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Unbiased Geometry Optimisation of Morse Atomic Clusters
Wayne Pullan

Abstract— This paper presents the results obtained using inert atoms. Moreover, although the Lennard-Jones potential
an unbiased Population Based Search (PBS) for optimising is not a good choice when modelling metals, in some cases
Morse atomic clusters. PBS is able to repeatedly obtain all (e.g. gold or nickel) there is a strong preference for the
putative global minima for Morse clusters in the range5 < N < f .

80, N — 147,p — 3,6,10, 14, as reported in the Cambridge formatlgn of 75-atom clusters with the same structure as
Cluster Database. In addition, putative global minima have the optimal Lennard-Jones cluster of that size. In addition,
been established for Morse clusters in the range8l < N < the Lennard-Jones pair-potential is an important component
146,p = 14. The PBS algorithm incorporates and extends of the non-bonded pair interactions in complex molecular
key techniques that have been developed in other cluster gy giamg such as proteins. In studying the three-dimensional
optimisation algorithms over the last decade. Of particular . o . . .
importance are the use of cut and paste operators, structure conformatlpn of proteins it is recognised tha_t this mFeraqﬂon,
niching and a new operator, Directed Optimisation, which together with the electrostatic, or Coulomb, interaction, is the
extends the previous concept of directed mutation. In addition, most relevant one. Therefore, developing efficient methods
PBS is able to operate in a parallel mode for optimising larger  for the minimisation of the Lennard-Jones clusters could be

clusters. o an important step towards developing efficient methods for
Keywords: global geometry optimisation, clusters,y,o protein folding problem.
Lennard-Jones, Morse. As pointed out in [20], the optimal structures farJ

clusters are quite structurally uniform with virtually all of the

o ) global minima structures based on the Mackay icosahedra.
The goal of structural optimisation of atomic clusterscgnsigerably more difficult optimisation problems are the

where each atom interacts with all other atoms through atWB'ptimisation of atomic clusters where the potential energy

body central force, is to identify the structure correspondingrising from the interaction of 2 atoms is given by the
to the global minimum potential energy for the C|USterfollowing Morse potential:

To date, the most commonly studied cluster optimisation

problem has been the Lennard-Jonks3)(cluster where the vp(r) = (/7 —1)2 —1 ()
potential energy arising from the interaction of 2 atom
separated by distaneeis given by:

I. INTRODUCTION

The form ofv,(r) is shown in Figure 1 where the minimum

of v,(r), for all values ofp, occurs atr = 1. The single
g

(r) = 4e((2)2 = (2)°) (1)

r r

wheree = o = 1 (Figure 1). The total energy¥ of a
cluster of N atoms is simply given by the sum of the pair
interactions between all atom pairs, i.e.

E(X)=E(X1,...,Xx) =Y _o(l Xi — X; |), |
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whereX; € IR? are the coordinates of the centre of thth 05f

atom and the norm is the Euclidean one.
The minimisation problem is the following: of

Energy

min  E(X).
XeR3" -05}

It is important to remark here that we are interested in th

global minimum for this problem as local minima for this +e o8 1 2 12 I 18 >

problem can be detected quite efficiently but it is conjecture Distance

that their number increases exponentially with the number

N of atoms. This makes the global minimisation problem Fig. 1
o . ) ; g. 1.

a difficult one which has been extensively studied and

has many applications. For example, it is employed in thgarameterp for the Morse potential directly controls the
analysis of the three-dimensional conformation of clusters @hnge of the potential (Figure 1) and allows a wide range of

