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Abstract 
Microarray gene expression data generally suffers from missing value problem due to a variety of 
experimental reasons. Since the missing data points can adversely affect downstream analysis, many 
algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive 
review of existing missing value imputation algorithms, focusing on their underlying algorithmic 
techniques and how they utilize local or global information from within the data, or their use of 
domain knowledge during imputation. In addition, we describe how the imputation results can be 
validated and the different ways to assess the performance of different imputation algorithms, as well 
as a discussion on some possible future research directions. It is hoped that this review will give the 
readers a good understanding of the current development in this field and inspire them to come up 
with the next generation of imputation algorithms.   
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1. Introduction 
 
Microarray technology has been one of the most useful tools in functional genomics research [1]. It 
has been used widely in numerous studies over a broad range of biological disciplines, such as cancer 
classification [2], identification of genes relevant to a certain diagnosis or therapy [3], investigation 
the mechanism of drug action and cancer prognosis [4, 5]. Using this technology, the relative 
expression levels in two or more mRNA populations can be analyzed for tens of thousands of genes 
simultaneously. 
 
In a cDNA microarray experiment, two samples of fluorescence labeled cRNA targets which are 
reversed transcribed from mRNA purified from cellular contents are hybridized onto a cDNA 
microarray. If the cDNA sequence on the target is complementary to the DNA probe on a given spot, 
that cDNA will hybridize to the spot, where it will be detected by a laser scanner. The laser scanner 
will scan at the two specific wavelengths corresponding to the two fluorescence dyes, giving a two-
channel signal. The ratio of the two fluorescence intensities at each spot indicates the relative 



abundance of the corresponding DNA sequence in the two cDNA samples. As one sample is the 
reference, the ratio expresses the extent to which the other sample is differentially expressed with 
respect to the reference. By examining the expression ratio of each spot, gene expression study can be 
performed. 
 
The gene expression data from microarray experiments is usually in the form of large matrices of 
expression levels of genes (rows) under different experimental conditions (columns). In spite of the 
wide spread use of microarray technology, microarray data often suffers from missing value problem. 
Microarray data can contain up to 10% missing values and in some datasets, up to 90% of genes have 
one or more missing values [6, 7]. Missing values occur due to a variety of reasons including 
hybridization failures, artifacts on the microarray, insufficient resolution, image noise and corruption, 
or they may occur systematically as a result of the spotting process [8]. A spot that has negative 
background corrected intensity would normally be declared as missing.  In addition, suspicious values 
are often flagged as missing too. The occurrence of missing values in gene expression data can 
adversely affect downstream analysis. Missing values have been found to give nontrivial negative 
effect on some popular algorithms, such as hierarchical clustering and support vector machine (SVM) 
classifier, and many analysis methods such as principal component analysis (PCA) and singular value 
decomposition (SVD) cannot be applied to data with missing values. 
 
Instead of repeating the experiments, one can attempt to estimate the missing values by imputation. 
Many algorithms have been proposed for missing value imputation in gene expression data. A quick 
search in PubMed on the phrase missing value imputation in the Title/Abstract field returns 25 articles, 
in which 15 articles were published during 2008-2010. Early approaches to deal with missing values 
include discarding the rows containing missing values, replacing missing values by zeros, or imputing 
missing values by row average or median [9]. Recent research demonstrates that missing values 
estimation can be significant improved by incorporating information about the data into the 
imputation.  
 
In this paper, we attempt to provide a comprehensive survey of existing imputation algorithms in 
terms of their conceptual and algorithmic basis. A recent review in [62] discusses in broad term the 
missing value problem and existing approaches from the perspective of a biologist or data analyst. In 
contrast, this paper provides in depth discussion on the algorithmic aspects of missing data estimation 
in existing methods from the perspective of a computer scientist or engineer, who works on algorithm 
and software development. We survey existing missing value imputation algorithms in terms of how 
information is incorporated into the imputation process, how the imputation results can be validated, 
how their performance can be compared in terms of internal and external measures, as well as factors 
that could affect their performance. Finally, we conclude the survey with a discussion on some 
possible future research directions. 
 
2. The missing value problem 
 
In a typical gene expression data matrix, the rows are the genes (or oligonucleotides) under 
investigation and the columns are the experimental conditions or time points. The gene expression 
data matrix is obtained by performing a series of microarray experiments on the same set of genes, 
one for each column. Let the gene expression data be represented as an M×N matrix Y where the 
entries of Y are the expression ratios for M genes under N different conditions or time points. Then the 
element ijy denotes the expression level of the i-th gene in the j-th experiment. The objective of 

missing value imputation is to estimate the missing entries given the incomplete gene expression data 
matrix Y.  
 
Missing value imputation involves exploiting information about the data to estimate the missing 
entries. In general, there are two types of information available. The first type of information is the 
correlation structure between entries in the data matrix. In gene expression data matrix, correlation 
between rows exists due to the fact that genes involved in similar cellular processes usually have 



similar expression profiles. Similarly, correlation between columns exists since the set of genes is 
expected to behave similarly under similar conditions. Hence, it is possible to estimate the missing 
entries based on subset of related genes or subset of related conditions. The second type of 
information is domain knowledge about the data or the processes that generate the data. The domain 
knowledge can be used to regularize the estimation such that more plausible estimates are obtained. 
More recent gene expression missing value imputation algorithms have tried to incorporate 
information about the underlying biological processes to improve the imputation accuracy. The more 
one knows about the biological process behind the data, the better one can constrain the solution to 
the missing value imputation problem. 
 
 
3. Missing Value Imputation Techniques  
 
Based on the type of information used in the algorithm, we categorize existing algorithms into four 
different classes: (1) global approach, (2) local approach, (3) hybrid approach, and (4) knowledge 
assisted approach. The table below shows our grouping of imputation algorithms considered in this 
paper. 
 
