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Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses
the quantum state of the atom to a stochastically moving point on the Bloch sphere. Recently,
Hofmann, Mahler, and Hess [Phys. Rev. A 57, 4877 (1998)] showed that by making part of the
coherent driving proportional to the homodyne photocurrent can stabilize the state to any point on
the bottom half of the sphere. Here we reanalyze their proposal using the technique of stochastic
master equations, allowing their results to be generalized in two ways. First, we show that any
point on the upper or lower half, but not the equator, of the sphere may be stabilized. Second, we
consider non-unit-efficiency detection, and quantify the effectiveness of the feedback by calculating
the maximal purity obtainable in any particular direction in Bloch space.
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I. INTRODUCTION

Although classical models of feedback schemes have
been used for a long time to control dynamical noise, an
analogous quantum theory of feedback has been devel-
oped only in the last fifteen years [1–7]. Recently there
has been considerable interest in quantum feedback as a
way to fight decoherence in isolated quantum systems,
using the approach of Refs. [4,5]. The central idea is to
use a continuous measurement record, whose existence is
due to the coupling of the system to a bath, to control
the dynamics of the system so as to counteract the noise
introduced by that bath and possibly other baths. For
example, it has been suggested as a way to create optical
squeezed states [8], to create micromaser number states
[9], to correct errors in quantum bits [10], and to protect
optical and microwave Schrödinger cat states against dis-
sipation [11–13].

Decoherence in quantum systems can be loosely de-
fined as loss of purity. Therefore the ultimate success in
using feedback to fight decoherence would be to create an
arbitrary stable pure state in the presence of dissipation.
This goal was realized (better even that they realized)
by Hoffman, Mahler and Hess (HMH) [14,15] for a very
simple system: a resonantly driven two-level atom. They
showed that by using the photocurrent derived from unit-
efficiency homodyne detection of the atom’s fluorescence
to control part of the driving field of the atom, it is possi-
ble to exactly cancel the noise introduced by the electro-
magnetic vacuum field when the atom is in a particular
pure state. By choosing the driving strength and feed-
back strength appropriately, any pure state on the Bloch
sphere may be picked out, although HMH claimed that
only pure states on the lower half of the sphere would be
stable under their scheme.

HMH chose to describe detection and feedback in their
system in a way different from (but equivalent to) the
standard approach in Refs. [4,5]. In this paper we refor-
mulate their theory using the latter approach. This has

the advantage of enabling a number of generalizations of
their results. First, we revisit the question of stability
and find that, contrary to the claims of HMH, the states
in the upper half of the Bloch sphere can be stabilized
as well as those in the lower half (this is what was bet-
ter than they realized). The only states which cannot
be stabilized, in the sense that an arbitrary initial state
would not always end up in the desired state, are those
on the equator of the Bloch sphere; that is, those which
are equal superpositions of excited and ground states.

Our second generalization is to consider how effective
feedback is with η < 1; that is, with non-unit-efficiency
detection. In this case it is not possible to stabilize the
atom at any pure state, except the ground state which
is trivially stable by setting the driving and feedback to
zero. Instead, we aim to produce a steady state which
is as close as possible to a given pure state. For the
two-level atom, this is equivalent to trying to create a
state which is as pure as possible in a particular direc-
tion in Bloch space. Not surprisingly (given the above
result), we find that states near the equator cannot be
well-protected against decoherence. We also find an echo
of the distinction HMH found between the upper and
lower halves of the Bloch sphere, in that states in the
upper half sphere are affected much more by loss of de-
tection efficiency that those in the lower half.

The paper is organized as follows. In Sec. II we
present the model of a driven two-level atom, includ-
ing the stochastic Schrödinger equation for unit-efficiency
homodyne detection. In Sec. III we use this equation to
derive the driving and feedback required to stabilize the
atom in an arbitrary pure state. These results agree with
those of HMH. However, our stability analysis disagrees
substantially with theirs. In Sec. IV we present entirely
new analytical results relating to the effect of non-unit-
efficiency detection. In Sec. V we give numerical simu-
lations of the stochastic evolution equations, illustrating
the issues discussed in the preceding two sections. In
Sec. VI we summarize and interpret our results, explain
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their significance, and discuss the possibility of future
work.