- . . interactions to be modelled. When= 6, the Morse potential
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hyper-surface for the Morse cluster becomes smoother ande of the most powerful is the Basin-Hopping method [12]
optimal structures tend to be polytetrahedral. Amcreases which exploits thefunnelstructure of the energy landscape.
from 6 to 14, the potential energy hyper-surface becomds funnel can be defined as a set of local minima such
more rugged, with larger barriers between an increasinpat, for all of them, at least one decreasing sequence
number of local minima, and optimal structures transitiomf “neighbour” local minima exists leading to a unique
from icosahedral to decahedral to close-packed [20]. local minimum corresponding to thigottom of the funnel.
This paper describes the application of an unbiased popthe key observation was that, whileJ clusters have a
lation based optimisation method, PBS [18] to Morse clisstetarge number of local energy minima (conjectured to be
and is structured as follows: in Section IlI, an overviewexponentially increasing with the numbar of atoms), the
of previousLJ and Morse cluster optimisation methods isnumber of funnels is usually very limited (in some easy
presented, particularly those relevant to the PBS alguorithcases, such a8 = 13, there even exists a single funnel)
described in Section Ill. The results achieved by PBS foand, for one of these funnels, the bottom is always the
Morse clusters are shown in Section IV while Section \global minimum of the energy function. This observation
contains a conclusion and possible future research direxti led to the introduction of the Basin-Hopping (BH) algorithm
[12] which is able to reach the bottom of a funnel and was
Il. HISTORICAL OVERVIEW the first unbiased algorithm to detect all putative global
A. Lennard-Jones Clusters minima, as currently reported in [2], up ¥ = 110 atoms.

. h . ¢ BH randomly explores local minima returned by local
Prior to 1987, the most extensive study of Lennard-Joneg, ches started within a neighbourhood of the current

clusters was the work of Hoare ?t al. [1], 4], [5_]' [6] WhoIocal minimum until it decides, according to a Metropolis
developed a general growth algorithm and used it to generaig o yiance criterion, to move to one of those local minima
large numbers of stable structures, mainly ®F < 55. 4 100 hecause a prefixed number of iterations with no

T?}?Sﬁ were cok;n pared to f:jng the ]!owehst eger?y structur provement has been reached. Since there is no guarantee
which, in turn, became candidates for the absolute minimgla; 5 single run of BH is able to detect the global minimum

structures. Hoare an_d Pal [5] observed that, wh|le_ wh Lt least within a reasonable amount of time), BH is usually
they termed as the “icosahedral growth sequence” did n

. o . ; mployed in a multi-start fashion, i.e. it is run many times
in general, produce minimal structures, icosahedral sﬂ:ﬁbunfrom different, randomly sampled, starting points. In epit

d'ﬂ appear regularl;tq n relaﬁec:j c?rllflg_uratlonsbgedneratgbd 3% its simplicity, the successes of BH were impressive and
other sequences. The icosahedral lattice can be descsbeqa ,nqtonic variant MBH [13] was able to detect a new

20 slightly flattened tetrahedrally shaped face-centrgulec optimal structure for the case dof — 98 atoms, the Leary
units with 12 vertices on a sphere centred at the origirEetrahedron [14]

For the icosahedral lattice, the total number of latticentmi
on each layer is 1, 12, 42, 92, 162, 252, .... Therefore, Recently the BH method has been extended by the
the number of lattice points in the sequence of closed shéticorporation of Two-phase local searche$15]. In these
icosahedral lattices is 1, 13, 55, 147, 309, 561,.... local searches, the local minimisation of the original
The observation by Hoare and Pal led to the so-calleghergy functionE is preceded by the local minimisation
lattice search methods, where the search for optimaf a modified functionF = FE + g where functiong
clusters was performed over an icosahedral lattice [7ls a parameterised geometric penalisation term which
[8]. Using these technigues, many putatitel global allows different geometrical shapes to be favoured. In
minima for N < 147 [7] were discovered for the first principle, local searches could be substituted by two-phas
time. Subsequently, lattice search methods have produdedal searches in all algorithms. When incorporated into
the putative global minima forl48 < N < 309 [9], MBH, two-phase local searches considerably improve the
310 < N <561 [10] and562 < N < 1000 [11]. However, efficiency of detecting the most challenginig] global
as lattice based search methods are biased (i.e. the ssarciinima, namely those having a non-icosahedral structure
restricted to only a portion of the feasible domain, namel{the FCC structure alv = 38, the decahedral structure at
that portion containing icosahedral clusters), they do na¥V = 75 — 77,102 — 104, and the already mentioned Leary
explore other regions which, in some cases, contain lowestrahedron afV = 98).
energy clusters with a basically non-icosahedral strictur
Unbiased Population based search— In population
Over the last decade a number of optimisation methodmsed approaches, for example [16], [17], efficiency is
have evolved for the unbiased, systematic optimisationJof increased by keeping, at each iteration, not a single local
clusters. These can be broadly grouped into Non-Populatiomnimum as in BH but a population of local minima in such
and Population based categories and are now discussedaimay that all of them “sufficiently” differ from each other.

more detail. Basically, diversificationis forced between members of the
population and manyrajectoriesare followed at the same
Unbiased Non-Population based search— With  time which often improves the performance with respect to

regard to unbiased, non-population based search methodgthods, such as BH, which only follow a single trajectory
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at a time and can only force diversification through random
restarting.