 
 << Table 1 here >> 
 
 
3.1 Global approach 
Algorithms in this category perform missing value imputation based on global correlation information 
derived from the entire data matrix. They assume the existence of a global covariance structure among 
all genes or samples in the expression matrix. When this assumption is not appropriate, i.e., when the 
genes exhibit dominant local similarity structures, their imputation becomes less accurate. Well 
known imputation algorithms in this category include SVD imputation (SVDimpute) [9] and Bayesian 
principal component analysis (BPCA) [10]. In SVDimpute, the singular value decomposition is used 
to obtain a set of mutually orthogonal expression patterns, called eigengenes, which can be linearly 
combined to approximate the expression of all genes in the dataset. SVDimpute first regresses the 
gene against the k most significant eigengenes and then use the coefficients of the regression to 
reconstruct the missing values from a linear combination of the k eigengenes. In BPCA, the N-
dimensional gene expression vectors y is expressed as a linear combination of K principal axis vectors 

vl  , i.e., ε+= =
K
l llvwy 1 , where the factor scores wl and the residual error ε are regarded as normally 

distributed random variables in the probabilistic PCA model. An EM-like algorithm is then used to 
estimate the posterior distributions of the model parameter and the missing values simultaneously. 
BPCA suggests setting K = N − 1, but if the effective dimension of the data set is smaller than K, the 
algorithm automatically suppresses the redundant principal axes.  
 
3.2 Local approach 
 
In contrast to global approach, algorithms in this category exploit only local similarity structure in the 
dataset for missing value imputation. Only a subset of genes that exhibits high correlation with the 
gene containing the missing values is used to compute the missing values in the gene. Some of the 
earliest and well-known imputation algorithms, such as, K nearest-neighbor imputation (KNNimpute) 
[9], least square imputation (LSimpute) [11], local least square imputation (LLSimpute) [12], are 
among this category. 
 
KNNimpute [9] is perhaps one of the earliest and most frequently used missing value imputation 
algorithms. KNNimpute uses pairwise information between the target gene with missing values and 
the K nearest reference genes to impute the missing values. The missing value j in the target gene is 
estimated as the weighted average of the j-th component of the K reference genes with the weights set 
proportional to the inverse of the Euclidean distance between the target and the reference genes. 



KNNimpute performs well when strong local correlation exists between genes in the data. Several 
modifications to the basic KNNimpute algorithm have been proposed [13, 14]. In sequential 
KNNimpute (SKNNimpute) [13], imputed genes are reused in later missing value imputation of other 
genes. In SKNNimpute, the data matrix is first split into two sets, where the first set, i.e. the reference 
set, consists of genes with no missing values and the second set, i.e. the target set, consists of genes 
with missing values that are ranked according to the missing rate. The missing values are estimated 
sequentially using KNNimpute, starting with the gene having the smallest missing rate in the target 
set. Once all the missing values in a target gene are imputed, the target gene is moved to the reference 
set to be used for subsequent imputation of the remaining genes in the target set. In contrast to the 
single pass SKNNimpute, the iterative KNN imputation algorithm (IKNNimpute) of [14] uses an 
iterative process to refine the missing value estimates. During each iteration, K closest reference genes 
selected from the previously imputed complete matrix are used to refine the missing values estimated 
of the target gene.  The iteration terminates when the sum of square difference between the current 
and the previous estimated complete matrix falls below a threshold.  
 
In Gaussian mixture clustering imputation (GMCimpute) [15], the data is clustered into S components 
Gaussian mixtures using the EM algorithm. Then the S estimates of the missing value, one from each 
component, are averaged to obtain the final estimate of the missing value. The clustering and 
estimation steps are iterated until the cluster memberships of two consecutive iterations are identical. 
GMCimpute uses the local correlation information in the data through the mixture components. 
Nevertheless, unlike KNNimpute where K is usually taken to be around 10 to 20, the mixture 
components in GMCimpute can consists of hundreds of genes. Hence, GMCimpute is able to use 
more global correlation information. 
 
A number of local imputation algorithms use the concept of least square regression to estimate the 
missing values. In least square imputation (LSimpute) [11], the target gene y and the reference gene x 
are assumed to be related by the linear regression model εβα ++= xy . LSimpute first select the K 
most correlated genes based on absolute Pearson correlation values. Then a least square estimate of 
the missing value is obtained from each of the K selected genes using single (pairwise) regression. 
Finally, the K estimates are linearly combined to form the final estimate. LSimpute also estimates the 
missing values by considering the correlation structure between columns and combines the estimates 
from row-wise (LSimpute_gene) and column-wise (LSimpute_array) imputations linearly to improve 
the imputation accuracy. Unlike LSimpute, Local least square imputation (LLSimpute) [12] uses a 

multiple regression model εα += TXy to impute the missing values from all K reference genes 
simultaneously. Despite its simplicity, LLSimpute has been shown to be highly competitive compared 
to KNNimpute and the much more complex BPCA [12, 16].  
 
Several extensions to the basic LLSimpute algorithm have been proposed [17-19]. In sequential 
LLSimpute (SLLSimpute) [17], the imputation is performed sequentially starting from the gene with 
the least missing rate, and the imputed genes are then used for later imputation of other genes. 
However, only genes with missing rate below a certain threshold are reused since genes with many 
imputed missing values are less reliable. SLLSimpute has been shown to exhibit better performance 
than LLSimpute due to the reuse of genes with missing values. In iterated LLSimpute (ILLSimpute) 
[18], different target genes are allowed to have different number of reference genes. The number of 
reference genes is chosen based on a distance threshold which is proportional to the average distance 
of all other genes to the target gene. ILLSimpute iteratively refines the imputation by using the 
imputed results from previous iteration to re-select the set of coherent genes to re-estimate the missing 
values until a preset number of iterations is reached. ILLSimpute has been shown to outperform the 
basic LLSimpute, KNNimpute, and BPCA due to these modifications. The robust least square 
estimation with principal components (RLSP) method [19] uses the principle components of the K 
reference genes to impute the missing values and show that this helps to resolve the problem of 
collinearity in LLSimpute.  
 