II. HOMODYNE DETECTION

A. Master Equation

Consider a atom, with two relevant levels {|g〉, |e〉} and
lowering operator σ = |g〉〈e|. Let the the decay rate be
γ, and let it be driven by a resonant classical driving
field with Rabi frequency 2α. This is as shown in Fig. 1,
where for the moment we are omitting feedback by set-
ting λ = 0. This system is well-approximated by the
master equation

ρ̇ = γD[σ]ρ− iα[σy, ρ], (2.1)

where the Lindblad [16] superoperator is defined as usual
D[A]B ≡ ABA† − {A†A,B}/2. In this master equation
we have chosen to define the σx = σ+σ† and σy = iσ−iσ†

quadratures of the atomic dipole relative to the driving
field. The effect of driving is to rotate the atom in Bloch
space around the y-axis. The state of the atom in Bloch
space is described by the three-vector (x, y, z). It is re-
lated to the state matrix ρ by

ρ =
1

2
(I + xσx + yσy + zσz) . (2.2)
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FIG. 1. Diagram of the experimental apparatus. The laser
beam is split to produce both the local oscillator β and the
field α0 which is modulated using the current I(t). The mod-
ulated beam, with amplitude proportional to α+λI(t), drives
an atom at the centre of the parabolic mirror. The fluores-
cence thus collected is subject to homodyne detection using
the local oscillator, and gives rise to the homodyne photocur-
rent I(t).

It is easy to show that the stationary solution of the
master equation (2.1) is

xss =
4αγ

γ2 + 8α2
, (2.3)

yss = 0, (2.4)

zss =
−γ2

γ2 + 8α2
. (2.5)

For γ fixed, this is a family of solutions parameterized by
the driving strength α ∈ (−∞,∞). All members of the
family are in the x–z plane on the Bloch sphere. Thus
for this purpose we can reparametrize the relevant states
using r and θ by

x = r sin θ (2.6)

z = r cos θ, (2.7)

where θ ∈ [−π, π]. Since

Tr[ρ2] =
1

2

(

1 + x2 + y2 + z2
)

(2.8)

is a measure of the purity of the Bloch sphere, r =√
x2 + z2, the distance from the centre of the sphere, is

also a measure of purity. Pure states correspond to r = 1
and maximally mixed states to r = 0.

The locus of solutions in this plane (an ellipse) is shown
in Fig. 2. Since zss < 0, all solutions are in the lower
half of the Bloch sphere. That is, we are restricted to
|θ| > π/2. Also, it is evident that the smaller |θ| is (that
is, the more excited the atom is), the smaller r is (that
is, the less pure the atom is). At |θ| = π the stationary
state is pure, but this is not surprising as it is simply the
ground state of the atom with no driving. As |θ| → π/2
we have r → 0. This can only be approached asymptoti-
cally as |α| → ∞. In summary, the stationary states we
can reach by driving the atom are limited, and generally
far from pure.
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FIG. 2. Locus of the solutions to the Bloch equations. The
ellipse in the lower half plane is the locus for the equations
with driving only. The full circle (minus the points on the
equator) is the locus for the equations with optimal driving
and feedback, as defined in Sec. III.

B. Homodyne Detection

Now consider subjecting the atom to homodyne de-
tection. As shown in Fig. 1, we assume that all of the
fluorescence of the atom is collected and turned into a
beam (represented in Fig. 1 by placing the atom at the
focus of a mirror). Ignoring the vacuum fluctuations in
the field, the annihilation operator for this beam is

√
γσ,

normalized so that the mean intensity γ
〈

σ†σ
〉

is equal
to the number of photons per unit time in the beam.
This beam then enters one port of a 50:50 beam split-
ter, while a strong local oscillator β enters the other. To
ensure that this local oscillator has a fixed phase relation-
ship with the driving laser used in the measurement, it
would be natural to utilize the same coherent light field
source in the driving process and as the local oscillator
in the homodyne detection. This is as shown in Fig. 1.

Again ignoring vacuum fluctuations, the two field op-
erators exiting the beam splitter, b1 and b2, are

bk =
[√
γσ − (−1)kβ

]

/
√

2. (2.9)

When these two fields are detected, the two photocur-
rents produced have means

Īk =
〈

|β|2 − (−1)k
(√
γβσ† +

√
γσβ∗

)

+ γσ†σ
〉

/2.

(2.10)

The middle two terms represent the interference between
the system and the local oscillator.

The ideal limit of homodyne detection is when the lo-
cal oscillator amplitude goes to infinity, which in prac-
tical terms means |β|2 ≫ γ. In this limit, the rate of

the photodetections goes to infinity and thus it should
be possible to change the point process of photocounts
into a continuous photocurrent with white noise. Also,
the only relevant quantity is the difference between the
two photocurrents. Suitably normalized, this is [17,18]

I(t) =
I1(t) − I2(t)

|β| =
√
γ

〈

e−iΦσ† + eiΦσ
〉

c
(t) + ξ(t).