Over the last decade, a number of successful, unbiased,
population based, search methods have evolved for the
systematic optimisation of.J clusters. These include the
genetic algorithm of Deaven et al. [16] which introduced
the concept of phenotyprut and pasteoperators for cross-
over and mutation. This algorithm was able to find most
putative global minima up ta&V = 110 but failed for some
cluster sizes where the optimal structure is non-icosatedr
(the Face Centred Cubic (FCC) structureMat= 38, the
decahedral structures &t = 75 — 77, the Leary tetrahedron
at N = 98 and the decahedral structuresMat= 102 — 104).
Subsequently, Hartke [17] developed a phenotype populatio
based algorithm introducing the conceptsstificture nich-
ing anddirected mutation. This algorithm was able to find,
with the exception ofV = 98, all putative global minima in
the range2 < N < 150.

A more recent unbiased population based approach, PBS,
combines and extends phenotype operators, structurengichi
and directed mutation and two-phase local searches into a
parallel processing environment and was able to find all
putative global minima in the range < N < 372 [18].
Within the context of unbiased population based search,
the techniques of cut and paste operators, structure wgjchin
and directed mutation seem to be keys to the improved
performance of these algorithms and they are now discuss&d
in more detail:

increases'. It can be reasonably claimed that one of
the main reasons for this lies in the mechanism that
generates new candidate local minima in the neighbour-
hood of the current local minimum. In BH this is simply
obtained by a random perturbationaif the coordinates

of the current local minimum. This mechanism often
leads quickly to a point close to the global minimum
and is also quite general (i.e. it can be extended to global
optimisation problems that are different from molecular
conformation ones). However, it often happens that a
better local minimum than the current one exists but
is only slightly different from the current one. Such an
improvement is difficult to detect by perturbing all the
atoms in a cluster (thus disrupting the whole structure of
the cluster), and this difficulty increases with the number
N of atoms. Therefore, the key to improving the perfor-
mance is to find other, more structured, perturbations of
atoms in addition to using random perturbations. Hartke
[17] implemented such a directed mutation technique by
moving the “worst” atom to the “best” vacant position
and observed that if directed mutation is employed
“the resulting overall speedup can be so large that it
makes all the difference between an efficient solution
and impractically long computation times”. In addition,
similar angular moves of the most weakly bound surface
atoms were implemented in [12] and also within the
GMIN computer program [2].

further inherent benefit of population based algorithms

is that they are often straight forward to parallelise with

« Cut and Paste (Phenotype) Operatorsn BH the gen-
eration of a new local minimum is simply obtained by
starting a local search within the neighbourhood of th
current local minimum. In the framework of population

the obvious, but important consequence, of a considerable
reduction in elapsed times for optimising clusters.

%. Morse Clusters

based approaches, a number of new operators have beeAs a function of p, Morse clusters have a much wider
defined that generate a new cluster by modifying aange of structures than Lennard-Jones clusters. In additi
cluster (unary operators) or by combining two clustershe potential energy landscape also changes withwith
(binary operators). As these operators function directllhe number of local minima increasing rapidly changing
on the geometric model of the cluster, they have the landscape from smooth to rough. This makes the global
greater probability of retaining good “building blocks” optimisation of Morse clusters for= 10 andp = 14 a very
within the cluster when compared to operators thalifficult task and is orders of magnitude more difficult than
function on the genotype representation of the clusterthe optimisation of the corresponding size Lennard-Jones
« Structure Niching is a population diversification tech- cluster. A database of putative global minima is available
nigue implemented througtissimilarity metrics, which for Morse clusters [2].
measure either the relative difference between clusters,in contrast to the widely studied Lennard-Jones clusters,
or produce an absolute measure of cluster structure [1%jery few global optimisation algorithms have been devetope
These structure metrics allow structure niche groups ti@r Morse clusters. In [19], a genetic algorithm is desaiibe
be maintained within the population. During populationvhich is successful for small and medium siz&€ K 50)
updating, the energy value of a cluster to be addeWlorse clusters while the potential energy transformatien a
to the population is only compared with the energyjorithm [20] is successful for all clusters documented i [2
values of the clusters within the same structure groufthe PBS algorithm documented in this paper is the first
This ensures that non-icosahedral structures are nedpulation-based algorithm to be successful for all chsste
eliminated from the population during the search by thelocumented in [2]. in addition, PBS has produced putative
more prevalent and, initially lower energy, icosahedrahinima for Morse clusters in the rangeé < N < 146 with

