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Abstract— This paper presents the results obtained using
an unbiased Population Based Search (PBS) for optimising
Morse atomic clusters. PBS is able to repeatedly obtain all
putative global minima for Morse clusters in the range5 ≤ N ≤
80, N = 147, ρ = 3, 6, 10, 14, as reported in the Cambridge
Cluster Database. In addition, putative global minima have
been established for Morse clusters in the range81 ≤ N ≤
146, ρ = 14. The PBS algorithm incorporates and extends
key techniques that have been developed in other cluster
optimisation algorithms over the last decade. Of particular
importance are the use of cut and paste operators, structure
niching and a new operator, Directed Optimisation, which
extends the previous concept of directed mutation. In addition,
PBS is able to operate in a parallel mode for optimising larger
clusters.

Keywords: global geometry optimisation, clusters,
Lennard-Jones, Morse.

I. I NTRODUCTION

The goal of structural optimisation of atomic clusters,
where each atom interacts with all other atoms through a two-
body central force, is to identify the structure corresponding
to the global minimum potential energy for the cluster.
To date, the most commonly studied cluster optimisation
problem has been the Lennard-Jones (LJ) cluster where the
potential energy arising from the interaction of 2 atoms
separated by distancer is given by:

v(r) = 4ǫ((
σ

r
)12 − (

σ

r
)6) (1)

where ǫ = σ = 1 (Figure 1). The total energyE of a
cluster ofN atoms is simply given by the sum of the pair
interactions between all atom pairs, i.e.

E(X) = E(X1, . . . , XN ) =
∑
i<j

v(‖ Xi −Xj ‖),

whereXi ∈ IR3 are the coordinates of the centre of thei-th
atom and the norm is the Euclidean one.

The minimisation problem is the following:

min
X∈IR3n

E(X).

It is important to remark here that we are interested in the
global minimum for this problem as local minima for this
problem can be detected quite efficiently but it is conjectured
that their number increases exponentially with the number
N of atoms. This makes the global minimisation problem
a difficult one which has been extensively studied and
has many applications. For example, it is employed in the
analysis of the three-dimensional conformation of clusters of
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inert atoms. Moreover, although the Lennard-Jones potential
is not a good choice when modelling metals, in some cases
(e.g. gold or nickel) there is a strong preference for the
formation of 75-atom clusters with the same structure as
the optimal Lennard-Jones cluster of that size. In addition,
the Lennard-Jones pair-potential is an important component
of the non-bonded pair interactions in complex molecular
systems such as proteins. In studying the three-dimensional
conformation of proteins it is recognised that this interaction,
together with the electrostatic, or Coulomb, interaction, is the
most relevant one. Therefore, developing efficient methods
for the minimisation of the Lennard-Jones clusters could be
an important step towards developing efficient methods for
the protein folding problem.

As pointed out in [20], the optimal structures forLJ
clusters are quite structurally uniform with virtually all of the
global minima structures based on the Mackay icosahedra.
Considerably more difficult optimisation problems are the
optimisation of atomic clusters where the potential energy
arising from the interaction of 2 atoms is given by the
following Morse potential:

vρ(r) = (eρ(1−r) − 1)2 − 1 (2)

The form ofvρ(r) is shown in Figure 1 where the minimum
of vρ(r), for all values ofρ, occurs atr = 1. The single
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Fig. 1. Morse (ρ = 3, 6, 10, 14) pair-potentials.

parameterρ for the Morse potential directly controls the
range of the potential (Figure 1) and allows a wide range of
interactions to be modelled. Whenρ = 6, the Morse potential
is close to theLJ potential and gives rise to similar optimal
icosahedral structures. Whenρ < 6 the potential energy
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hyper-surface for the Morse cluster becomes smoother and
optimal structures tend to be polytetrahedral. Asρ increases
from 6 to 14, the potential energy hyper-surface becomes
more rugged, with larger barriers between an increasing
number of local minima, and optimal structures transition
from icosahedral to decahedral to close-packed [20].

This paper describes the application of an unbiased popu-
lation based optimisation method, PBS [18] to Morse clusters
and is structured as follows: in Section II, an overview
of previousLJ and Morse cluster optimisation methods is
presented, particularly those relevant to the PBS algorithm
described in Section III. The results achieved by PBS for
Morse clusters are shown in Section IV while Section V
contains a conclusion and possible future research directions.