(2.11)

A number of aspects of Eq. (2.11) need to be explained.
First, Φ = arg β, the phase of the local oscillator (de-
fined relative to the driving field). Second, the subscript
c means conditioned and refers to the fact that if one
is making a homodyne measurement then this yields in-
formation about the system. Hence, any system aver-
ages will be conditioned on the previous photocurrent
record. Third, the final term ξ(t) represents Gaussian
white noise, so that

ξ(t)dt = dW (t), (2.12)

an infinitesimal Wiener increment defined by [19]

dW (t)2 = dt, (2.13)

E[dW (t)] = 0. (2.14)

Since the stationary solution of the master equation
confines the state to the x–z plane, it makes sense to
follow HMH by setting Φ = 0. In that case,

I(t) =
√
γ 〈σx〉c (t) + ξ(t). (2.15)

That is, the deterministic part of the homodyne pho-
tocurrent is proportional to xc = 〈σx〉c. This should be
useful for controlling the dynamics of the state in the
x–z plane by feedback, as we will consider in Sec. III.
Of course, all that really matters here is the relationship
between the driving phase and the local oscillator phase,
not the absolute phase of either.

The conditioning process referred to above can be
made explicit by calculating how the system state
changes in response to the measured photocurrent. As-
suming that the state at some point in time is pure (which
will tend to happen because of the conditioning anyway),
its future evolution can be described by the stochastic
Schrödinger equation (SSE) [17,18]

d|ψc(t)〉 = Âc(t)|ψc(t)〉dt+ B̂c(t)|ψc(t)〉dW (t). (2.16)

This is an Itô stochastic equation [19] with a drift term
and a diffusion term. The operator for the drift term is

Âc(t) =
γ

2

[

−σ†σ + 〈σx〉c (t)σ − 〈σx〉2c (t)/4
]

− iασy,

(2.17)

while that for the diffusion is
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B̂c(t) =
√
γ [σ − 〈σx〉c (t)/2] . (2.18)

Both of these operators are conditioned in that they de-
pend on the system average

〈σx〉c (t) = 〈ψc(t)|σx|ψc(t)〉. (2.19)

On average, the system still obeys the master equation
(2.1). This is easiest to see from the stochastic master
equation (SME), which allows for impure initial condi-
tions. The SME can be derived from the SSE by con-
structing

d (|ψc〉〈ψc|) = (d|ψc〉) 〈ψc| + |ψc〉 (d〈ψc|)
+ (d|ψc〉) (d〈ψc|) , (2.20)

using the Itô rule (2.13), and then identifying |ψc〉〈ψc|
with ρc. The result is

dρc = dtγD[σ]ρc − idtα[σy, ρc] + dW (t)
√
γH[σ]ρc,

(2.21)

where H[A]B ≡ AB + BA† − Tr[AB + BA†]. Although
this has been derived assuming pure initial conditions,
it is valid for any initital conditions [18]. This is also an
Itô equation, which means the evolution for the ensemble
average state matrix

ρ(t) = E[ρc(t)] (2.22)

is found simply by averaging over the photocurrent noise
term by using Eq. (2.14). This procedure yields the orig-
inal master equation (2.1) again. The general term for
the stochastic conditioned evolution of the system, be it
described by a SSE or SME, is a quantum trajectory [17],
and the quantum trajectory is said to unravel the master
equation [17].

III. FEEDBACK WITH UNIT-EFFICIENCY

DETECTION

A. SSE including feedback

We now include feedback onto the amplitude of the
driving on the atom, proportional to the homodyne pho-
tocurrent, as done by HMH. This is as shown in Fig. 1,
where the driving field passes through an electro-optic
amplitude modulator controlled by the photocurrent,
yielding a field proportional to α + λI(t). This means
that the feedback can be described by the Hamiltonian

Hfb = λσyI(t). (3.1)

In this paper we are assuming instantaneous feedback,
where the time delay in the feedback loop is negligible.

Since the homodyne photocurrent (2.11) is defined in
terms of system averages and the noise dW (t), the SSE
including feedback can still be written as an equation of

the form (2.16). The effect of the feedback Hamiltonian
can be shown [4,8] to change the drift and diffusion op-
erators to

Âc(t) =
γ

2

[

−σ†σ + 〈σx〉c (t)σ − 〈σx〉2c (t)/4
]

− iασy

+λ
√
γ

[

−i 〈σx〉c (t)σy − 2σ†σ
]

− λ2/2, (3.2)

B̂c(t) =
√
γ [σ − 〈σx〉c (t)/2] − iλσy . (3.3)