structures.
« Directed Mutation It has been observed that the per-
formance of BH degrades as the numi@érof atoms
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The Population Based Search (PBS) presented in this
paper is tailored to cluster optimisation problems andsed
several of the key techniques described in Section Il. PBS is
able to efficiently utilise any number of computer processor
to optimise clusters. A Master task controls some number
of sub-tasks using a simple MPI send-receive message /
command interface. The Master task manages the population
and allocates work to sub-tasks that either generate a ne
member for the population, mutate an existing member, or
perform a cross-over of two existing members. There is no
concept of “generations” and the only task synchronisation
point occurs at the end of the population creation phase.

PBS is a two-phase algorithm with an initial population
creation phase (I1l-B) which parallels the Basin-Hopping
method in that it randomly generates starting trial clusster
and incorporates mechanisms for following the energy funne
within which the cluster lies. The primary goal of the
population creation phase is to create an initial popufatio
of eight members, that contains a range of structures, all
with energies reasonably close to the global minimum. This
population creation phase is followed by a search phase
which starts with the initial population and, using crosi

POPULATION BASED SEARCH ALGORITHM

The best adjacent vacant position is obtained by
constructing all possible tetrahedron apexes for the
triangles formed by all possible combinations of the
target atom and its NN atoms. Basically this mode
attempts to move the “worst” surface atom to the “best”
available position on the surface and is used during the
generation of new clusters and whenever an existing
population member is mutated.

) Interior Repair 1 - randomly selects an atom from the

atom pair that are closest to each other (provided the
separation is less than123) and removes this from the
cluster, locally optimises the remaining — 1 cluster
using LBFGS and then adds the removed atom back
onto the cluster using the Surface Repair technique
described above. This mode of Directed Optimisation
is used during the generation of all new clusters.

) Interior Repair 2 - randomly selects an atom from all

atom pairs whose separation is less thal23, locally
optimises the remainingv — 1 cluster using LBFGS
and then adds the removed atom back onto the cluster
using the Surface Repair technique described above.
This mode is used as a local mutation operator for
current population members.

and mutation operators followed by local searches, applied The primary motivations for the Directed Optimisation
to all members and all possible pairings of members of tHeperator are that, from Figure 1, it is clear that:

population, iteratively updates the population. .
The basic techniques utilised by both the population cre-
ation and search phases of PBS are detailed in Section IlI-A,
the population creation phase is presented in Section III-B
and the search phase described in Section I1I-C. .

A. Basic PBS Techniques

The population management and search techniques that are
common to both the population creation and search phases
of PBS are described in the following sub-sections.

every atom should have the maximum possible number
of nearest neighbours. The surface repair mode con-
tributes to this by ensuring that all atoms in the outer
“shell” are placed adjacent on the surface of the cluster.
if two atoms are nearest neighbours, then the distance
between them should be as closelt®23 as possible.
The interior repair modes contribute to this by identify-
ing atom pairs that are closer than the optimal distance
and creating a situation which rectifies this and also
causes a reorganisation of the neighbouring atoms.

