipliers, each DMU will be 100% efficient. The second 

limitation is that the dual-role factor is considered as a discretionary factor. 

Cook et al. (2006) developed a new model that has not the abovementioned limitations. However, 

their development pertains to a single dual-role factor and does not consider multiple dual-role factors. 

The objective of this paper is to use a model for selecting technologies in the presence of multiple 

dual-role factors. This paper depicts technology selection process through a DEA model, while allowing 

for the incorporation of multiple dual-role factors. The chief advantage of the model is that it does not 

demand exact weights from the decision maker and considers multiple factors which simultaneously play 

both input and output roles. 

This paper proceeds as follows. In Section 2, literature review is presented. Section 3 discusses the 

method for technology selection. Numerical example and managerial implications are discussed in 

Sections 4 and 5, respectively. Finally, concluding remarks are illustrated in Section 6. 

 
2. Literature review 

Some mathematical programming approaches have been used for technology selection in the past. To 

select the best computer-integrated manufacturing technologies, Yurdakul (2004) proposed a combined 

model of the Analytic Hierarchy Process (AHP) and Goal Programming (GP) to consider multiple 

objectives and constraints simultaneously. Chan et al. (2005) presented a fuzzy GP approach to model the 

machine tool selection and operation allocation problem of Flexible Manufacturing Systems (FMSs). 

However, one of the GP problems arises from a specific technical requirement. After the decision-maker 

specify the goals for each selected criterion, they must decide on a preemptive priority order of these 

goals, i.e., determining in which order the goals will be attained. Frequently such a priori input might not 

produce an acceptable solution and the priority structure may be altered to resolve the problem once 

more. In this fashion, it may be possible to generate a solution iteratively that finally satisfies the 

decision-maker. Unfortunately, the number of potential priority reorderings may be very large. A 

technology selection problem with five factors has up to 120 priority reorderings. Going through such a 

laborious process would be costly and inefficient. 
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Hsu et al. (2010) provided a systematic approach towards the technology selection, in which two 

phase procedures were proposed. The first stage utilized fuzzy Delphi method to obtain the critical factors 

of the regenerative technologies by interviewing the experts. In the second stage, fuzzy AHP was applied 

to find the importance degree of each criterion as the measurable indices of the regenerative technologies. 

They considered eight kinds of regenerative technologies which have already been widely used, and 

established a ranking model that provides decision makers to assessing the prior order of regenerative 

technologies. Shen et al. (2010) suggest a hybrid technology selection approach integrating the fuzzy 

Delphi method, the AHP, and the Patent Co-citation Approach (PCA) to be utilized for identifying key 

technology areas. The Organic Light Emitting Diode (OLED) technology in Taiwan was used to be an 

example to illustrate the proposed technology selection process. Lee and Hwang (2010) proposed to use 

AHP as a tool for prioritizing the strategically promising nuclear technologies for commercial export 

from Korea. Jaganathan et al. (2007) proposed an integrated fuzzy AHP based approach to facilitate the 

selection and evaluation of new manufacturing technologies in the presence of intangible attributes and 

uncertainty. However, AHP has two main weaknesses. First subjectivity of AHP is a weakness. Second 

AHP could not include interrelationship within the criteria in the model. 

Farzipoor Saen (2009b) proposed to use Artificial Neural Networks (ANNs) for technology selection 

in the presence of both continuous and categorical data. To indicate the relative importance of the ANN 

inputs to the result of the network, a methodology for sensitivity analysis was presented. 

To assist managers in the correct justification and adoption of new manufacturing system attributes to 

ensure production and business success, a Quality Function Deployment (QFD)-based methodology was 

devised by Chuang et al. (2009). The proposed QFD-based methodology, simultaneously considers all the 

different criteria including competitive market requirements, as well as competitive business and 

operational strategies and manufacturing attributes in determining the most suitable production 

technology. 