Say we wish to stabilize the pure state with Bloch an-
gle θ, as defined in Eqs. (2.6) and (2.7), with r = 1 of
course. In terms of the ground and excited states, this
state is

|θ〉 = cos
θ

2
|e〉 + sin

θ

2
|g〉. (3.4)

Now for this state to be stabilized we must have

[

Âc(t)dt+ B̂c(t)dW (t)
]

|θ〉 ∝ |θ〉. (3.5)

We cannot say the left-hand-side should equal zero be-
cause a change in the overall phase still leaves the phys-
ical state unchanged. However, we can work with this
equation, and simplify it by dropping all terms propor-
tional to the identity operator in Âc(t) and B̂c(t). We
can also demand that it be satisfied for the deterministic
and noise terms separately, because dW (t) can take any
value. This gives the two equations

(
√
γσ − iλσy) |θ〉 ∝ |θ〉, (3.6)

[

γ
(

−σ†σ + sin θσ
)

− i2ασy

+λ
√
γ

(

−i sin θσy/2 − σ†σ
)]

|θ〉 ∝ |θ〉, (3.7)

where we have put 〈σx〉c (t) equal to sin θ, its value for
the state |θ〉.

Solving the first equation easily yields the condition

λ = −
√
γ

2
(1 + cos θ). (3.8)

This is equivalent to the feedback condition derived by
HMH, stated as Eq. (35) of Ref. [15]. Substituting this
into the second equation gives, after some trigonometric
manipulation, the second condition

α =
γ

4
sin θ cos θ. (3.9)

Again, this agrees with the driving strength of HMH,
given as Eq. (44) of Ref. [15]. It is worth emphasizing
that the derivation given here is entirely different in de-
tail from that of HMH, and so is an independent verifica-
tion of their result. These functions are plotted in Fig. 3.
Note that there are two points with the same values of
both λ and α, at θ = ±π/2.
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FIG. 3. Plot of the optimal driving (α, solid) and feedback
(λ, dashed) required to produce a pure state with Bloch angle
θ. For this plot we have set γ = 1 so that α and λ are dimen-
sionless. The purity (r2, starred) is one except for θ = ±π/2,
where the feedback is not stable.

B. Stability

The preceding derivation seems to show that any pure
state can be stabilized by a suitable choice of driving
and feedback. Indeed our derivation proves that that if
one prepares a state in exactly the pure state one de-
sires, then the feedback scheme of HMH which we have
analyzed will keep the system in that state. However,
to discuss stability we need to know what will happen
for states which are not initially in the desired state. To
deal with this it is much more convenient to use the SME
rather than the SSE, as will become apparent.

The SME can be constructed from the SSE in the same
way as before. The result is [4,8]

dρc = dtγD[σ]ρc − idtα[σy , ρc]

− idtλ[σy , σρc + ρcσ
†] + dt(λ2/γ)D[σy ]ρc

+ dW (t)H[
√
γσ − iλσy ]ρc. (3.10)

Also as before, this is an Itô stochastic equation, which
means that the ensemble average can be found simply by
dropping the stochastic terms. This time, the result is
not the original master equation, but rather the feedback-
modified master equation

ρ̇ = −i[ασy, ρ] + D[
√
γσ − iλσy ]ρ ≡ Lρ. (3.11)

Here we have put the Liouvillian superoperator L in a
manifestly Lindblad form.

Now we have shown already that the pure state ρ =
|θ〉〈θ| must be a solution of this master equation, for the
appropriate choices of λ (3.8) and α (3.9). But for it to
be a stable solution we require all of the eigenvalues of
the resulting Lθ to have a negative real part (except for
the one eigenvalue that is always zero, as required for Lθ

to be norm-preserving). It is not difficult to find these
eigenvalues, and in terms of θ they are

− γ/2,−γ/2,−γ cos2 θ. (3.12)

Evidently the state |θ〉 will be stable for all θ except
θ = ±π/2. That is, all states are stable except those
on the equator. This is contrary to the conclusion of
HMH [15], based on a linearized stability analysis, that
“long term stability of . . . inverted states [i.e. states in
the upper half plane] cannot be achieved.” We emphasize
that our stability analysis contains no approximations.