1) Population Updating: As each sub-task returns the Figure 2 shows the performance of the Directed Optimisa-
results of a cluster generation, mutation or cross-over thyn operator during the optimisation of thé = 104, p = 14
master task decides if the new cluster should be added ¢fister. Given that the Directed Optimisation operatormilyo
the population or discarded. Basically, a new cluster wilhpplied to a cluster that has already been locally optimised
be unconditionally added to the population if its StI’UCtUI’@Smg two-phase local search, it is clearly very effectie i

niche group is below the maximum allowed group size anfbliowing the energy funnel and is, probably, the key factor
the energy of the new cluster is not withinl above of an for the performance of PBS.

existing member of the structure niche group. If this is not

the case then the new cluster will replace the highest enerBy PBS Population Creation Phase
member of the structure niche group, provided its energy is pBS uses a technique for initially generating the popula-

less than that of the member.

tion which is effective in following energy funnels. Inilia

2) Directed Optimisation:The goal of the Directed Opti- pBS generates a maximum 630 trial solutions, randomly
misation operator is to iteratively identify and repairfage  generated within a cube whose volume is dependent on the
and interior “defects” in clusters. Directed Optimisationhumber of atoms. Al trial solutions are subsequently Iycal

functions in one of the following three modes:

optimised and then subjected to the Directed Optimisation

1) Surface Repair - moves the atom with the lowest (IlI-A.2) operator. Figure 3 shows the absolute difference
number of Nearest Neighbour (NN) atoms to the bedietween the putative global minima and the best obtained
adjacent vacant position near a target atom with thiey PBS population creation for clusters in the rarigec
maximum (but less than 12) number of NN atoms. InV < 147. Generally, the PBS population creation phase is
this context, NN atoms are those whose squared diable to generate initial populations which either contéie t

tance from the target atom is in the rariggl ... 1.54.
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Fig. 2. Energy in versus energy out for the Directed Optitiosaoperator
during the optimisation of aiv = 104, p = 14 cluster where the putative
global energy minimum is -458.252082. All clusters inputthe Directed
Optimisation operator have already been locally optimisgthe two-phase
local search. All points below the diagonal represent anravement in
cluster energy. Note that the Directed Optimisation operaeturns the
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original cluster whenever it is unable to generate an imguosiuster.

are reasonably close to the putative global minimum. Gfear
this is of considerable benefit to the subsequent PBS seal

phase.
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1
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Fig. 3.
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The difference between the putative global minimd #re best
energy obtained by PBS population creation phasesfet N < 147. As

can be seen, the population creation phase of PBS is abladtth&rputative
global minima for a considerable range of cluster sizes leebimes less

40

effective asV increases.

C. PBS Search Phase
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Fig. 5. Processor scaling fav = 72, p = 14 cluster.

scales providing both coarse and fine grained search. It
should be noted that, at some point during the optimisation
of clusters in the range < N < 147, all mutation and cross-
over operators described here were the last operator dpplie
immediately prior to finding at least one global optimum.

1) Coarse-grained Searchtfhe primary role of the cross-
over and global mutation operators is to move around the
search space in large steps. For cross-over, all possibie co
binations within the population are used and two cross-over
operators exist: the random cross-over (used with proibabil
0.8) which randomly rotates the clusters around the three
axes, selects some number of atoms and, using the ones
most distant from the —y plane, swaps these by translating

The PBS search phase uses mutation and cross-over ooms using the most distant atom from each cluster as the
ators with a primary goal of generating new starting pointbasis for the translation. The second cross-over operator i
for the local optimisation methods described in sub-sactiahe selective cross-over which attempts to combine “good”
[lI-A.2. The mutation and cross-over operators operate¢ onhemispheres from each cluster when it generates the child
on population members and function at both large and smallusters.
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The global mutations operate on a single cluster and affelsasic measure of a computer processor, we feel it is adequate
all atoms in the cluster. These are applied to each memker comparing processor time requirements for optimisatio
of the population and perform twist (atoms are rotated aboatgorithms. All one-processor experiments in this papaewe
a random axis, where the angle of rotation increases witterformed on a dedicated computer that required 16.69
distance from the lowest atom on that axis) and pertunbrocessor seconds to execute a non-optimised version of
(a small, random perturbation of all atoms) operations. Ishekel5 compiled under Linux using the g++ compiler.
addition, a small number of new clusters are randomly
generated during the search phase of PBS.
) . . TABLE |
2) Fine-grained Search:The primary role of the local
PERFORMANCE STATISTICS FOR THE SINGLEPROCESSOR VERSION OF
mutation operators is to move around the search space in
PBSOPTIMISING ALL CLUSTERS IN THE RANGE5 < N < 80 WITH
small steps. Local mutations are only applied to popula-
= 14. SHOWN ARE THE NUMBER OF ATOMS IN THE CLUSTERTHE
tion members and have a localised effect within a cluster
RUTATIVE GLOBAL MINIMUM ENERGY [2] AND THE AVERAGE CPUTIME
typically close to a plane through the cluster. The local
. . . (SECONDS.
mutation operators in PBS are slide (cluster segments above
and below a random plane are translated parallel to the= oot SPU TN Opt SPU TN Opt =0
plane), rotate (cluster segments above and below a randoms| -9.000283 0.00031[-111.760670 60.43056|-225.655135 309.933
. - - = -
plane are rotated around an axis normal to the plane), self? 12.018170 0.02732]-115.76756] 116.44557|-230.663986 818.621