Dias-Neto and Travassos (2010) described a strategy to select model-based testing approaches for 

software projects called Porantim. Porantim is based on a body of knowledge describing model-based 

testing approaches and their characterization attributes (identified by secondary and primary experimental 

studies), and a process to guide by adequacy and impact criteria regarding the use of this sort of software 

technology that can be used by software engineers to select model-based testing approaches for software 

projects. 

To select the best technologies in the existence of both cardinal and ordinal data, Farzipoor Saen 

(2006) proposed an innovative approach, which is based on Imprecise Data Envelopment Analysis 

(IDEA). Talluri et al. (2000) proposed a framework, which is based on the combined application of DEA 

and nonparametric statistical procedures, for the selection of FMSs. The strengths of this methodology are 

that it incorporates variability measures in the performance of alternative systems, provides decision-

maker with effective alternative choices by identifying homogeneous groups of systems, and presents 
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graphic aids for better interpretation of results. Seiford and Zhu (2003) extended the context-dependent 

DEA by incorporating value judgment into the attractiveness and progress measures. The method was 

applied to measuring the attractiveness of 32 computer printers. They showed that the attractive measure 

helps (i) customers to select the best option, and (ii) printer manufacturers to identify the potential 

competitors. To select the best advanced manufacturing technologies, Karsak and Ahiska (2005) 

introduced a multi-criteria decision methodology that can integrate multiple outputs such as various 

technical characteristics and qualitative factors with a single input such as cost. Their model is derived 

from the cross-efficiency analysis, which is one of the branches of DEA model. Talluri and Yoon (2000) 

introduced advanced manufacturing technology selection process. They proposed a combination of a 

cone-ratio DEA model and a new methodological extension in DEA, while allowing for the incorporation 

of preferences of decision-makers. Karsak (2008) presented a decision methodology that enables the 

consideration of both exact and imprecise assessments in technology evaluation. The proposed framework 

considers the imprecise nature of some of the inputs and outputs by enabling both ordinal and fuzzy data 

to be used in the evaluation process. To select the best technologies in the presence of cardinal data, 

ordinal data, nondiscretionary factors, and weight restrictions, Farzipoor Saen (2009a) proposed a pair of 

assurance region-nondiscretionary factors-imprecise data envelopment analysis (AR-NF-IDEA) models. 

However, all of the abovementioned references do not consider dual-role factors. A technique that can 

deal with dual-role factors is needed to better model such situation. 

 

3. Proposed method for technology selection 

DEA proposed by Charnes et al. (1978) (CCR model) and developed by Banker et al. (1984) (BCC 

model) is an approach for evaluating the efficiencies of DMUs. The CCR model measures the efficiency 

of DMUo relative to a set of peer DMUs. CCR model is as below. 

Consider a situation where members k of a set of K DMUs (technologies) are to be evaluated in terms 

of R outputs ( )Rrrkk yY 1==  and I inputs ( )Iiikk xX 1== . 

iandr

Kk
x

y

ts

x

y

ir

I

i iji

rj
R

r r

I

i ioi

ro
R

r r

∀≥

=≤
∑
∑

∑
∑

=

=

=

=

0,

)1(,,...,1,1

..

,max

1

1

1

1

υµ

υ

µ

υ

µ

 

 

where rµ  is the weight given to output r and iυ  is the weight given to input i. DMUo is the DMU under 

consideration. DMUo consumes xio (i=1, …, I), the amount of input i, to produce yro (r=1, …, R), the 

amount of output r. DMUo is said to be efficient if no other DMU or combination of DMUs can produce 



 5 

more than DMUo on at least one output without producing less in some other output or requiring more of 

at least one input. 

In addition, assume that a particular factor is held by each DMU in the amount wk, and serves as both 

an input and output factor. The proposed model for considering single dual-role factor is as follows (Cook 

et al. 2006). 
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The linear programming form of Model (2) is as follows: 
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Model (3) could be extended in order to include multiple dual-role factors. Assume that some factors 

are held by each DMU in the amount wfk (f=1,…,F), and serve as both an input and output factors. The 

proposed model for considering multiple dual-role factors is as follows (Farzipoor Saen, 2010): 
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The linear programming form of Model (4) is as follows: 
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One of three possibilities exists in regard to the sign of ff βγ ˆˆ − , where ff βγ ˆ,ˆ  are the optimal values 

from Model (5); 0or,0,0ˆˆ <=>− ff βγ . 