II. H ISTORICAL OVERVIEW

A. Lennard-Jones Clusters

Prior to 1987, the most extensive study of Lennard-Jones
clusters was the work of Hoare et al. [1], [4], [5], [6] who
developed a general growth algorithm and used it to generate
large numbers of stable structures, mainly forN ≤ 55.
These were compared to find the lowest energy structures
which, in turn, became candidates for the absolute minimal
structures. Hoare and Pal [5] observed that, while what
they termed as the “icosahedral growth sequence” did not,
in general, produce minimal structures, icosahedral subunits
did appear regularly in relaxed configurations generated by
other sequences. The icosahedral lattice can be described as
20 slightly flattened tetrahedrally shaped face-centred-cubic
units with 12 vertices on a sphere centred at the origin.
For the icosahedral lattice, the total number of lattice points
on each layer is 1, 12, 42, 92, 162, 252, . . . . Therefore,
the number of lattice points in the sequence of closed shell
icosahedral lattices is 1, 13, 55, 147, 309, 561,. . . .

The observation by Hoare and Pal led to the so-called
lattice search methods, where the search for optimal
clusters was performed over an icosahedral lattice [7],
[8]. Using these techniques, many putativeLJ global
minima for N ≤ 147 [7] were discovered for the first
time. Subsequently, lattice search methods have produced
the putative global minima for148 ≤ N ≤ 309 [9],
310 ≤ N ≤ 561 [10] and562 ≤ N ≤ 1000 [11]. However,
as lattice based search methods are biased (i.e. the search is
restricted to only a portion of the feasible domain, namely
that portion containing icosahedral clusters), they do not
explore other regions which, in some cases, contain lower
energy clusters with a basically non-icosahedral structure.

Over the last decade a number of optimisation methods
have evolved for the unbiased, systematic optimisation ofLJ
clusters. These can be broadly grouped into Non-Population
and Population based categories and are now discussed in
more detail.

Unbiased Non-Population based search− With
regard to unbiased, non-population based search methods,

one of the most powerful is the Basin-Hopping method [12]
which exploits thefunnelstructure of the energy landscape.
A funnel can be defined as a set of local minima such
that, for all of them, at least one decreasing sequence
of “neighbour” local minima exists leading to a unique
local minimum corresponding to thebottomof the funnel.
The key observation was that, whileLJ clusters have a
large number of local energy minima (conjectured to be
exponentially increasing with the numberN of atoms), the
number of funnels is usually very limited (in some easy
cases, such asN = 13, there even exists a single funnel)
and, for one of these funnels, the bottom is always the
global minimum of the energy function. This observation
led to the introduction of the Basin-Hopping (BH) algorithm
[12] which is able to reach the bottom of a funnel and was
the first unbiased algorithm to detect all putative global
minima, as currently reported in [2], up toN = 110 atoms.
BH randomly explores local minima returned by local
searches started within a neighbourhood of the current
local minimum until it decides, according to a Metropolis
acceptance criterion, to move to one of those local minima
or to stop because a prefixed number of iterations with no
improvement has been reached. Since there is no guarantee
that a single run of BH is able to detect the global minimum
(at least within a reasonable amount of time), BH is usually
employed in a multi-start fashion, i.e. it is run many times
from different, randomly sampled, starting points. In spite
of its simplicity, the successes of BH were impressive and
its monotonic variant MBH [13] was able to detect a new
optimal structure for the case ofN = 98 atoms, the Leary
tetrahedron [14].

Recently the BH method has been extended by the
incorporation ofTwo-phase local searches[15]. In these
local searches, the local minimisation of the original
energy functionE is preceded by the local minimisation
of a modified functionF = E + g where functiong
is a parameterised geometric penalisation term which
allows different geometrical shapes to be favoured. In
principle, local searches could be substituted by two-phase
local searches in all algorithms. When incorporated into
MBH, two-phase local searches considerably improve the
efficiency of detecting the most challengingLJ global
minima, namely those having a non-icosahedral structure
(the FCC structure atN = 38, the decahedral structure at
N = 75 − 77, 102− 104, and the already mentioned Leary
tetrahedron atN = 98).

