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Abstract— Numerous methods have been proposed for the 
expression-invariant 3D face recognition, but a little attention 
is given to the local-based representation for the texture of the 
3D images. In this paper, we propose an expression-invariant 
3D face recognition approach based on the locally extracted 
moments of the texture when only one exemplar per person is 
available. We use a geodesic texture transform accompanied 
by Pseudo Zernike Moments to extract local feature vectors 
from the texture of a face. An extensive experimental 
investigation is conducted using publicly available BU-3DFE 
face databases covering face recognition under expression 
variations. The performance of the proposed method is 
compared with the performance of two benchmark 
approaches. The encouraging experimental results 
demonstrate that the proposed method can be used for 3D face 
recognition in single model databases. 

Keywords-3D face; expression; geodesic distance; texture 

I.  INTRODUCTION  
Face recognition is a challenging task because of the 

variety in expression, age, pose, illumination, and occlusion 
[1]. 2D face recognition algorithms have a good 
performance under controlled conditions, but their 
performance reduces in the presence of condition variations. 
Recently, 3D information of the face has been used to tackle 
this problem. The proposed methods for 3D face recognition 
approaches can be divided into two categories: range 
approaches and range-texture approaches. The first category 
consists of methods which only use the features extracted 
from the range (depth) images for recognition. Cartoux et al. 
[2] used facial profiles extracted from range images for face 
recognition. Gordon [3] suggested the feature extraction 
based on depth and curvature features. Tanaka et al. [4] 
considered the face recognition problem as a 3D shape 
recognition problem of rigid surfaces. Their method is based 
on the surface curvature information. Chua et al. [5] 
extended the use of point signature to recognize frontal face 
scans with expression changes. Hesher et al. [6] applied 
PCA to the range images, and estimated the probability 
models for the coefficients.  

The range-texture approaches are the algorithms which 
use both range (depth) and texture information to improve 
the recognition rate on 3D information. Change et al. [7] 

showed that the face recognition performances on texture 
and depth images are same. However, the combination of 
them can improve the recognition rate. Malassiotis and 
Strintzis [8] proposed a technique for face recognition using 
texture and depth information. They used the depth images 
to compensate pose variations in corresponding texture 
images. They compensated the pose of input face images by 
matching the input depth image with a reference model 
using the ICP algorithm [9]. The classification was 
performed using an Embedded Hidden Markov Model 
(EHMM) [10] on the compensated images. Lu et al. [11] 
used a matching technique between range face images and 
3D face models for face recognition under pose variations. 
For each subject a reference 3D face model constructed by 
merging several face range images from different views. 
The recognition step consists of two components: a surface 
matching and an appearance matching. They used a 
modified ICP algorithm to match an input range image and 
the reference 3D models. Based on the surface matching’s 
output, a candidates list from the gallery are used for the 
appearance matching. Bronstein et al. [12, 13] proposed an 
expression-invariant representation of faces called 
Canonical Images. The canonical images are built by 
calculating the geodesic distances between points on the 
face surface. Mpiperis et al. [14] proposed a geodesic polar 
representation of the face surface. They used a geodesic-
based isometric mapping to provide some warped texture 
images and apply PCA technique for classification.  

We present a novel 3D face recognition approach using 
Patched Geodesic Texture Transform (PGTT). In this 
approach, we use local texture moments controlled by the 
geodesic shape information to tackle the problems of face 
recognition under expression variations when only one 
exemplar per person is available. Instead of using the global 
texture representation, which is not effective under different 
facial variations, the proposed method employs a local 
texture representation. The feasibility and effectiveness of 
the proposed method is investigated using the standard 
publically available BU-3DFE face database [15] which 
contains faces under various situations including different 
expression changes. The performance of the system is 
compared with the performance of two benchmark 
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approaches. Encouraging experimental results indicate that 
the proposed method provides a novel solution for 
expression-invariant face recognition using 3D images.  