In the regression with Bayesian gene selection (BGSregress) method of [20], the target gene and the K 
reference genes are assumed to be related by a multiple regression model. However, instead of 
choosing the reference genes based on a similarity measure, they are selected by using the Bayesian 
variable selection algorithm in which a Gibbs sampler is used to obtain the K reference genes having 
the strongest predictive power for the target gene. Then, the missing values are estimated by solving a 
linear regression problem, either by a least square formulation or by using another Gibbs sampler, to 
estimate the regression coefficients. It was shown that the proposed method significantly outperforms 
KNNimpute in imputation accuracy in terms of normalized RMS error (NRMSE).  
 
Collateral missing value imputation (CMVE) [21] is a local imputation technique that utilizes the 
concept of multiple parallel estimation of missing values to improve the final estimation. In CMVE, 
the K reference genes are selected by using the absolute covariance value between the reference gene 
and the target gene. The first estimate of the missing value is then obtained by solving a single least 
square (LS) regression problem as in LSimpute. Two more estimates of the missing values are 
obtained from the reference genes by solving a non-negative least square (NNLS) regression problem. 
By combining the three estimates, CMVE was able to demonstrate better accuracy in NRMSE over 
BPCA, KNN, and LSimpute on several data sets involving ovarian cancer and yeast sporulation time 
series data. Ameliorative Missing Value Imputation (AMVI) [22] improves on the CMVE by using 
Monte Carlo simulation to determine the optimal number of reference genes K that minimizes the 
NRMSE score. Experimental results in [22] indicated that significant improvement in imputation 
accuracy can be achieved over CMVE with the optimal K determined this way. 
 
It is well known that time series expression profile exhibits strong dependency between observations. 
This fact has been used in deriving a continuous representation of time series gene expression profiles 
using cubic splines [24] and in the reconstruction of unevenly sampled profiles using B-spline bases 
[25]. Although the two methods are not posed as missing value imputation methods, they nevertheless 
allow the prediction of missing entries in the time series profiles. Recently, an imputation method that 
exploits correlation between genes as well as between time points in the gene expression profile was 
proposed [26].  The correlation between time points in a profile is captured by an autoregressive (AR) 
model that generates the profile. The correlation between genes is captured by assuming the highly 
correlated genes are generated by the same AR process. The algorithm, called autoregressive least 
square imputation (ARLSimpute), first select a set of K most correlated genes based on Euclidean 
distance. Then the K genes are used to jointly estimate the AR coefficients and the missing values are 
estimated by solving a least square problem using the estimated AR coefficients. The experimental 
results in [26] shown that the imputation accuracy of ARLSimpute in terms of NRMSE for time series 
expression data is significantly better than imputation algorithms that ignore the within profile 
correlation.  
 
3.3 Hybrid approach 
 
The correlation structure in the data affects the performance of imputation algorithms. If the dataset is 
heterogeneous, local correlation between genes are dominant and localized imputation algorithms 
such as KNNimpute or LLSimpute perform better than global imputation methods such as BPCA or 
SVDimpute. On the other hand, if the dataset is more homogenous, a global approach such as BPCA 
or SVDimpute would better capture the global correlation information in the data. In [27], Jornsten et 
al. proposes a hybrid approach called LinCmb that captures both global and local correlation 
information in the data. In LinCmb, the missing values are estimated by a convex combination of the 
estimates of five different imputation methods: row average, KNNimpute, SVDimpute, BPCA, and 
GMCimpute. Row average, KNNimpute, and GMCimpute uses local correlation information in their 
imputation, whereas SVDimpute and BPCA uses global correlation information in their imputation. 
To obtain the optimal set of weights that combine the five estimates, LinCmb generates fake missing 
entries at positions where the true values are known and uses the constituent methods to estimate the 
fake missing entries. The weights are then obtained by performing a least square regression on the 
estimated fake missing entries. The final weights for LinCmb are obtained by averaging the weights 
obtained in 30 iterations. LinCmb has been shown to be adaptive to the correlation structure of the 



data matrix in that if there are more missing entries in the data matrix, more weights are placed on the 
global methods.  
 
3.4 Knowledge assisted approach 
 
The common theme for algorithms in this category is the integration of domain knowledge or external 
information into the imputation process. The use of domain knowledge has the potential to 
significantly improve the imputation accuracy beyond what is possible with purely data-driven 
approach, especially for datasets with small number of samples, noisy, or with high missing rate. 
Algorithms in this category can make use of, for example, knowledge about the biological process in 
the microarray experiment [28], knowledge about the underlying biomolecular process as annotated in 
Gene Ontology (GO) [6], knowledge about the regulatory mechanism [39], information about spot 
quality in the microarray experiment [29], and information from multiple external datasets [63, 23].   
 
Cyclic systems, such as the cell cycle [30] and circadian clock [31] play a key role in many biological 
processes. Microarray experiments that study these systems are usually carried out by synchronizing a 
population of cells by first arresting cells at a specific biological life point and then releasing cells 
from the arrest so that all cells are at the same point when the experiment begins [30, 32]. However, 
even if cells are perfectly synchronized at the beginning of the experiment, they do not remain 
synchronized forever [33]. For example, yeast cells seem to remain relatively synchronized for two 
cycles [30] while wild type human cells lose their synchronization very early [34] or halfway through 
the first cycle depending on the arrest method. This causes the peak expression value to decrease in 
amplitude across time. Due to the phenomenon of synchronization loss, the average signal power in 
successive cycles decreases significantly through time. The biological phenomenon of 
synchronization loss and the correlation information between genes and between arrays are exploited 
in a flexible set theoretic framework called Projection onto Convex Sets (POCS) [28] for missing 
value imputation. In POCS, every known a priori property about the original signal is formulated as a 
corresponding convex set. Given m closed convex sets, POCS successively projects onto these convex 
sets until reaching a solution at the intersection of all convex sets. POCSimpute captures gene-wise 
correlation by performing a local least square regression, captures array-wise correlation by PCA 
imputation, and captures the phenomenon of synchronization loss by restricting the squared power of 
the expression profiles. POCSimpute is able to adaptively find an optimal solution regardless of 
whether global or local correlation structure is dominant in the data as the final solution will always 
be dominated by the smallest (i.e. most reliable) constraint set, while still satisfies the larger (i.e. less 
reliable) constraint sets. 
 