Unbiased Population based search− In population
based approaches, for example [16], [17], efficiency is
increased by keeping, at each iteration, not a single local
minimum as in BH but a population of local minima in such
a way that all of them “sufficiently” differ from each other.
Basically,diversificationis forced between members of the
population and manytrajectoriesare followed at the same
time which often improves the performance with respect to
methods, such as BH, which only follow a single trajectory
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at a time and can only force diversification through random
restarting.

Over the last decade, a number of successful, unbiased,
population based, search methods have evolved for the
systematic optimisation ofLJ clusters. These include the
genetic algorithm of Deaven et al. [16] which introduced
the concept of phenotypecut and pasteoperators for cross-
over and mutation. This algorithm was able to find most
putative global minima up toN = 110 but failed for some
cluster sizes where the optimal structure is non-icosahedral
(the Face Centred Cubic (FCC) structure atN = 38, the
decahedral structures atN = 75− 77, the Leary tetrahedron
at N = 98 and the decahedral structures atN = 102−104).
Subsequently, Hartke [17] developed a phenotype population
based algorithm introducing the concepts ofstructure nich-
ing anddirected mutation. This algorithm was able to find,
with the exception ofN = 98, all putative global minima in
the range2 ≤ N ≤ 150.

A more recent unbiased population based approach, PBS,
combines and extends phenotype operators, structure niching
and directed mutation and two-phase local searches into a
parallel processing environment and was able to find all
putative global minima in the range2 ≤ N ≤ 372 [18].
Within the context of unbiased population based search,
the techniques of cut and paste operators, structure niching
and directed mutation seem to be keys to the improved
performance of these algorithms and they are now discussed
in more detail:

• Cut and Paste (Phenotype) OperatorsIn BH the gen-
eration of a new local minimum is simply obtained by
starting a local search within the neighbourhood of the
current local minimum. In the framework of population
based approaches, a number of new operators have been
defined that generate a new cluster by modifying a
cluster (unary operators) or by combining two clusters
(binary operators). As these operators function directly
on the geometric model of the cluster, they have a
greater probability of retaining good “building blocks”
within the cluster when compared to operators that
function on the genotype representation of the cluster.

• Structure Niching is a population diversification tech-
nique implemented throughdissimilaritymetrics, which
measure either the relative difference between clusters,
or produce an absolute measure of cluster structure [17].
These structure metrics allow structure niche groups to
be maintained within the population. During population
updating, the energy value of a cluster to be added
to the population is only compared with the energy
values of the clusters within the same structure group.
This ensures that non-icosahedral structures are not
eliminated from the population during the search by the
more prevalent and, initially lower energy, icosahedral
structures.

• Directed Mutation It has been observed that the per-
formance of BH degrades as the numberN of atoms

increases1. It can be reasonably claimed that one of
the main reasons for this lies in the mechanism that
generates new candidate local minima in the neighbour-
hood of the current local minimum. In BH this is simply
obtained by a random perturbation ofall the coordinates
of the current local minimum. This mechanism often
leads quickly to a point close to the global minimum
and is also quite general (i.e. it can be extended to global
optimisation problems that are different from molecular
conformation ones). However, it often happens that a
better local minimum than the current one exists but
is only slightly different from the current one. Such an
improvement is difficult to detect by perturbing all the
atoms in a cluster (thus disrupting the whole structure of
the cluster), and this difficulty increases with the number
N of atoms. Therefore, the key to improving the perfor-
mance is to find other, more structured, perturbations of
atoms in addition to using random perturbations. Hartke
[17] implemented such a directed mutation technique by
moving the “worst” atom to the “best” vacant position
and observed that if directed mutation is employed
“the resulting overall speedup can be so large that it
makes all the difference between an efficient solution
and impractically long computation times”. In addition,
similar angular moves of the most weakly bound surface
atoms were implemented in [12] and also within the
GMIN computer program [2].

A further inherent benefit of population based algorithms
is that they are often straight forward to parallelise with
the obvious, but important consequence, of a considerable
reduction in elapsed times for optimising clusters.