In hindsight, the lack of stability for pure states on
the equator could have been predicted from the expres-
sions (3.8) and (3.9). As discussed above and shown in
Fig. 3, the values for driving and feedback for θ = π/2 are
the same as those for θ = −π/2. This means that both
ρ = |π/2〉〈π/2| and ρ = |−π/2〉〈−π/2| are solutions of
Lθρ = 0 for θ = π/2 or −π/2. By linearity, any mixture
of |π/2〉〈π/2| and |−π/2〉〈−π/2| will be a solution also.
Hence any deviation away from one of these pure state
will not necessarily be suppressed, and the system lacks
stability. With random external perturbations, the sys-
tem will eventually reach an equal mixture of |π/2〉〈π/2|
and |−π/2〉〈−π/2|, which is a state with r = 0 (minimum
purity). This is why we have plotted a value of r = 0 in
Fig. 3 for |θ| = π/2. We also plot r as a function of θ
in Bloch space in Fig 2, giving the locus of states which
can be stabilized by feedback. This can compared to the
locus of the mixed states which are accessible by driving
alone. We will return to the stability issue in the context
of stochastic dynamics in Sec. V.

IV. FEEDBACK WITH NON-UNIT-EFFICIENCY

DETECTION

We have seen that the stochastic master equation is a
very useful representation of a quantum trajectory, as it
allows the unconditioned (deterministic) master equation
to be derived easily, and this latter equation is all that
is required for a completely rigorous stability analysis.
The SME is also superior to the SSE in that allows in-
efficient detection to be described. In a real experiment
this has to be taken into account. The effect of non-unit
η on feedback in the present system is of interest both
in itself, and because of the extreme nonlinearity of the
system dynamics as compared to other quantum optical
feedback systems such as considered in Ref. [8].

As explained in Ref. [18], the homodyne photocurrent
from a detection scheme with efficiency η is

I(t) =
√
γ 〈σx〉c (t) + ξ(t)/

√
η. (4.1)

Here we have used a normalization such that the deter-
ministic part does not depend on η. The effect of de-
creased efficiency is increased noise. This means that
we can retain the same feedback Hamiltonian as above
(3.1), without changing the significance of the feedback
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parameter λ. The SME with η < 1, including feedback,
is [8]

dρc = dtγD[σ]ρc − idtα[σy , ρc]

− idtλ[σy , σρc + ρcσ
†] + dt(λ2/γη)D[σy ]ρc

+ dW (t)H[
√
γησ − iλσy/

√
η]ρc (4.2)

The no-feedback SME, analogous to Eq. (2.21), can be
obtained simply by setting λ = 0, and was derived in
Ref. [18].

Once again, it is easiest for the moment to just con-
sider the ensemble average evolution by averaging dW to
zero. The Lindblad form of the resulting master equation
is

ρ̇ = −i[ασy, ρ] + D[
√
γσ − iλσy ]ρ+ (λ2/η)D[σy ]ρ. (4.3)

We do not know a priori what values of λ and α to
choose to give the best results with inefficient detection,
as the SSE analysis in Sec. III A obviously does not ap-
ply. Hence we simply solve for the stationary matrix in
terms of α and λ. Using the Bloch representation we find

xss = 4αη2(γ + 2
√
γλ)/D, (4.4)

yss = 0, (4.5)

zss = −√
γη(

√
γ + 2λ)(γη + 4

√
γηλ+ 4λ2)/D, (4.6)

where

D = γ2η2 + 6γ3/2η2λ+ 2γη(3 + 4η)λ2 + 16
√
γηλ3

+8(α2η2 + λ4). (4.7)

The question now arises, what do we mean by “best
results” for the feedback system. We cannot hope any-
more to produce stable pure states anywhere on the Bloch
sphere. However, we can pick a direction θ on the Bloch
sphere and ask how close can we get to a pure state?
That is, we use the radius r in Eq. (2.6) and Eq. (2.7)
as the quantity to be maximized, for each θ. From these
two equations we have

tan θ = xss/zss. (4.8)

¿From Eqs. (4.4) and (4.6) we can immediately find the
desired driving in terms of λ and θ as

α =
−√

γη(
√
γ + 2λ)(γη + 4

√
γηλ+ 4λ2) tan θ

4η2(γ + 2
√
γλ)

. (4.9)

The aim is then, for each θ, to find the feedback λ which
maximizes

r2 = x2

ss + z2

ss. (4.10)

This was done numerically using matlab.
The results of our calculations are shown in Fig. 4,

where we plot the locus in Bloch space of the best (most
pure) stationary states which can be achieved by feed-
back from non-unit-efficiency detection. We use a vari-
ety of values of η. A number of points are worth noting.

First, and most obviously, the degree of purity (measured
by the r, the distance from the origin) decreases with η.
Second, the gap at the equator for η = 1 quickly widens,
so that the purity of the best states with θ close to π/2
is small. Third, the purity of the best states in the upper
half of the Bloch sphere is affected much more by loss of
detection efficiency than those in the lower half. Fourth,
in the limit η = 0, the best solutions correspond to the
no-feedback solutions shown in Fig. 2. This is not sur-
prising, since with η = 0 the photocurrent contains no
information about the system (as the noise is infinitely
large) and hence there is no point doing feedback. Since
the stationary states with no feedback are confined to the
lower half of the Bloch sphere, this explains why the best
states with feedback in the lower half are less affected as
η decreases than those in the upper half.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Z

FIG. 4. Locus of the solutions to the Bloch equations with
optimal feedback for different values of detector efficiency η.
from the outside in, we have η = 1, 0.8, 0.6, 0.4, 0.2, 0.