Dual problem of Model (5) is as below. 

 

signinedunrestrict
,...,10

,...,1

,...,1

)6(,...,1

min

1

1

1

o

k

fok

K

k
fk

rok

K

k
rk

k

K

k
ikoio

o

Kk

Ffww

Rryy

Iixx

st

θ
λ

λ

λ

λθ

θ

=≥

==

=≥

=≥−

∑

∑

∑

=

=

=

0

 

 

where oθ and kλ  are the dual variables. oθ  is radial input shrinkage factor (eventually to become 

efficiency measure) and { }kλλ =  is vector of DMU loadings, determining “best practice” for the DMU 

being evaluated. From the duality theory in linear programming, for an inefficient DMUo, 0* >kλ  in the 

optimal dual solution implies that DMUk is a unit of the peer group. A peer group of an inefficient DMUo 

is defined as the set of DMUs that reach the efficiency score of 1 using the same set of weights that result 

in the efficiency score of DMUo. It is the existence of this collection of DMUs that forces the DMUo to be 

inefficient. The peer groups serve as a benchmark to use in seeking improvements for inefficient 

technologies. 

It is useful to comment here on an interesting relationship that exists between the constant returns to 

scale (CRS) model (Model (5)) and the standard (no dual-role factors present) variable returns to scale 
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(VRS) model of Banker et al. (1984). Specifically, the VRS model with outputs Y and inputs X is given 

by: 

 

sign.inedunrestrict,0,

)7(,,10

,max

11

11

oir

ik

I

i
iork

R

r
r

io

I

i
ioro

R

r
r

Kkxy

st

xy

µυµ

υµµ

υµµ

≥

=≤−−









−

∑∑

∑∑

==

==



 

 

In the CRS model, oµ  is set to zero, and the supporting hyperplane to any facet of the frontier passes 

through the origin. Otherwise, oµ  is a form of "Y-intercept" to use an analogy with regression techniques. 

It is well known that the sign of oµ  identifies the "returns to scale" status of the DMUo. It is useful 

therefore to examine the three cases in regard to this sign, which will allow us to make important 

interpretations pertaining to the sign of the variables ff βγ ˆˆ −  (Cook et al., 2006). 

Case 1: If 0>oµ  in Model (7), then the DMUo is said to be experiencing decreasing returns to scale 

(Banker et al. 1984). Thus, the marginal return, in terms of output, is less than the amounts of input 

required to produce that output. In "returns to scale" terminology, this DMU is not operating at the most 

productive scale size (MPSS), and would benefit from a reduction in size. A somewhat similar 

interpretation can be made in model (5) when .0ˆˆ <− ff βγ  Using "personnel education" as the illustrative 

example, one might argue that DMUo would experience an improvement in efficiency with fewer 

"personnel education". That is, in this particular technology, these factors are at a level where diminishing 

returns have set in, hence less of these factors would improve its performance ratio. One can say that in 

this case, the dual-role factors are "behaving like inputs". 

Case 2: If 0<oµ , then DMUo is experiencing increasing returns to scale, and again it is not at the 

MPSS. This case is analogous to 0ˆˆ >− ff βγ  in Model (5), meaning that this technology’s efficiency 

would benefit from increased "personnel education". Specifically, these factors are at a level where they 

are "behaving like outputs", hence more of these factors are better, and would lead to an increase in 

efficiency. 