B. Morse Clusters

As a function ofρ, Morse clusters have a much wider
range of structures than Lennard-Jones clusters. In addition,
the potential energy landscape also changes withρ, with
the number of local minima increasing rapidly changing
the landscape from smooth to rough. This makes the global
optimisation of Morse clusters forρ = 10 andρ = 14 a very
difficult task and is orders of magnitude more difficult than
the optimisation of the corresponding size Lennard-Jones
cluster. A database of putative global minima is available
for Morse clusters [2].

In contrast to the widely studied Lennard-Jones clusters,
very few global optimisation algorithms have been developed
for Morse clusters. In [19], a genetic algorithm is described
which is successful for small and medium size (N ≤ 50)
Morse clusters while the potential energy transformation al-
gorithm [20] is successful for all clusters documented in [2].
The PBS algorithm documented in this paper is the first
population-based algorithm to be successful for all clusters
documented in [2]. in addition, PBS has produced putative
minima for Morse clusters in the range81 ≤ N ≤ 146 with
ρ = 14.

1Private communication
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III. POPULATION BASED SEARCH ALGORITHM

The Population Based Search (PBS) presented in this
paper is tailored to cluster optimisation problems and utilises
several of the key techniques described in Section II. PBS is
able to efficiently utilise any number of computer processors
to optimise clusters. A Master task controls some number
of sub-tasks using a simple MPI send-receive message /
command interface. The Master task manages the population
and allocates work to sub-tasks that either generate a new
member for the population, mutate an existing member, or
perform a cross-over of two existing members. There is no
concept of “generations” and the only task synchronisation
point occurs at the end of the population creation phase.

PBS is a two-phase algorithm with an initial population
creation phase (III-B) which parallels the Basin-Hopping
method in that it randomly generates starting trial clusters
and incorporates mechanisms for following the energy funnel
within which the cluster lies. The primary goal of the
population creation phase is to create an initial population,
of eight members, that contains a range of structures, all
with energies reasonably close to the global minimum. This
population creation phase is followed by a search phase
which starts with the initial population and, using cross-over
and mutation operators followed by local searches, applied
to all members and all possible pairings of members of the
population, iteratively updates the population.

The basic techniques utilised by both the population cre-
ation and search phases of PBS are detailed in Section III-A,
the population creation phase is presented in Section III-B
and the search phase described in Section III-C.

A. Basic PBS Techniques

The population management and search techniques that are
common to both the population creation and search phases
of PBS are described in the following sub-sections.

1) Population Updating: As each sub-task returns the
results of a cluster generation, mutation or cross-over the
master task decides if the new cluster should be added to
the population or discarded. Basically, a new cluster will
be unconditionally added to the population if its structure
niche group is below the maximum allowed group size and
the energy of the new cluster is not within0.1 above of an
existing member of the structure niche group. If this is not
the case then the new cluster will replace the highest energy
member of the structure niche group, provided its energy is
less than that of the member.

2) Directed Optimisation:The goal of the Directed Opti-
misation operator is to iteratively identify and repair surface
and interior “defects” in clusters. Directed Optimisation
functions in one of the following three modes:

1) Surface Repair - moves the atom with the lowest
number of Nearest Neighbour (NN) atoms to the best
adjacent vacant position near a target atom with the
maximum (but less than 12) number of NN atoms. In
this context, NN atoms are those whose squared dis-
tance from the target atom is in the range0.81 . . . 1.54.

The best adjacent vacant position is obtained by
constructing all possible tetrahedron apexes for the
triangles formed by all possible combinations of the
target atom and its NN atoms. Basically this mode
attempts to move the “worst” surface atom to the “best”
available position on the surface and is used during the
generation of new clusters and whenever an existing
population member is mutated.

2) Interior Repair 1 - randomly selects an atom from the
atom pair that are closest to each other (provided the
separation is less than1.123) and removes this from the
cluster, locally optimises the remainingN − 1 cluster
using LBFGS and then adds the removed atom back
onto the cluster using the Surface Repair technique
described above. This mode of Directed Optimisation
is used during the generation of all new clusters.