The rest of this paper is organized as follows: Section 2 
presents the proposed Patched Geodesic Texture Transform. 
In Section 3, the proposed method is extensively examined 
and compared with two benchmark approaches. Finally, 
Section 4 concludes the paper. 

II. PROPOSED PATCHED GEODESIC TEXTURE 
TRANSFORM  

In the proposed algorithm, we create the corresponding 
range and texture images from an input 3D image. Using the 
range image, we compute the geodesic distance from a 
reference point for all face points. Based on the computed 
distances, we transform the texture image to a new texture 
image called transformed texture image. In the next step, the 
transformed texture image is partitioned into some equal-
sized patches and a patch descriptor is applied to extract a 
feature vector for each patch. By concatenating the feature 
vectors, we build a feature vector for the subject. Finally, the 
input subject is identified by measuring the similarity 
between the query image and all gallery models. The 
following subsections will describe the algorithm in detail. 

A. Geodesic Distance Computing 
Let S be a surface, P and Q two points on S. There are an 

infinite number of curves that belong to S and connect P 
with Q. The curve on the surface S with the minimum length 
is called the Geodesic Path between two points and its 
length is called the Geodesic Distance. The computation of 
the geodesic distance on a surface involves the solving of 
Eikonal equation [16] 

                              |∇𝑇(𝑥, 𝑦, 𝑧)| = 1                             (1) 
on the surface, where 𝑇(𝑥, 𝑦, 𝑧) is the geodesic distance of 
the surface point Q(x,y,z) from a reference point (e.g. P). 
The main approach to solve the Eikonal equation is the Fast 
Marching Method (FMM) [17]. In a 3D space we can 
compute the geodesic distance in the triangular meshes, 
consisting of vertexes and faces, using the Fast Marching 
Method on Triangulated Domains (FMTD) [18].  

In this paper, we compute the geodesic distances on face 
surface using the range images extracted from the 3D face 
models. If we represent the range image as 𝑧 = 𝑓௥(𝑥, 𝑦), in 
which the superscript r stands for range, the Equation (1) 
can be solved on the range image as  

 
                     |∇𝑇(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦))| = 1                          (2)      
 

where 𝑇(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) is the geodesic distance of the point 𝑄(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦))  from the reference point. Here, we 
consider the nose tip as the reference point. The origin of 
the range image coordinates is located at bottom-left corner 
of the image. 

B. Texture Transform 
It has proved that the geodesic distance can be used to 

represent the texture and shape in the face recognition 
algorithms [13, 14, 19, 20]. Bronstein et al. [13] used the 
basic geodesic distance between all face points to create a 
Canonical Image Representation for the face texture. This 
approach relies on the assumption that the face is 
approximately isometric, which means that the geodesic 
distances among face points on the face surface are 
preserved in different expression changes. The Mpiperis et 
al. [14] proposed a Geodesic Polar Representation based on 
the geodesic paths and circles on the face surface. They used 
the geodesic circles and geodesic paths on the face surface 
to create geodesic polar coordinates.   

In this paper, we use the notion of face isometric 
assumption to find a novel texture transform which is more 
robust to expression variations than the existing methods. 
Our transform is based on the assumption that the face 
surface is a 2D manifold embedded in a 3D Euclidean 
space. We can characterize the face surface by a 
Riemannian metric and describe it by geodesic properties. 
For this purpose, we need the texture image of the face. The 
texture image can be created by projecting the pixels of the 
3D face model to the x-y plane. The origin of the texture 
image coordinates is located at bottom-left corner of the 
image. 