Case 3: If 0=oµ , then DMUo is experiencing constant returns to scale, and the VRS Model (7) 

reduces to the standard CRS model of Charnes et al. (1978). The DMUo would then be operating at the 

MPSS. In a technology selection setting, the analogous situation would be to have 0ˆˆ =− ff βγ , meaning 

that the "personnel education" is at an equilibrium or optimal level. 
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There are several previous works addressing the problem of including dual-role factors in DEA (e.g. 

Cook et al., 2006; Liang et al., 2006; Farzipoor Saen, 2010). 

To the best of author’s knowledge, there is not any reference that discusses technology selection in the 

presence of multiple dual-role factors. The approach presented in this paper has some distinctive features. 

• The model does not demand exact weights from the decision-maker. 

• The model considers multiple dual-role factors for technology selection. 

• Technology selection is a straightforward process carried out by the model. 

 

In the next section, numerical examples are presented. 

 

4. Numerical example 

4.1 Example 1; 

In this subsection section, the proposed methodology that may be applied to a wide range of 

technology selection problems is used for FMS selection, and is illustrated through a previously reported 

industrial FMS selection problem. For the illustration of the idea proposed in this paper, the data sets of 

Karsak (2008) have been slightly changed. The FMS selection problem addressed in Karsak (2008) 

involves the evaluation of relative efficiency of 15 FMS alternatives with respect to attributes including 

"lead time reduction" and "amount of personnel education hours by the FMS supplier (AH)", which are 

considered in some sense as outputs. The inputs utilized in this paper are "capital & operating cost", 

“required floor space”, and "AH" which are considered in some sense as input. AH constitutes both 

output and input. Note that these measures are not exhaustive by any means, but frequently used in 

FMS’s performance evaluation. In an application of this methodology, decision-makers must carefully 

identify appropriate inputs and outputs to be used in the decision making process. Table 1 depicts the 

FMS attributes. 
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Table 1. Related attributes for 15 FMS alternatives 

Output Dual-role 
factor Inputs 

FMS 
alternative 

(DMU) 
Lead time 

reduction (%) 
y1k 

AH 
w1k 

Capital & operating 
cost 

(million $) 
x2k 

Required floor space 
(m2) 
x1k 

40 60 3.9 650 1 
18 100 5.8 730 2 
22 90 3.7 680 3 
65 75 5.1 425 4 
35 115 6.3 510 5 
20 105 3.7 630 6 
25 135 5.7 550 7 
40 120 5.1 720 8 
13 80 6 475 9 
15 90 6.7 780 10 
41 85 4.2 490 11 
24 90 3.8 760 12 
38 65 6.3 850 13 
18 110 4.1 550 14 
55 125 5.5 530 15 

 

Applying Model (5), the efficiency scores of FMS alternatives (DMUs), and their inputs/outputs 

behavior have been presented in Table 2. As well, applying Model (6), peer groups of FMS alternatives 

have been presented in the last column of Table 2. 

 
Table 2. The efficiency scores, input/output behavior and peer group for the 15 FMS alternatives 

FMS 
alternative 

(DMU) 
Efficiency score 

1̂γ  
1̂β  11

ˆˆ βγ −  
Peer group 

1 .873 .005 0 .005 4,15 
2 .661 .006 0 .006 7,14,15 
3 .903 .008 0 .008 6,15 
4 1 0 0 0 NA 
5 .936 .008 0 .008 7,15 
6 1 .009 0 .009 NA 
7 1 .007 0 .007 NA 
8 .947 .006 0 .006 6,15 
9 .686 .009 0 .009 7 
10 .53 .006 0 .006 7,14 
11 .939 .005 0 .005 4,15 
12 .898 .008 0 .008 6,15 
13 .538 .003 0 .003 4,15 
14 1 .009 0 .009 NA 
15 1 .004 0 .004 NA 

 
Model (5) identified FMS alternatives 4, 6, 7, 14, and 15 to be efficient with a relative efficiency 

score of 1. The remaining FMS alternatives with relative efficiency scores of less than 1 are considered to 

be inefficient. Therefore, decision maker can choose one or more of these efficient FMS alternatives. 
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To rank the efficient FMS alternatives, the approach developed by Torgersen et al. (1996) is used. 