Functionally related genes tend to express in a modular fashion, with higher degree of concerted 
reactions to some stimuli [35]. In [6], the a priori information about the functional similarities in term 
of Gene Ontology (GO) is used for missing value imputation. GO is a well accepted standard for gene 
function categorization [36, 37] and contains three independent ontologies that describe gene products 
in terms of their associated biological processes (BP), cellular components (CC) and molecular 
functions (MF). In GOimpute [6], the semantic similarity is used as the external information on the 
functional similarity of two genes.  GOimpute considers the BP and MF ontologies when calculating 
the semantic dissimilarity between two genes gi and gj. The semantic dissimilarity ds(gi, gj) and the 
expression level distance d(gi, gj) are combined to form a combined distance defined as 

),(),( jijisij ggdggdc α= , where the positive weight α controls the relative contribution of the two 

distance measures. The combined distance is used to select neighborhood genes in KNN and LLS 
imputation. Experimental results in [6] indicated that GO improves the imputation accuracy when the 
number of experimental conditions is small or the proportion of annotated genes is large, and at higher 
rates of missing values. The authors recommended the use of GO information in an imputation if the 
number of conditions is less than 10 and in particular if the percentage of missing values is 
sufficiently large (>10%).  
 



Knowledge about the regulatory mechanism can also be used to identify relevant neighbor genes for 
missing value imputation [39]. It is well known that gene expressions in eukaryotic cells are 
concertedly regulated by transcription factors and chromatin structure [40]. As histone acetylation 
could alter chromatin structure and provide binding surfaces for transcription factors, the transcription 
factor activity is highly regulated by the histone acetylation states in chromatin. It was reported in [41] 
that genes sharing unique histone acetylation pattern are significantly co-expressed under a wide 
range of experimental conditions, and are enriched for common biological functions, binding of 
specific transcription factors, and common DNA motifs. This implies that gene expression activity is 
strongly regulated by the histone acetylation states [42, 43] and co-expressed genes would have 
similar acetylation state in their chromatin.  
 
The histone acetylation information aided imputation (HAIimpute) framework proposed in [39] 
integrates histone acetylation information into KNNimpute and LLSimpute to improve the accuracy 
of missing value estimation. HAIimpute uses the histone acetylation data of Saccharomyces cerevisiae 
from [41], where genome wide histone acetylation levels at 11 sites for both intergenic regions (IGRs) 
and open reading frames (ORFs) were measured. In [41], clusters of genes with similar acetylation 
patterns across the 11 residues were determined by the k-means algorithm. HAIimpute uses the mean 
expressions of genes from each of the clusters to form the pattern expressions. The missing values in a 
gene are then obtained by fitting a linear regression model between the gene and the pattern 
expressions. HAIimpute also perform a secondary imputation using KNNimpute or LLSimpute. The 
final estimate of the missing value is given by a convex combination of the imputations from linear 
regression and the secondary imputation. Experimental results in [39] indicated that HAIimpute 
consistently improve the KNNimpute or LLSimpute  and the imputed genes show better correlation 
with the original complete genes in terms of NRMSE or Pearson correlation.   
 
In [29], information about spot quality in the microarray experiment is taken into account for not only 
missing value imputation, but also the imputation of unreliable values. The main idea behind the 
approach is that good quality spots should have more impact on the imputation of other spots, and 
should themselves be subjected to less imputation than spots with poorer quality. In a typical 
microarray experiment, a data pre-processing and filtering step is usually taken before any data 
analysis is performed [44]. In the filtering stage, if a spot has either a small area, low absolute 
intensity or with average intensity close to background level, with poor SNR, with saturated values in 
either channel, or a combinations of these, then the spot is usually flagged as unreliable and discarded. 
This amounts to a binary decision process where a spot is either kept or discarded (missing). One can 
see that the hard binary decision process is problematic since a spot that is just above the quality 
threshold will be treated as completely reliable whereas a spot which is just below the threshold will 
be considered completely unreliable. To take spot quality into account, Johansson and Hakkinen [29] 
proposed the weighted nearest neighbors imputation (WeNNI). Their method looks at the raw 
intensity values from the microarray image and compute quality weights w for each spot. Then, the 
imputed value is taken as a linear combination of the original value and the value suggested by its 
neighbors, i.e. ikikikikik ywywy ~)1(' −+= , where iky~ takes into account the quality weights of the 
neighbors and the distance between the neighbors and the original value. Their experimental result on 
several datasets comparing imputations by row average, KNNimpute, LSimpute_adaptive, and 
weighted row average shows that WeNNI significantly outperforms the non-weighted algorithms in 
terms of accuracy as measured by mean squared deviation and robustness due to the inclusion of both 
spot quality and correlations between genes. 
 
 In [45], the idea of using spot quality information in missing value imputation is extended to further 
consider the case of one-channel depletion. In a two-channel cDNA microarray, missing values could 
arise due to either a missing reference spot or a missing treatment spot. The case where the spot in one 
channel is missing while it is measurable in the other channel is called one-channel depletion. For 
one-channel depletion, the expression ratio of the treatment versus reference cannot be computed and 
would be flagged as missing. However, it was hypothesized in [45] that if the treatment channel is 
measurable while the reference channel is un-measurable, it indicates that the treatment sample is up-



regulated with respect to the reference sample and vice-versa.  This hypothesis has been observed to 
be true in five cancer datasets they investigated, where systematic bias (over-estimation in treatment 
channel depletion and under-estimation in reference channel depletion) was observed in the 
imputation results using WeNNI. A simple bias correction strategy (WeNNI_BC) involving a constant 
shift c calibrated on non-missing duplicate controls is shown to remove this bias.   
 