For the particular value η = 0.8 we plot in Fig. 5 the
values of α and λ (as well as purity, quantified as r2)
versus θ. By comparing this plot with Fig. 3 one obtains
some idea of the effect of inefficient detection. A number
of features remain the same. First, α is antisymmetric
in θ, while λ is symmetric. Recalling that the determin-
istic part of the feedback is proportional to λ 〈σx〉c, the
feedback itself is actually antisymmetric as well as the
driving. Second, the magnitude of the feedback is zero
for |θ| = π (the ground state) and increases monoton-
ically to a maximum of

√
γ at θ = 0 (in the direction

of the excited state). Third, the driving is zero at the
ground state and at θ = 0, and also changes sign as one
passes through the equatorial place. The most obvious
difference between the parameters for η = 1 and those for
η = 0.8 parameter is that the latter have a discontinuity
at |θ| = π/2. The feedback parameter λ jumps as one
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crosses the equatorial plane, while the driving α asymp-
totes to +∞ on one side and −∞ on the other. These
extreme variations in the driving do not prevent the best
purity from approaching zero in the equatorial plane.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

θ

λ,
 α

, a
nd

 r
2

α

λ

r2

FIG. 5. Plot of the optimal driving (α, solid) and feedback
(λ, dashed) required to produce the most pure state with
Bloch angle θ. For this plot we have set γ = 1 so that α and
λ are dimensionless. The purity obtain is also plotted (r2,
starred).

V. STOCHASTIC DYNAMICS

A. Stochastic Bloch Equations

So far we have considered the stochastic conditioned
dynamics for the system state in order to derive the pa-
rameters λ and α such that for η = 1 those dynamics
are banished in the steady state. In this section we will
consider them in more detail, highlighting the difference
between the η = 1 case and the η < 1 case, and also
looking in more detail at the special case of |θ| = π/2.
The most convenient way to treat the stochastic dynam-
ics in general is through the stochastic Bloch equations
(SBE). These are simply the stochastic equations for the
conditioned Bloch vector, defined by

ρc =
1

2
(I + xcσx + ycσy + zcσz) . (5.1)

¿From the SME including feedback (4.2), we find





dxc

dyc
dzc



 = dt





−γ/2− 2κ 0 2α
0 −γ/2 0

−2α 0 −γ − 2κ









xc

yc
zc





− dt





0
0

2λ
√
γ + γ



 + dW (t) ×





−√
γηx2

c + (
√
γη + 2λ/

√
η)zc +

√
γη

−√
γηxcyc

−(
√
γη + 2λ/

√
η)xc −

√
γηxczc



 ,

(5.2)

where κ = λ2/η + λ
√
γ. If we ignore the final (noise)

term, we get the Bloch equations from the master equa-
tion (4.3).

B. unit-Efficiency

In the case η = 1, considered in Sec. III, both the de-
terministic and stochastic dynamics disappeared in the
steady state for the appropriate choice of α and λ. Be-
cause the stationary solution of the SSE was a unique
pure state, that was necessarily also the stationary solu-
tion of the master equation found by averaging over the
noise in the equivalent SME. Thus there was no distinc-
tion between the unconditioned and conditioned states.
There are two exceptions to this lack of distinction. The
first is in the transients, before the system reaches its
steady state. The second is for the special case |θ| = π/2.
In this subsection we investigate these exceptions.

0 2 4 6 8 10
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−0.5

0

0.5

1

t

X
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nd
 Z

x=sin(π/6)

z=cos(π/6) (a)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
x=+1

x=−1

z=0

X
 a

nd
 Z

t

(b)

FIG. 6. Typical quantum trajectories for optimal feedback
with η = 1, shown by xc (plusses) and zc (dots) as functions
of time. (a) shows a single trajectory for θ = π/6, and (b)
two trajectories for θ = π/2.