We represent the created texture image from the face 3D 
model as 𝐼 = 𝑓௧(𝑥, 𝑦), in which the superscript t stands for 
texture. Because the creating procedure for the texture 
image is exactly same as the creating procedure for the 
range image, for each pixel in the created texture image we 
have a geodesic distance computed from the range image. 
We use the geodesic distance of the face points to establish 
a Texture Transform for the texture image. The proposed 
texture transform of the point (𝑥, 𝑦) in the texture image is 
computed by the Equation (3). 
                        ℱ௧(𝑥௧௥௔௡௦ , 𝑦௧௥௔௡௦) =  𝑓௧(𝑥, 𝑦)                   (3) 
where  
             𝑥௧௥௔௡௦ = 𝑟(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) cos൫𝜑(𝑥, 𝑦)൯ + 80     (4) 
and 

        𝑦௧௥௔௡௦ = 𝑟(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) sin൫𝜑(𝑥, 𝑦)൯ + 70      (5) 
 

where ℱ௧(𝑥௧௥௔௡௦ , 𝑦௧௥௔௡௦)  denotes the transformed texture 
image in which the superscript t stands for transformed. 𝑥௧௥௔௡௦ and 𝑦௧௥௔௡௦ are the transformed image coordinates of 
the point in the transformed texture image. The origin of the 
coordinates system in the transformed texture image is 
located at (80,70). 𝑟(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) is the geodesic distance 
of the point 𝑄(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) from the nose tip as  
                     𝑟(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦)) = 𝑇(𝑥, 𝑦, 𝑓௥(𝑥, 𝑦))             (6) 
where 𝑇 is the geodesic distance computed by (2). 

In Equations (4) and (5), 𝜑(𝑥, 𝑦) is the angle of the point 𝑄(𝑥, 𝑦) in the texture image respect to the reference point 
(nose tip). Mathematically, 𝜑(𝑥, 𝑦) is defined as  
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        𝜑(𝑥, 𝑦) = ⎩⎪⎨
⎪⎧0                                        𝑖𝑓   𝑥 = 𝑥ோ௉tanିଵ ቀ௬ି௬ೃು௫ି௫ೃುቁ                𝑖𝑓   𝑥 > 𝑥ோ௉tanିଵ ቀ௬ି௬ೃು௫ି௫ೃುቁ + 𝜋        𝑖𝑓  𝑥 < 𝑥ோ௉        (7) 

where (𝑥ோ௉, 𝑦ோ௉) is the location of the Reference Point (RP) 
in the texture image.  

Finally, we crop the image to obtain a face rectangle 
which includes the most important facial features. For this 
purpose, a cropping model in that the distance of the nose 
tip is 80 from the sides, 90 and 70 from the top and the 
bottom, respectively, is used. Therefore, a 160×160 image is 
created in which the origin of the transformed image 
coordinates is located at bottom-left of the image. Fig. 1 
depicts an example of a cropped transformed texture image 
using the above procedure.  Fig. 1 illustrates an example of 
a face 3D model and its transformed texture image. 

 
Figure 1.  An example of a face 3D model and its transformation 

C. Descriptor 
In this paper, we use Pseudo Zernike Moments as 

descriptor. Pseudo Zernike polynomials are orthogonal sets 
of complex-valued polynomials [21]. It has proved that the 
PZM have the best performance for image representation 
among the common moments [22]. PZMs have been utilized 
as descriptor in a range of face recognition applications in 
expression and lighting changing conditions, partial 
occlusion, and from one exemplar per person. 

PZM of order n and repetition m of a continuous 
intensity image 𝑓(𝑥, 𝑦) can be defined as 

                      

 
where 𝑛 ≥ 0 , |𝑚| < 𝑛  and the symbol * denotes the 
complex conjugate. The Pseudo Zernike polynomials 𝑉௡,௠∗ (𝑥, 𝑦) are defined as  

                        𝑉௡,௠∗ (𝑥, 𝑦) = 𝑅௡,௠(𝑎)𝑒௝௠ఏ                    (9) 
where 𝑎 = ඥ𝑥ଶ + 𝑦ଶ  is the length of the vector from the 
origin to the pixel (x, y) and 𝜃 = tanିଵ ቀ௬௫ቁ . The radial 
polynomials 𝑅௡,௠(𝑎) are defined as 
   𝑅௡,௠(𝑎) = ∑ (−1)௦ (ଶ௡ାଵି௦)!௦!(௡ି|௠|ି௦)!(௡ା|௠|ାଵି௦)!௡ି|௠|௦ୀ଴ 𝑎௡ି௦  (10) 