In gene expression dataset that has a small number of samples and/or has high missing rate, it is very 
difficult to reliably identify a set of reference genes from the dataset.  One way to overcome this 
problem is to use multiple external reference datasets in the imputation. The integrative missing value 
estimation (iMISS) method of [23] integrates information from multiple external reference datasets to 
improve the imputation. The rationale behind the approach is that if a set of genes frequently exhibit 
expression similarity to the target gene over multiple external datasets, they constitute a robust 
neighborhood which tends to show expression co-variations with the target gene. iMISS uses 
KNNimpute or LLSimpute with average Euclidean distance or rank order statistics for reference 
genes selection across multiple reference datasets. To assess the appropriateness of the reference 
datasets, iMISS generates a complete submatrix from the target dataset, then removing 5% of the 
values randomly from the submatrix to generate 30 evaluation datasets. The imputation algorithms 
with and without the integrative scheme are then run on the 30 evaluation datasets and their NRMSE 
are compared by student t-test to assess whether there is any statistical difference between the errors. 
If the NRMSE of the integrative approach is consistently less than its non-integrative counterpart, the 
reference datasets are deemed useful for imputation of the target dataset. The experimental result in 
[23] shows that iMISS consistently performs better than LLSimpute and KNNimpute. In [63], 
Jornsten et al. propose using an external database matrix generated from publicly available microarray 
data as meta-data for imputation. In their method (denoted here as metaMISS), the database matrix of 
a species is obtained from all available microarrays of the species downloaded from the Stanford 
Microarray Database (SMD) [64]. Given a gene expression dataset A, the missing values in a column 
in A are imputed by first finding a set of 40 most similar columns from the database matrix or from A 
as measured by the absolute Pearson correlation. GMCimpute is then used to impute the missing 
values in the column from this set of 40 most similar columns. Their results indicated that better 
imputation accuracy in terms of NRMSE can be obtained with this approach.  
 
4. Validation of Imputation Results 
 
Validation of imputation results is an important step in assessing the performance of imputation 
algorithms. In general, validation is done by computing certain performance indices between the 
imputed and the (known) original values. We called this kind of validation internal validation, i.e. the 
validation uses only information in the dataset. Examples of performance indices for internal 
validation include (i) fidelity to true expression values, (ii) preservation of internal structures in the 
dataset, (iii) preservation of significant genes in the dataset, and (iv) preservation of 
discriminative/predictive power for classification. Internal validation is by far the most commonly 
used validation method for missing value imputation. Nevertheless, in view of the fact that missing 
value imputation is to facilitate downstream analysis, validation can also be done by assessing the 
effect of imputation on subsequent biological analysis. We called this external validation, i.e. the 
validation uses external knowledge. External validation is less straightforward to perform and usually 
suffer from lack of relevant information (e.g. incomplete GO annotation or functional annotation), but 
it is more relevant to the final goal of missing value imputation which is to facilitate downstream 
biological analysis. Hence, external validation should be performed whenever practicable. Table 2 
lists the different validation methods that have been used by different researchers. 
 
 
 << Table 2 here >> 
 
 
4.1 Internal validation 
 



(i) Fidelity to true expression values 
The most common method to assess imputation accuracy is to compute the normalized root mean 
square error (NRMSE) or variants of it (e.g, RMSE, where the denominator in (1) is replaced by mn) 
between the imputed values and the true values [9-12, 14-20, 23, 26-28, 39, 46, 48]. The NRMSE is 
defined as 
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where gik denotes the value of the k-th experiment for gene gi, and g and g~  denote the true value and 
the imputed value respectively. To overcome the non-availability of ground truth, assessment of 
imputation algorithm is usually done on the complete data matrix derived from the original data 
matrix. In deriving the complete data matrix, genes with missing values are excluded. Then missing 
values are randomly generated on the complete data matrix either assuming a uniform distribution of 
missing entries or according to some distribution models of missing entries estimated from the actual 
dataset. Imputation algorithms with lower NRMSE are more accurate at imputing the missing values. 
Note that since NRMSE effectively calculates the second moment of the residual, i.e. it assumes that 
the residual has a normal distribution, this performance measure would not be appropriate for 
algorithms that deviate from this normality assumption. 
 
When replicates are available, i.e. when microarray experiments are performed in replicates, the 
imputed values can be compared with the replicates (which serve as ground truth) to assess the 
imputation accuracy. In [29], the accuracy of imputation is assessed using the mean squared deviation 
(MSD) 
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where x~ is the imputed data, γ is the replicate data, and the summation is run over all expression 
values in the replicate dataset except where they are marked as invalid in the data pre-processing step. 
One can see that except for the choice of ground truth, the MSD is the same as the squared of the 
RMSE.  
 
In [16], the data matrix is log-transformed before missing value imputation is performed. The 
resulting RMSE of the imputation of the log-transformed data is denoted as log-transformed RMSE 
(LRMSE). As log-transformation improves the normality of data distribution and is scale-invariance 
to power law distribution, it could allow better comparison of imputation accuracy across different 
datasets. However, as negative expression values are removed prior to log-transformation in [16], less 
data are used for imputation and this could affect imputation performance. The log-transformation of 
the data could also favors imputation algorithms that have a normality assumption in the data 
distribution or algorithms that employ the Euclidean distance-based metric. Hence, the performance 
of imputation algorithms and their relative ranking could potentially be affected by this data pre-
processing step. Note that values in a gene expression data matrix are usually given by the log-
transformed of the raw gene expression ratios, the effect of an additional log-transformation of the 
dataset prior to imputation warrants further investigation. 
 
(ii) Preservation of internal structures  
Another way to assess the performance of an imputation algorithm is by measuring how well the 
clustering of the complete dataset was preserved when clustering the imputed dataset [7, 47, 48]. This 
type of assessment looks at how well the internal structure of the dataset (as measured by a clustering 
algorithm) is preserved by the imputation method. It has been shown that even if two imputation 
methods differ markedly in their NRMSE, their differences become negligible when they are 
evaluated in terms of how well they can reproduce the original gene clusters [47]. In [47], the 



agreement between the partitioning of the imputed dataset and the complete dataset by K-mean 
clustering is measured by the average distance between partitions (ADBP). The method works by first 
matching optimally each of the K clusters in the partitioning of the imputed dataset with its best pair 
in the K partitioning of the complete dataset before measuring the dissimilarity between the two 
partitions. Let U and V be two different partitions of a dataset. The normalized Hamming distance 
between a cluster pair {uj∈U, vj∈V} is given by 
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where n(uj) and n(vj) are the cardinalities of the clusters uj and vj, respectively, and }{ jugI ∉ equals 

one if gene g does not belong to the cluster uj, and zero otherwise [49]. Every possible combination of 
ui∈U, vj∈V pair would generate a K×K matrix of ),( jih vud . Then the optimum K cluster pairs can be 

obtained from the K×K matrix by solving an assignment problem using the Hungarian algorithm [50, 
51].  Finally, given the optimum k cluster pairs { uj∈U, vj∈V}, the ADBP error is calculated as 
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Imputation algorithm that produces a lower ADBP error could preserve the structure within the 
dataset better than algorithm that has a higher ADBP error. 
 