3) Interior Repair 2 - randomly selects an atom from all
atom pairs whose separation is less than1.123, locally
optimises the remainingN − 1 cluster using LBFGS
and then adds the removed atom back onto the cluster
using the Surface Repair technique described above.
This mode is used as a local mutation operator for
current population members.

The primary motivations for the Directed Optimisation
operator are that, from Figure 1, it is clear that:

• every atom should have the maximum possible number
of nearest neighbours. The surface repair mode con-
tributes to this by ensuring that all atoms in the outer
“shell” are placed adjacent on the surface of the cluster.

• if two atoms are nearest neighbours, then the distance
between them should be as close to1.123 as possible.
The interior repair modes contribute to this by identify-
ing atom pairs that are closer than the optimal distance
and creating a situation which rectifies this and also
causes a reorganisation of the neighbouring atoms.

Figure 2 shows the performance of the Directed Optimisa-
tion operator during the optimisation of theN = 104, ρ = 14
cluster. Given that the Directed Optimisation operator is only
applied to a cluster that has already been locally optimised
using two-phase local search, it is clearly very effective in
following the energy funnel and is, probably, the key factor
for the performance of PBS.

B. PBS Population Creation Phase

PBS uses a technique for initially generating the popula-
tion which is effective in following energy funnels. Initially
PBS generates a maximum of150 trial solutions, randomly
generated within a cube whose volume is dependent on the
number of atoms. All trial solutions are subsequently locally
optimised and then subjected to the Directed Optimisation
(III-A.2) operator. Figure 3 shows the absolute difference
between the putative global minima and the best obtained
by PBS population creation for clusters in the range5 ≤
N ≤ 147. Generally, the PBS population creation phase is
able to generate initial populations which either contain the
putative global minimum or contain clusters whose energies

4499



−460 −450 −440 −430 −420 −410 −400 −390 −380
−460

−450

−440

−430

−420

−410

−400

−390

Input cluster energy

O
ut

pu
t c

lu
st

er
 e

ne
rg

y

Fig. 2. Energy in versus energy out for the Directed Optimisation operator
during the optimisation of anN = 104, ρ = 14 cluster where the putative
global energy minimum is -458.252082. All clusters input tothe Directed
Optimisation operator have already been locally optimisedby the two-phase
local search. All points below the diagonal represent an improvement in
cluster energy. Note that the Directed Optimisation operator returns the
original cluster whenever it is unable to generate an improved cluster.

are reasonably close to the putative global minimum. Clearly
this is of considerable benefit to the subsequent PBS search
phase.
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Fig. 3. The difference between the putative global minima and the best
energy obtained by PBS population creation phase for5 ≤ N ≤ 147. As
can be seen, the population creation phase of PBS is able to find the putative
global minima for a considerable range of cluster sizes but becomes less
effective asN increases.

C. PBS Search Phase

The PBS search phase uses mutation and cross-over oper-
ators with a primary goal of generating new starting points
for the local optimisation methods described in sub-section
III-A.2. The mutation and cross-over operators operate only
on population members and function at both large and small

20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

Atoms

G
en

er
at

io
ns

Fig. 4. Number of PBS generations for5 ≤ N ≤ 147, ρ = 14.
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Fig. 5. Processor scaling forN = 72, ρ = 14 cluster.

scales providing both coarse and fine grained search. It
should be noted that, at some point during the optimisation
of clusters in the range5 ≤ N ≤ 147, all mutation and cross-
over operators described here were the last operator applied
immediately prior to finding at least one global optimum.

1) Coarse-grained Search:The primary role of the cross-
over and global mutation operators is to move around the
search space in large steps. For cross-over, all possible com-
binations within the population are used and two cross-over
operators exist: the random cross-over (used with probability
0.8) which randomly rotates the clusters around the three
axes, selects some number of atoms and, using the ones
most distant from thex−y plane, swaps these by translating
atoms using the most distant atom from each cluster as the
basis for the translation. The second cross-over operator is
the selective cross-over which attempts to combine “good”
hemispheres from each cluster when it generates the child
clusters.

4500



The global mutations operate on a single cluster and affect
all atoms in the cluster. These are applied to each member
of the population and perform twist (atoms are rotated about
a random axis, where the angle of rotation increases with
distance from the lowest atom on that axis) and perturb
(a small, random perturbation of all atoms) operations. In
addition, a small number of new clusters are randomly
generated during the search phase of PBS.