Their approach for ranking of efficient DMUs is based on peer groups. They concluded that a DMU was 

highly ranked if it was chosen as a reference by many other inefficient DMUs. The ranking result has 

been indicated in Table 3. As Table 3 shows, FMS alternative 15 is the most efficient technology. 

 

Table 3. The ranking results of efficient FMS alternatives 
Efficient FMS alternatives Rank 

15 1 

7 2 

4 and 6 3 

14 4 

 

All FMS alternatives, except for FMS alternative 4, are those that AH is behaving like an output, 

where more of such factor would improve the efficiencies of related FMS alternatives. Therefore, these 

FMS alternatives are said to be experiencing increasing returns to scale. 

The FMS alternative 4 is the alternative that AH is in equilibrium. Therefore, this FMS alternative is 

said to be experiencing constant returns to scale. 

Also, the last column of Table 2 provides peer groups for inefficient FMS alternatives. Note that, each 

DEA model seeks to determine which of the k DMUs define an envelopment surface that represents best 

practice, referred to as the empirical production function or the efficient frontier. DMUs that lie on the 

surface are deemed efficient in DEA while those DMUs that do not, are termed inefficient. DEA provides 

a comprehensive analysis of relative efficiencies for multiple input-multiple output situations by 

evaluating each DMU and measuring its performance relative to an envelopment surface composed of 

other DMUs. Those DMUs are the peer group for the inefficient DMUs known as the efficient reference 

set. As the inefficient DMUs are projected onto the envelopment surface, the efficient DMUs closest to 

the projection and whose linear combination comprises this virtual DMU form the peer group for that 

particular DMU. The targets defined by the efficient projections give an indication of how this DMU can 

improve to be efficient. The peer groups serve as a benchmark to use in seeking improvements for 

inefficient FMS alternatives. Inefficient FMS alternative suppliers can use these results from a marketing 

perspective. 

 

4.2 Example 2; 

We use data for 12 robots used in Amin (2009) which is replicated here in Table 4. This Table 

contains the normalized data for two engineering attributes (handling coefficient and load capacity) which 

are considered as the outputs and a single input (cost). For the illustration of the idea proposed in this 
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paper, the data sets of Amin (2009) have been slightly changed. The "amount of personnel education 

hours by the robot supplier (RH)", is considered as dual-role factor, as well. 

 

Table 4. Related attributes for 12 robot alternatives 
Outputs Dual-role factor Input Robot 

alternative 
(DMU) 

load capacity 
y2k 

Handling 
coefficient 

y1k 

RH 
w1k 

Cost 
x1k 

0.85 1 0.22 1 1 
0.45 0.938 0.321 0.75 2 
0.18 0.879 0.256 0.562 3 
0.1 0.411 1 0.281 4 
0.2 0.822 0.897 0.469 5 
0.6 0.667 0.664 0.781 6 
0.9 0.884 0.246 0.875 7 
0.1 0.636 0.457 0.562 8 
0.25 0.656 0.356 0.562 9 

1 0.751 0.479 0.875 10 
1 0.884 0.258 0.687 11 

0.7 0.636 0.555 0.437 12 
 

Applying Model (5), the efficiency scores of robot alternatives (DMUs), and their inputs/outputs 

behavior have been presented in Table 5. 

 
Table 5. The efficiency scores and input/output behavior for the 12 robot alternatives 

Robot 
alternative 

(DMU) 
Efficiency score 

1̂γ  
1̂β  11

ˆˆ βγ −  

1 1 0 3.69 -3.69 
2 .84 0 .2 -0.2 
3 1 0 .15 -0.15 
4 1 1 0 1 
5 1 .18 0 0.18 
6 .57 .11 0 0.11 
7 .82 0 4.22 -4.22 
8 .68 0 .15 -0.15 
9 .74 0 .16 -0.16 
10 .76 0 .13 -0.13 
11 1 0 .17 -0.17 
12 1 0 0 0 