In [7], the performances of no imputation, KNNimpute, and replacement by zero are assessed in terms 
of how well the imputation preserves the hierarchical clustering of the complete dataset. The 
hierarchical clustering results from the complete dataset and from the imputed dataset are compared 
using the conserved pairs proportion (CPP) index which measures the percentage of conserved genes 
between the clusters of the reference set and the imputed set. To compute the CPP between the 
reference clusters and the imputed clusters, one first builds a contingency table with rows denoting the 
reference clusters and columns denoting the imputed clusters. Then the entries in the contingency 
table are filled in by counting the number of genes that are common to the clusters indexed by the row 
and column. Finally the CPP is computed by summing the largest entry in every row and divided by 
the total number of genes. It was observed in [7] that missing values have significant effects on the 
stability of the gene clusters. Even a 1% missing rate is enough to cause genes to be relocated to 
different clusters in the complete-linkage hierarchical clustering result. With the missing values 
imputed by KNNimpute, the bias in the clustering caused by missing values can be significantly 
reduced. The idea of comparing the performance of imputation algorithms based on how well they 
preserve the cluster structure using CPP is also taken up in a recent comparative study of many 
existing imputation algorithms in [48].    
 
(iii) Preservation of significant genes 
Ideally, a good imputation algorithm should preserve interesting genes in the dataset, while minimizes 
the chance of artificially inflating genes that were originally non-differentially expressed [14, 27, 52]. 
In [52], the change in the list of differentially expressed genes detected due to imputation is used as a 
performance measure for imputation algorithms. The performance is measured by checking how 
many differentially expressed genes are lost or added to the original list of differentially expressed 
genes that is obtained from the full dataset due to imputation errors. To detect differentially expressed 
genes, [52] uses the ANOVA method of [53] which is based on a linear model of gene expression, as 
well as an approach based on hypothesis testing directly on the matrix of log ratios as done by 
Significance Analysis of Microarrays (SAM) [54]. The SAM test is also used in [14] to determine the 
percentage of lost differentially expressed genes after imputation. In [27], ANOVA and standard or 
regularized t-test with correction for multiple testing are used to test for significant differential 
expressions in the complete dataset to obtain the gold standard. Then, standard or regularized t-test is 



 

applied to the imputed dataset and the list of genes sorted by the P-value is compared to the gold 
standard to compute the false positive rate at a false negative rate of 0% and 5%. 
 
(iv) Preservation of discriminative/predictive power 
The performance of imputation algorithms can also be assessed by how the imputation affects the 
classification accuracy of the imputed dataset for different disease types [22, 46, 55].  The study in 
[55] looks at the effects of missing values and their imputation on classification performance. Three 
imputation algorithms (KNNimpute, LLSimpute, and BPCA) are applied to five different cancer 
datasets and the classification accuracy is assessed by three different classifiers (SVM, KNN, 
classification and regression tree (CART)). It was shown that except for replacement by zeros, other 
imputation algorithms have little difference in affecting classification performances of the SVM or 
KNN classifiers. In [46], the impact of missing value imputation on classification accuracy is studied 
by using synthetically generated datasets. Moreover, rather than random generation of missing values, 
the missing values are generated by identifying and discarding the low quality entries in the synthetic 
dataset. Six imputation algorithms, namely, row average, KNNimpute, LLSimpute (both L2 and 
Pearson correlation based), LSimpute, and BPCA, are studied with respect to how well the imputed 
dataset can preserve the discriminative power in the original dataset as measured by three different 
classifiers (LDA, KNN, and linear SVM). Their results suggested that it is beneficial to apply missing 
value imputation when the noise level is high, variance is small, or gene-cluster correlation is strong, 
under small to moderate missing rates. In [22], genes from imputed dataset are ranked by their 
between sum of squares to within sum of squares (BSS/WSS) ratio, which measures the ability for 
class prediction. The p most significant genes are selected and compared with the p most significant 
genes selected from the complete dataset in terms of class prediction capability using the true positive 
rate score. 
 
Other performance measure that has been used to validate or compare performance of imputation 
algorithms includes Pearson correlation between imputed and original data [14, 39]. Pearson 
correlation measures the strength of linear association between two variables. In [14], the capability of 
the imputation method to retain the structure of each experiment (column) is determined by the 
Pearson correlation coefficient R2 between the estimated values and the true values for each column of 
the data matrix.  In [39], the Pearson correlation between the imputed genes and the genes in the 
complete dataset is calculated to assess the accuracy of the imputation.  
 
4.2 External validation 
 
External validation assesses the merit of an imputation algorithm by examining how it affects 
downstream biological analysis with the aid of external information related to functional annotation or 
pathway information. Different criteria, such as functional enrichment of gene clusters [47], and 
improvement in biological interpretation of the data [22], have been proposed for validation. 
 
In many microarray experiments, the goal is to detect sets of genes that share similar functional roles. 
Once clustering has been done, a biologist typically looks for GO terms that are significantly enriched 
among the genes of each cluster [47, 56-58]. The GO terms can then be used to characterize the 
functional roles of the genes under study. Hence, one way of assessing the performance of an 
imputation algorithm is to check for significant enrichment of GO terms in gene clusters. In [47], the 
enrichment p-value for each GO terms t and for each cluster is calculated by  
 
 

   
=


















−
−










=
),min( Tb

Ki

b

B

ib

TB

i

T

p       (5) 

 



where b is the  number of genes in the cluster, K is the number of genes in the cluster annotated with 
GO term t, B is the number of genes in the dataset, and T is the number of genes in the dataset 
annotated with GO term t. The p-value in (20) expresses the probability of randomly finding the same 
or higher number of genes annotated with the particular GO term in the cluster from the dataset. In 
[47], between one to 20 most enriched GO terms for each cluster of the reference partition and the 
imputed partition were obtained and these clusters of GO terms were compared using the ADBP 
measure to quantify the proportion of GO terms that were present in the complete dataset and were 
preserved in the imputed dataset. One interesting finding is that even when there are marked 
differences in the NRMSE among different imputation algorithms, these differences become 
negligible when the methods are evaluated in terms of how well they can reproduce the original gene 
clusters or their biological interpretations with GO.  
 