. o X -15.883113 0.00033|-120.74134% 40.06458/-234.809078 130.967
cross-over and the Directed Optimisation operator. -18.883688 0.001[34)-124.74827] 65.94159|-240.572493 493.232

8

9| -22.644892 0.001)35|-129.73736( 152.89260(-244.57906p 534.762
10| -26.13273% 0.00336|-133.744666 185.25261(-249.58774p 1946.203

IV. EXPERIMENTAL RESULTS 11| -29.596054 0.00637|-138.708582 109.90562(-253.61294P 406.549

b
b
B
B
3
D
p
H i i 12| -33.33230% 0.10338|-144.321054 157.78863(-258.62060f 697.751
The performance metrics used to CIaSSIfy algorlthms 13| -37.258877 0.02039|-148.327400 556.86164(-264.58704P 259.246
P
B
B
B
D
b
B
D

should be complete in that they measure all of a particular 14 -40.798348 0.16040|-152.333741094.22965|-268.594702 589.227
i 15 -44.806437 0.43441|-156.633479 150.09166-273.602348 348.556

aspect 01_‘ the algorithm. Fpr example, as a measure of \d Jirg)/cir 5'07442] 160 64102h 206.75467| 278 400955 567.831
computational effort or run-time, median / average number 17| -52.822588 7.77543|-165.634973 418.11168|-282.683008 8649.980
i micati i 18 -56.830907 19.64344-169.6424411377.01369|-287.462110 592.492

of local optimisations has been use.d. However, this MEASUIe) o 60.812428 17.53445-174.51163p 820.333701-292.46285p 353.907
does not effectively compare algorithms that have differen 20| -64.791953 22.56446-178.51932(2858.74571|-298.405358  453.174
imicati i 21 -68.783571 6.86347]-183.508224112.69072|-302.413220 711.709

uses for local optimisation (_e.g. only optimising near oyt 22| -72.791747 18.98448|-188.888965 119.44473|-307.421094 877.456
clusters as against optimising random clusters) or where th 23| -77.302495 3.84049|-192.89841P 116.63474-312.44130p 1052.447
i ati T : 24 -81.309508 10.07650|-198.45563R1138.19475|-318.40733p 1030.447

local optimisations have dlfferln_g _computatlonal (_)verdhsaa 25| -85.477376 6.13751(-202.468274 281.20476|-322.41425} 1157.131
Table | gives performance statistics, from ten trials of the 26 -90.210763 34.68952|-207.480764 589.72177|-327.371999 925.977

_ i imi 27| -94.219798 94.30553-211.49340% 634.60478|-331.379148 1540.366
One-processor version of PBS, to successfully optimise all 28 -98.33171]1 9.68254|-216.6368641062.63%79|-336.798725 5205.116

clusters in the rang2 < N < 80 with p = 14. The following 29)-102.774588223.98455|-220.646208 671.65480|-340.81137110562.500
points are relevant when interpreting the data in Table |. ~ 30196:83579100.214
o For each trial, the maximum allowed generations was
set to 100.