 

Model (5) identified robot alternatives 1, 3, 4, 5, 11, and 12 to be efficient with a relative efficiency 

score of 1. Therefore, decision maker can choose one or more of these efficient robots. Robots 4, 5, and 6 

are those that RH is behaving like an output, where more of such factor would improve the efficiencies of 

related robots. Robots 1, 2, 3, 7, 8, 9, 10, and 11 are those that RH is behaving like an input, where less of 

such factor would improve the efficiencies of related robots. The robot 12 is the alternative that RH is in 

equilibrium. 
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5. Managerial implications 

The methodology can be applied from both a buyer’s and technology supplier’s perspective. The buyer 

can use it as a justification tool for identifying "good practice" technologies in terms of technical 

specifications and capital cost. With the review of inefficient technologies, it may be possible for the 

buyer to negotiate changes in the cost-performance of these inefficient technologies with their technology 

suppliers that will make the technologies competitive with efficient technologies. However, the 

technology suppliers may not be willing to reduce the price of a technology. The technology suppliers can 

also use results from DEA in market competitive analysis. They may utilize the peer groups to identify 

competitors and niche players in a crowded market. The technology supplier who achieved an efficiency 

score of 1, when compared with other technologies, can use these results to promoting its product. On the 

other hand, if a particular technology is poorly performing, then the technology supplier of this 

technology can use the analysis for benchmarking purposes. 

A complete assessment of the approach presented in this study would require stating the following 

critical points. First, the approach improves the quality of technology selection, but by no means it is 

aimed to fully replace management judgment. Although the framework enables one to systematically 

incorporate the dual-role factors into the decision process, subjective judgment is still required to select 

the inputs and outputs and possibly limit their number as well as to interpret the results of the analysis. 

Second, for a decision-maker who is not familiar with mathematical programming, DEA may appear as a 

"black box". A user-friendly interface could be helpful for further appreciation of the approach. 

Despite the above-mentioned critiques, the merits of the decision making approach that considers 

dual-role factors in the technology selection process are notable, and facilitate its use as a viable decision 

making tool by organizations considering technology investments. 

 
6.  Concluding remarks 

Modern technology plays a key role in the ability of manufacturing companies to compete as world 

class manufacturers. Managers need to make complex decisions regarding applicable technologies in 

order to gain strategic competitive edge. 

In this paper DEA has been proposed as a potential tool for selecting technologies in the presence of 

multiple dual-role factors. The main advantage of DEA is that it enables the decision maker to handle 

multiple criteria without relying on subjective judgments involved in the evaluation process. The analyses 

determine whether in a technology the factors are behaving predominantly like inputs, hence the 

technology would benefit from having less of the factors, like outputs where more of the factors are 

desirable, or where they are in equilibrium. Meanwhile, these ideas were connected to those involving 

increasing, decreasing and constant returns to scale. Also, this paper proposed a systematic analysis to 

provide peer groups for inefficient technology suppliers. In addition, this paper describes how the 
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proposed approach has been applied to select FMS technologies. The FMS selection revealed that the 

proposed framework can satisfy the real requirements of an individual company as well as ensure a 

competitive advantage. 

The problem considered in this study is at initial stage of investigation and further researches can be 

done based on the results of this paper. Some of them are as below: 

• Similar research can be repeated for dealing with ordinal data, fuzzy data, and bounded data in 

the conditions that dual-role factors exist. 

• In this study, the model has been applied to a problem related to FMS selection. However, the 

same models could be applied, with minor modifications, to other problems related to 

selection of robots, computer integrated manufacturing systems, computer numerical control 

systems and many other technology selection decision cases. 

• The numerical example has shown that DEA can be seen as a normative model for helping a 

buyer to evaluate technologies. It does not require an a priori weighting scheme to combine 

various dimensions of technology performance into an overall rating for each technology. 

However, the DEA model can be restructured to allow for weight restrictions if necessary. 
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