First, the transient behaviour was simulated using the
SBE with η = 1. We chose the initial state to be the
ground state, and evolved the system stochastically from
t = 0 to t = 10γ−1. With this choice of initial condition,
yc = 0 for all time. We verified that in each trajectory
x2

c + z2
c = 1 to a good approximation (indicating a pure

state), but that the ensemble averages over many trajec-
tories
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x = E[xc] , z = E[zc] (5.3)

obey the deterministic Bloch equations. A typical trajec-
tory for θ = π/6 is shown in Fig. 6(a). We see that the
initial evolution is very erratic, but that on a time scale
of a few γ−1 the system relaxes towards a steady state
which is pure and stationary. By t = 10γ−1 the system
is locked in a stable pure state for all intents. We have
also illustrated another typical trajectory in Bloch space,
in Fig. 7.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Z

π/6

FIG. 7. Typical quantum trajectories in Bloch space for
t ∈ [0, 10γ−1] under optimal feedback for θ = π/6, starting at
the ground state. The plusses are for η = 1 and the dots for
η = 0.8. The locus for the deterministic stationary states for
η = 0.8 are also shown; the relevant state for this quantum
trajectory is at the intersection of the locus and the ray at
θ = π/6. Note that the quantum trajectory for η = 0.8 wan-
ders around this average position, while that for η = 1 stops
precisely at the desired pure steady state.

It is easy to verify that by putting η = 1 and

(xc, yc, zc) = (sin θ, 0, cos θ) (5.4)

in the right-hand-side of the SBE (5.2), we obtain com-
plete cancellation. If we wish, we can follow HMH and
separate the noise term into the contribution from feed-
back (proportional to λ) and that contribution present
even without feedback (the rest). We interpret the latter
stochasticity as being due to the quantum measurement
we are making, with its underlying probabilistic nature.
Obviously the fluctuation due to measurement is canceled
by the feedback, as HMH point out. It is equally impor-
tant that the deterministic dynamics are also canceled at
this point.

The story for the special case θ = π/2 is quite different.
For this case the SBEs are





dxc

dyc
dzc



 = dt





0 0 0
0 −γ/2 0
0 0 −γ/2









xc

yc
zc





+
√
γdW (t)





1 − x2
c

−xcyc
−xczc



 . (5.5)

Here the three eigenvalues in Eq. (3.12) are clearly evi-
dent. Both zc and yc will decay to zero (as required for
θ = π/2), and their noise terms vanish at that point. By
contrast, the equation for xc is independent of the others,
and is purely stochastic:

dxc =
√
γdW (t)(1 − x2

c). (5.6)

Clearly the equatorial pure states with xc = ±1 are
stationary solutions to this problem. Also, the system
will tend to one of these states. We can see this by cal-
culating

dE[x2

c ] = γdtE
[

(1 − x2

c)
2
]

, (5.7)

which is always positive. That is, on average x2
c always

increases. But it is also clear that xc has no preference
to go to either of these states. Hence they are not stable.
The ensemble average x is unchanging under this evolu-
tion. Thus a perturbation which moves the state from
xc = 1 to xc = 1 − ǫ say, will result in a proportion ǫ/2
of the states ending up at xc = −1, and a proportion
1 − ǫ/2 ending up at xc = 1.

We have illustrated these features by showing two typ-
ical trajectories in Fig. 6(b). Once again, the initial evo-
lution is highly erratic, but the system reaches a fixed
point on a time scale of a few γ−1. However, with the
same initial condition (the ground state), one trajectory
ends up at xc = 1 and the other at xc = −1.

C. Non-unit-efficiency

In the unit-efficiency case the stationary solution of the
master equation is (except for |θ| = π/2), a pure state.
This is very special in that in means that every unravel-
ing of the master equation as a SSE or SME must end up
in this same pure state also. For non-unit-efficiency we
have found the most pure stable state for each θ. In this
case we must use a SME to unravel the master equation,
since the conditioned state will not be pure in general,
because of the inefficient detection. Since the determin-
istic steady state is not pure (except for |θ| = π), the
quantum trajectories need not end up in this state. In-
stead, the quantum state in an individual trajectory may
continue to evolve stochastically even when the system is
in steady state, and the equivalence to the deterministic
evolution may hold only on average. On the other hand,
it is also possible that the quantum trajectories do all
end up in the deterministic steady state, since we expect
the conditioned state to be mixed anyway.
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It turns out that with the optimal values of α and λ
defined in Sec. IV, the actual behaviour is the first op-
tion described above. That is, the system state continues
to vary stochastically in the long time limit, but is con-
strained so that the time-averaged state is equal to the
solution of the deterministic master equation. We show
this in Bloch space Fig. 7 for η = 0.8 and θ = π/6. We
see that the amount of randomness in the system state
in the long-time limit is quite large even for fairly high
η.