2) Fine-grained Search:The primary role of the local
mutation operators is to move around the search space in
small steps. Local mutations are only applied to popula-
tion members and have a localised effect within a cluster,
typically close to a plane through the cluster. The local
mutation operators in PBS are slide (cluster segments above
and below a random plane are translated parallel to the
plane), rotate (cluster segments above and below a random
plane are rotated around an axis normal to the plane), self
cross-over and the Directed Optimisation operator.

IV. EXPERIMENTAL RESULTS

The performance metrics used to classify algorithms
should be complete in that they measure all of a particular
aspect of the algorithm. For example, as a measure of
computational effort or run-time, median / average number
of local optimisations has been used. However, this measure
does not effectively compare algorithms that have different
uses for local optimisation (e.g. only optimising near optimal
clusters as against optimising random clusters) or where the
local optimisations have differing computational overheads.
Table I gives performance statistics, from ten trials of the
one-processor version of PBS, to successfully optimise all
clusters in the range2 ≤ N ≤ 80 with ρ = 14. The following
points are relevant when interpreting the data in Table I.

• For each trial, the maximum allowed generations was
set to 100.

• As PBS frequently invokes local optimisations on clus-
ters which are at a local minimum, all local optimi-
sations that required less than 0.0001 seconds of CPU
time have not been included in the local optimisation
counts.

• The figures for local optimisations and CPU are aver-
aged over successful trials only.

Clearly the use of processor time as a measure of com-
putational effort provides a more encompassing metric as it
reflects the total amount of work performed by the search.
However, this metric does have the disadvantage that the
processor time is clearly dependent on the computer pro-
cessor used for the test and this makes comparison between
algorithms tested on different computers difficult. To over-
come this, the method proposed in the COCONUT2 project
has been used and the computer processor time, in terms of
the processor time taken to evaluate theshekel5function at
1.0E+8 points3 is documented. While this provides only a

2http://www.mat.univie.ac.at/ neum/glopt/coconut
3A C++ program is available at

http://www.mat.univie.ac.at/ neum/glopt/coconut/shekel5.cpp

basic measure of a computer processor, we feel it is adequate
for comparing processor time requirements for optimisation
algorithms. All one-processor experiments in this paper were
performed on a dedicated computer that required 16.69
processor seconds to execute a non-optimised version of
shekel5, compiled under Linux using the g++ compiler.

TABLE I

PERFORMANCE STATISTICS FOR THE SINGLE-PROCESSOR VERSION OF

PBSOPTIMISING ALL CLUSTERS IN THE RANGE5 ≤ N ≤ 80 WITH

ρ = 14. SHOWN ARE THE NUMBER OF ATOMS IN THE CLUSTER, THE

PUTATIVE GLOBAL MINIMUM ENERGY [2] AND THE AVERAGE CPUTIME

(SECONDS).

N Opt. CPU N Opt. CPU N Opt. CPU
5 -9.000283 0.00031 -111.760670 60.43056 -225.655136 309.933
6 -12.018170 0.02732 -115.767561 116.44557 -230.663986 818.621
7 -15.883113 0.00033 -120.741345 40.06458 -234.809078 130.967
8 -18.883688 0.00134 -124.748271 65.94159 -240.572493 493.232
9 -22.644892 0.00135 -129.737360 152.89260 -244.579066 534.762
10 -26.132735 0.00336 -133.744666 185.25261 -249.587740 1946.203
11 -29.596054 0.00637 -138.708582 109.90562 -253.612942 406.549
12 -33.332305 0.10338 -144.321054 157.78863 -258.620607 697.751
13 -37.258877 0.02039 -148.327400 556.86164 -264.587042 259.246
14 -40.798348 0.16040 -152.3337451094.22965 -268.594702 589.227
15 -44.806437 0.43441 -156.633479 150.09166 -273.602343 348.556
16 -48.814517 2.07242 -160.641020 206.75067 -278.400953 567.831
17 -52.822588 7.77543 -165.634973 418.11168 -282.683003 8649.980
18 -56.830907 19.64344 -169.6424411377.01369 -287.462110 592.492
19 -60.812425 17.53245 -174.511633 820.33370 -292.462856 353.907
20 -64.791953 22.56646 -178.5193202858.74571 -298.405353 453.174
21 -68.783571 6.86347 -183.5082274112.69072 -302.413229 711.709
22 -72.791747 18.98548 -188.888965 119.44473 -307.421094 877.456
23 -77.302495 3.84049 -192.898412 116.63574 -312.441302 1052.447
24 -81.309508 10.07650 -198.4556331138.19975 -318.407330 1030.447
25 -85.477376 6.13751 -202.468274 281.20576 -322.414257 1157.131
26 -90.210764 34.68952 -207.480764 589.72177 -327.371999 925.977
27 -94.219798 94.30553 -211.493405 634.60478 -331.379143 1540.366
28 -98.331711 9.68254 -216.6368641062.63579 -336.798725 5205.116
29 -102.774589223.98555 -220.646208 671.65580 -340.81137110562.500
30 -106.835790100.218