« As PBS frequently invokes local optimisations on clus-
ters which are at a local minimum, all local optimi-

sations that required less than 0.0001 seconds of CPU TABLE Il
time have not been included in the local optimisation ~FUTAT'VE GLOBAL MINIMA ENERGA"ES FORSL < N < 146 WITH
p = 14.

counts.

« The figures for local optimisations and CPU are aver- Atoms|Gen| Energy [Atoms|Gen] Energy [Atoms[Gen] Energy
aged over successful trials onIy. 81 | 270|-345.823858 103 | 15|-453.30701% 125 1{-562.448408

82 | 265|-350.322842 104 | 20|-458.252082 126 | 143|-568.179822
i _ 83 66|-354.84899] 105 | 650[-462.612300 127 85|-572.187270

Clearly the use Of.processor time as a m.easure Of Com 84 | 137|-359.276598 106 | 148(-467.316876 128 40(-577.237480
putational effort provides a more encompassing metric as it gs |1182-363.893075 107 | 23|-472.314113 129 | 87|-582.234940
4
fl

86 |4178-369.893328 108 | 39|-478.28243] 130 | 33|-588.201912
reflects the total amount of work performed by the search. 87 | 298 373 995930 109 | 8| 485 26009k 131 | 1320593 070343

However, this metric does have the disadvantage that the gg | 128-378.918456 110 | 5|-487.305200 132 | 120|-597.259380

. 89 | 119(-383.402473 111 24|-492.34279]1 133 | 125-602.129297
processor time is clearly dependent on the computer pro 00 | 991388 40165h 112 | 55| 495 311001 134 | 39| 007 127628
5

cessor used for the test and this makes comparison betweenor | 75|-393.973219 113 | 17|-503.220145 135 | 20|-613.089691

92 |1755-397.979930 114 | 55|-507.325288 136 | 118/-617.097211
algorithms tested on different computers difficult. To ever o1 205000558 118 | ool o1s oencab 135 | 57l aos 141037

come this, the method proposed in the COCONUTroject 94 |3341/-408.013642 116 | 15(-517.35107p 138 | 327|-627.142993
i i 95 153(-413.28842¢6 117 38(-523.244798 139 17|-633.108184

has been used.and the computer processor time, in terms of 06 | 350417209618 118 | 260 527 26991k 140 | 974 637 549700
the processor time taken to evaluate #iekel5function at 97 |1039-422.799524 119 | 32|-532.291000 141 | 199|-642.118064
+ i i i i i 98 175(-428.051560 120 16|-537.301330 142 21(-646.750417
1.0E+8 points® is documented. While this provides only a o e oaoh 191 | 1ol s Seoneh 145 | 5ol cesvaaess
100 40[-438.323619 122 | 256(-548.157486 144 |3658-657.949029
f

4

o

2http://www.mat.univie.ac.at/ neum/glopt/coconut 101 -444.292784 123 | 22|-552.317919 145 | 879-662.939679
3A C++ program is available at 102 36(-448.2999071 124 | 313|-557.23586% 146 |7282-668.904083

http://www.mat.univie.ac.at/ heum/glopt/coconut/eelcpp
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V. CONCLUSION [15]

This paper presented the results obtained using a popula-
tion based search, PBS, for optimising Morse clusters. PES]
was able to repeatedly obtain all optimal configurations in
the rangeb < N < 80,p = 3,6,10,14 as reported in [2]. In [17]
addition, putative global minima have been established for
Morse clusters in the ranggél < N < 146,p = 14. The
PBS algorithm incorporates and extends key techniques thad
have been developed in other Morse optimisation algorithms
over the last decade. Of particular importance are the use g]
cut and paste operators, structure niching (using theeslust
strain energy as a structure metric), two-phase local bearc
and a new operator, Directed Optimisation, which extendd”
the previous concept of directed mutation. In addition, PBS
is able to operate in a parallel mode for optimising largel?l]
clusters.

Future plans for PBS include improving the population
creation phase for larger clusters, implementation of -addi
tional mutation operators such as stretch and compress and
an enhanced version of the Directed Optimisation operator.
In addition, with a dedicated 128-node cluster shortly to
become available, PBS will be applied to larger Morse
clusters and also extended to other, related problems such
as Morse Clusters, Mixed Clusters, Benzene Clusters and
Water Clusters.
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