This result suggests another question: would a differ-
ent choice for λ be able to reduce, or even eliminate, the
randomness in the steady-state quantum trajectory, even
though it would necessarily be at the expense of the pu-
rity of the deterministic stationary solution. [Recall that
for a given λ, α is still necessarily fixed by Eq. (4.9).] To
test this idea we tried choosing λ based not on maximiz-
ing r2 as in Eq. (4.10), but on minimizing

Nθ(λ) =

∣

∣

∣

∣

∣

∣





−√
γηx2

ss + (
√
γη + 2λ/

√
η)zss +

√
γη

−√
γηxssyss

−(
√
γη + 2λ/

√
η)xss −

√
γηxsszss





∣

∣

∣

∣

∣

∣

2

.

(5.8)

That is, we minimize the noise terms in the SBE
Eq. (5.2). Note that we have replaced the conditioned
Bloch variables xc etc. with the deterministic station-
ary solutions xss etc., and that the dependence of these
stationary solutions on α and λ add a further, implicit,
dependence on λ to Nθ(λ). This is a sensible procedure
if the aim is realizable, and the noise in the solutions
is reduced or eliminated so that the conditioned states
are approximately or exactly equal to the deterministic
stationary solution.

It turns out that this procedure cannot significantly re-
duce the amount of steady-state randomness in the quan-
tum trajectories below that resulting from minimizing
the deterministic stationary purity. In fact, for all values
of η we considered, the variation of λ (as a function of θ)
based on minimizing the noise was indistinguishable by
eye from that based on maximizing the purity. This is
not too surprising, but could not have been predicted a

priori.

VI. CONCLUSION

We have given a rigorous analysis of the anti-
decoherence feedback scheme proposed by Hofmann,
Mahler and Hess [15]. They proposed modulating the
driving of a two-level atom using the instantaneous ho-
modyne photocurrent, in order to stabilize the atom in
an arbitrary known pure state. We have shown that, for
detection efficiency η = 1, the pure states thus produced
are stable. This is contrary to the conclusion of HMH,
that only pure states in the lower half of the Bloch sphere
would be stable. The one exception we found is for pure

states on the equator. Although they are fixed points of
the dynamics, they are not stable. A small perturbation
away from one fixed pure state leads to a proportionally
small fraction of the ensemble ending up in the diamet-
rically opposite pure state.

It is nevertheless possible to obtain an asymmetry be-
tween the upper and lower halves of the Bloch sphere,
reminiscent of the conclusion of HMH, if one considers
detection efficiencies less than one. In this case, it is no
longer possible to stabilize the system in a given pure
state, so we choose the feedback and driving so that the
solution of the master equation (including feedback) is
as close as possible to a given pure state. We find that
the purity (which measures this closeness) of states thus
produced decays to zero as η decreases to zero, for states
in the upper half of the Bloch sphere. By contrast, those
in the lower half do not decay to zero. This is readily
understandable since in the absence of feedback (which
is the situation which must prevail when the detection
efficiency goes to zero), the master equation with driving
alone has stationary solutions in the lower-half plane with
non-zero purity. The purity decays most rapidly with η
for states near the equator, which is unsurprising given
the instability of states on the equator even for η = 1.

In the non-unit-efficiency case, the state of the system
conditioned on the homodyne measurement results con-
tinues to evolve stochastically even in the long-time limit,
where the ensemble average evolution has reached the de-
sired most-pure state. Moreover, it seems that any other
choice of driving and feedback will result in more, not
less, randomness in the steady-state quantum trajectory.

Our results are significant in a number of ways. First,
they show the power of the quantum trajectory and mas-
ter equation techniques developed in Refs. [4,8,5]. Those
techniques were particularly useful for illuminating sub-
tle questions regarding the stability of pure states, and
for treating inefficient detection. Second, the physical
system (the two-level atom) may one day find applica-
tion as a quantum bit in quantum information technol-
ogy [20]. In that eventuality, the ability to stabilize the
atom against dissipation in an arbitrary (known) pure
state may be useful. Third, the system is a simple but
non-trivial example of quantum feedback in a nonlinear
system (the two-level atom). Thus the effectiveness of
feedback, and in particular the influence of non-unit- ef-
ficiency detection on this effectiveness, is of interest for
what it may tell us about other more complicated non-
linear systems.

In this last context, it would be of interest to also con-
sider the effect of non-Markovian feedback; that is, feed-
back with a time delay or non-flat loop response function.
This is much more difficult to treat than Markovian feed-
back because the Lindblad master equations derived in
Refs. [4,8,5] do not apply. Analytical solutions for non-
Markovian feedback are possible for linear systems [8,21].
For a nonlinear system like the two-level atom, numeri-
cal simulations, or novel analytical approaches, are nec-
essary. This is an issue we plan to explore in future work.
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