TABLE II

PUTATIVE GLOBAL MINIMA ENERGIES FOR 81 ≤ N ≤ 146 WITH

ρ = 14.

Atoms Gen. Energy Atoms Gen. Energy Atoms Gen. Energy
81 270 -345.823858 103 15 -453.307015 125 1 -562.448408
82 265 -350.322842 104 20 -458.252082 126 143 -568.179822
83 66 -354.848991 105 650 -462.612300 127 85 -572.187270
84 137 -359.276598 106 148 -467.316876 128 40 -577.237480
85 1182 -363.893075 107 23 -472.314113 129 87 -582.234940
86 4178 -369.893323 108 39 -478.282437 130 33 -588.201912
87 238 -373.925239 109 28 -482.289824 131 115 -593.070343
88 128 -378.918456 110 5 -487.305200 132 120 -597.259380
89 119 -383.402473 111 24 -492.342791 133 125 -602.129297
90 99 -388.401652 112 25 -498.311001 134 32 -607.127628
91 75 -393.973219 113 17 -503.220145 135 20 -613.089691
92 1755 -397.979930 114 55 -507.325288 136 118 -617.097211
93 51 -403.000554 115 57 -512.284580 137 57 -622.141537
94 3341 -408.013642 116 15 -517.351072 138 327 -627.142993
95 153 -413.288426 117 38 -523.244793 139 17 -633.108184
96 72 -417.592614 118 260 -527.252214 140 973 -637.942709
97 1039 -422.799524 119 32 -532.291000 141 199 -642.118064
98 175 -428.051560 120 16 -537.301330 142 21 -646.750417
99 0 -433.284404 121 16 -543.269060 143 89 -652.711658
100 40 -438.323619 122 256 -548.157486 144 3658 -657.949029
101 9 -444.292784 123 22 -552.317919 145 879 -662.939679
102 36 -448.299907 124 313 -557.235865 146 7282 -668.904083
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V. CONCLUSION

This paper presented the results obtained using a popula-
tion based search, PBS, for optimising Morse clusters. PBS
was able to repeatedly obtain all optimal configurations in
the range5 ≤ N ≤ 80, ρ = 3, 6, 10, 14 as reported in [2]. In
addition, putative global minima have been established for
Morse clusters in the range81 ≤ N ≤ 146, ρ = 14. The
PBS algorithm incorporates and extends key techniques that
have been developed in other Morse optimisation algorithms
over the last decade. Of particular importance are the use of
cut and paste operators, structure niching (using the cluster
strain energy as a structure metric), two-phase local search,
and a new operator, Directed Optimisation, which extends
the previous concept of directed mutation. In addition, PBS
is able to operate in a parallel mode for optimising larger
clusters.

Future plans for PBS include improving the population
creation phase for larger clusters, implementation of addi-
tional mutation operators such as stretch and compress and
an enhanced version of the Directed Optimisation operator.
In addition, with a dedicated 128-node cluster shortly to
become available, PBS will be applied to larger Morse
clusters and also extended to other, related problems such
as Morse Clusters, Mixed Clusters, Benzene Clusters and
Water Clusters.
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