In [22], the different imputation algorithms are compared based on whether biologically important 
genes still remain significant after imputation. This comparison is particularly relevant to studies 
where the aim is to detect marker genes for disease characterization. A good imputation algorithm 
should preserve the significance of the marker genes after missing value imputation.  To assess the 
performance of the imputation algorithms, the set of significant genes selected by using the BSS/WSS 
ratio are examined for any known biologically important genes. Their results on the breast cancer 
dataset show that important genes like KIAA1025 (co-regulated with estrogen receptor for both in 
vivo and clinical data, and is expressed in more than 66% of human breast tumors [59]) and PKP2 
(found in breast carcinoma cell lines [60] and could serve as a marker for the identification and 
characterization of carcinomas derived either from or corresponding to simple or complex epithelia 
[61]) could be missed by popular imputation algorithms like LLSimpute, BPCA, and KNNimpute at 
even low (1%) to moderate (5%) missing rate.  

 

5. Factors Affecting Imputation Performance 

It has been shown in several studies that the performance of imputation algorithms is significantly 
affected by factors such as the correlation structure in the data, the missing-data mechanism, the 
distribution of missing entries in the data, and the percentage of missing values in the data [16, 46, 47, 
52]. Hence, there is no one imputation algorithm that performs the best in every situations and 
choosing the right algorithm may significantly boost the accuracy of the imputation results.  
 
In [16], the performances of eight different imputation algorithms are compared on several gene 
expression datasets involving time series, multiple exposure (i.e. non time series dataset such as those 
from cancer study), and mixture of both types. To measure the underlying correlation structure in the 
dataset, an entropy measure of the dataset D, given by 
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data, is used to measure the dispersion in the eigenvalues. Low entropy indicates that the data are 
strongly correlated. In contrast, high entropy indicates a complex data exhibiting strong local 
substructure. As expected, global methods, such as SVDimpute and BPCA, perform better on 
microarray datasets with low entropy and local methods, such as LLSimpute and KNNimpute, 
perform better on high entropy datasets. 
 
The missing-data mechanism has an important bearing on the performance of missing value 
imputation. In [65], three mechanisms of missingness are defined: missing completely at random 
(MCAR), missing at random (MAR) and missing not at random (MNAR). An observation is said to 
be MCAR if the missingness is independent of the observed and unobserved data. An observation is 
said to be MAR if the missingness is independent of the unobserved data, although it may be 



dependent on the observed data. An observation that is neither MCAR nor MAR is called missing not 
at random (MNAR). MNAR occurs if missingness depends not only on the observed data but also on 
the unobserved (missing) values. In most studies, missing values in microarray datasets are assumed 
to be missing at random and most imputation algorithms either explicitly or implicitly make this 
assumption. However, this is not a realistic assumption since missing values tend to arise in a 
systematic manner in practice. In a typical microarray experiment, if a spot has low intensity in any 
one of the channels, i.e. its foreground intensity is close to its background intensity in the channel, it is 
usually flagged as unreliable and discarded.  In this case, the missingness is actually dependent on the 
signal intensity, and hence is MNAR. Statistical inferences on data with MNAR generally lead to bias 
estimates [65]. It has been shown experimentally that missing value imputation algorithms generally 
tend to give poorer result in terms of NRMSE when missing value is MNAR [52]. It was observed 
that for the same percentage of missing values, the percentage lost in differentially expressed genes is 
higher for MNAR than for MAR, and imputing at 5% missing rate when MNAR has the same effect 
as imputing at 10%-30% missing rate when MAR [52].  
 
The distribution of missing entries in the data matrix, i.e., the missing-data pattern, can also affect 
imputation performance and should be considered in data analysis or algorithm design [65]. Since 
each column in a microarray data matrix comes from one microarray experiment, variation in 
experimental conditions across the columns could result in a non-random distribution of missing 
entries in the data matrix. In [47], the effect on the imputation accuracy when missing values are 
randomly distributed in the data matrix and when the distribution of the missing entries follows that of 
the actual distribution of missing entries are compared. Preliminary imputation experiment on a time 
series yeast cell cycle dataset indicates that the NRMSE tends to be higher for the case of randomly 
distributed missing values, especially at low missing value rate. In [39], it was observed empirically in 
several datasets that missing values in genes occur successively, i.e. in burst. The performance of 
imputation algorithms were observed to be somewhat lower, especially at low missing rate, for burst 
model of missing entries compare to missing at random.  
 
The effect of missing rate on imputation has been investigated in [46]. In [46], the performance of six 
popular imputation algorithms was assessed at missing rate of 1, 5, 10, 15, 20, and 25%.  It was 
observed that there is improvement on the performance, as measured by the NRMSE, of the various 
imputation methods studied as the missing rate initially increases and then the performance start to 
deteriorate beyond a certain missing rate.  This is in contrast to many other studies which show that 
the NRMSE generally increases monotonically with increasing missing rate. The authors suggested 
that this could be a consequence of the fact that in their test datasets, the missing values are generated 
non-randomly based on a spot quality threshold. 
 
6. Discussion and Future Directions 
 
In spite of the many recent advances, better imputation algorithms that can adapt to the characteristics 
of the data are still needed. Adaptive method that could capture both global and local correlation 
information in the dataset would be useful in many situations. One attempt in this direction is the 
hybrid approach LinCmb [27] we discussed in Section 3.3. The adaptive weighting of the estimates 
from a set of global and local imputation algorithms allows LinCmb to combine the various estimates 
and hence adapts to the correlation structure in the data. Nevertheless, questions such as deciding on 
the set of imputation algorithms to be included in the linear combination and how to efficiently 
compute the weights still need further research. It is also unclear whether the simple scheme of 
linearly combining the estimates from multiple imputation algorithms is the best strategy to adopt or 
some other more sophisticated strategy is needed. One possible combination strategy is to combine 
multiple estimates based on the variance in each of the estimates. This requires the estimation of the 
variance of each imputation, which could be done by a procedure called multiple imputation [65].  
 
Recently, we have investigated an integrated framework of performing missing value imputation and 
bicluster analysis. The integrated framework is based on the fact that both missing value imputation 
and bicluster analysis rely on exploiting correlation information within the data and should be 



considered together instead of independently. The integrated framework iterates between missing 
value imputation and bicluster analysis, using the result of one process to update and improve the 
result of the other process. The integrated framework means that missing value imputation can benefit 
from information gained from bicluster analysis and vice versa. For example, if the biclusters detected 
are of a multiplicative model [56, 57], the multiplicative model can be used as a prior for missing 
value imputation, thus improving the imputation accuracy. The better imputation would in turn leads 
to better bicluster analysis in subsequent iteration. Our preliminary results have shown that this 
integrated framework is promising, although there is still much research to be done here. 
 
Several recent studies [16, 48] have attempted to evaluate the relative performance of existing 
imputation algorithms but there is still no clear consensus about the best algorithm for every datasets. 
This is partly due to the fact that there are many factors that can affect the performance of an 
imputation algorithm (see discussion in Section 5) and there is probably no algorithm that performs 
the best in all datasets.  Extensive large scale systematic comparative studies, with carefully designed 
datasets of different nature and properties as well as experimental design that takes into account the 
various factors that could impact performance, are still very much needed. The very recent work in 
[48] which runs more than six millions simulations over five datasets comparing the performance of 
12 imputation algorithms in terms of NRMSE is a step toward this goal. 
 
The performance assessment of existing imputation algorithms with respect to the different datasets as 
discussed above can be viewed as data-driven assessment. It should be noted that the choice of 
imputation algorithm also depends very much on the applications at hand. Hence, the performance of 
imputation algorithms should also be assessed from an application-driven viewpoint. As one reviewer 
pointed out, simple imputation technique such as KNNimpute might suffice for many applications 
even though it has lower NRMSE than most advanced imputation techniques. Nevertheless, 
imputation algorithm with high accuracy is desirable and even necessary for certain applications. For 
example, we found that if the estimated missing values of the alpha factor yeast dataset using the 
spectral estimation method of [25] are perturbed randomly by addition a zero mean Gaussian noise of 
increasing magnitude to the estimated values, the number of detected cyclic genes (within the top 400 
ranking cyclic genes) that overlaps with the benchmark set of known cyclic genes B1 tends to 
decrease in general. A 5%, 10%, and 20% random perturbation of the imputed missing values causes 
the overlap to decrease by 0.3%, 2.4%, and 10%, respectively. While the decrease is not significant at 
5% level (only ~1 known cyclic gene is missed) and classical imputation techniques would suffice in 
this case, highly inaccurate missing value estimation can adversely affect the detection of cyclic genes 
(i.e. almost 10 cyclic genes are missed at the 10% level).  To date, we are not aware of any 
comprehensive, large scale comparative study of imputation performance of existing algorithms from 
an application-driven point of view. Clearly, comparing the performance of existing imputation 
algorithms in terms of the end applications would be beneficial to the end users. 
 
As more and more experimental data from different domains become available, new imputation 
algorithms that can handle mixed domain datasets with missing continuous and categorical data are 
needed. Mixed domain datasets could, for example, arise from studies that simultaneously considering 
microarray gene expression data (i.e. continuous data) and classes of known phenotypic variables 
such as clinical chemistry evaluations and histopathologic observations (i.e. categorical data) [66]. 
Missing value imputation in mixed domain datasets is a very challenging problem and may require the 
use of highly sophisticated statistical techniques as discussed in [65].  
 

7. Conclusion 

High throughput gene expression profiling techniques such as cDNA microarray technology usually 
suffer from missing value problem due to various experimental reasons. As many downstream 
analysis methods require a complete dataset, missing value imputation is an important pre-processing 
step in microarray data analysis. Troyanskaya et al. [9] were the first to bring this important problem 
to the attention of the bioinformatics research community. Since then, many missing value imputation 



algorithms have been proposed [6, 9-15, 17-23, 26-29, 39, 45, 52, 63]. In this paper, we present a 
comprehensive review of many of these algorithms, categorizing them in terms of how they utilize 
information from within the data or information from domain knowledge or external sources in the 
imputation. In our discussion, we group different imputation algorithms into local approach, global 
approach, hybrid approach, or knowledge assisted approaches. We provide a succinct description of 
the underlying methodology of each algorithm regarding the rationale, the technical framework, and 
the assumptions behind them. In this way, the connection between different imputation methods 
becomes more apparent to researchers. Validation of imputation result is an important step in 
assessing the performance of any imputation algorithm. To date, there is a lack of any systematic 
discussion of this important issue. In this paper, we summarize the various validation methods used by 
different researchers and categorized them into either internal or external validation, based on whether 
internal information from within the dataset or external biological knowledge is used. We also discuss 
some factors that could affect imputation performance. These factors should be considered when 
choosing an imputation method for a particular dataset. Finally, we conclude the survey by pointing 
out some possible future research directions. It is hoped that this comprehensive review would give 
the readers a better understanding of the current development in this field and inspire them to come up 
with the next generation of imputation algorithms.  
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Key Points:  

• Global correlation information, local similarity information, and domain knowledge have been 

successfully exploited in many existing missing value imputation algorithms. 

• The performance of an imputation algorithm can be assessed using internal data-driven validation 

and external domain/application-specific validation. 

• There is no one optimal imputation algorithm for all type of data. Knowledge of the underlying 

principle of the imputation algorithm and the characteristic of the data is needed for a good 

imputation performance. 
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