In this paper, we use PZMs as a local descriptor in the 
proposed face recognition system. This descriptor is applied 
on the transformed texture images created in the previous 

section to extract feature vectors. For this purpose, we first 
partitioned the transformed texture image to some equal-
sized patches in a non-overlapping way. Assume that the 
size of the image is 𝑁 × 𝑁 and the size of each patch is 𝑊 × 𝑊 . In this case, the number of patches for the 
transformed texture image is (𝑁 𝑊⁄ )ଶ . We indicate all 
points in a patch with p and q indexes which are integers 
ranging from 1 to 𝑁 𝑊⁄  and mathematically can be found 
for each point as 

            𝑝 = ቔ௫೟ೝೌ೙ೞௐ ቕ + 1     ;     0 ≤ 𝑥௧௥௔௡௦ < 𝑁           (11) 

            𝑞 = ቔ௬೟ೝೌ೙ೞௐ ቕ + 1     ;     0 ≤ 𝑦௧௥௔௡௦ < 𝑁           (12)  
which 𝑥௧௥௔௡௦ and 𝑦௧௥௔௡௦ are transformed image coordinates. 
The symbol ⌊∙⌋ denotes the floor function. Fig. 2 illustrates 
an example of partitioning a transformed texture image into 
patches. 
 

 
Figure 2.  Partitioning a transformed texture image into patches 

The (p, q)th patch of the transformed texture image can 
be represented as  

 
where 𝑥௧௥௔௡௦௣௤  and 𝑦௧௥௔௡௦௣௤  are the transformed patch 
coordinates of the (p, q)th patch. The origin of the patch 
coordinates system is located at the bottom-left corner of 
each patch.   

By substituting (13) in (8), we can find the PZM 
equation for the (𝑝, 𝑞)th patch in the transformed texture 
image as    

 
where p and q are integers ranging from 1 to 𝑁/𝑊 .  

To compute the PZM for each patch, the texture of the 
patch is mapped (normalized) to a unit circle. The approach 
that we use in this paper is the mapping of the patch in the 
way that the entire patch is bounded inside the unit circle. 
This approach ensures that there is no pixel loss during the 
PZM computations. We perform the normalization into the 
unite circle by the following equations: 
        𝑥௧௥௔௡௦,௜௣௤ = − √ଶଶ + √ଶௐିଵ 𝑖   ;   𝑖 = 0,1, … , 𝑊 − 1         (15) 

𝑃𝑍𝑀௡,௠௣௤ ൫ℱ௧(𝑥௧௥௔௡௦ , 𝑦௧௥௔௡௦)൯= 𝑛 + 1𝜋 ඵ 𝑉௡,௠∗ (𝑥, 𝑦)  ℱ௣,௤௧ ൫𝑥௧௥௔௡௦௣௤ , 𝑦௧௥௔௡௦௣௤ ൯𝑑𝑥 𝑑𝑦௫మା௬మஸଵ  

ℱ௣௤௧ ൫𝑥௧௥௔௡௦௣௤ , 𝑦௧௥௔௡௦௣௤ ൯= ℱ௧(𝑊(𝑝 − 1)+ 𝑥௧௥௔௡௦௣௤ , 𝑊(𝑞 − 1) + 𝑦௧௥௔௡௦௣௤ ) 

𝑃𝑍𝑀௡,௠(𝑓(𝑥, 𝑦))= 𝑛 + 1𝜋  ඵ 𝑉௡,௠∗ (𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦௫మା௬మஸଵ  

Transform Partitioning 

Boundary Patch 

(14)

(13)

(8)

257251



        𝑦௧௥௔௡௦,௝௣௤ = √ଶଶ − √ଶௐିଵ 𝑗       ;   𝑗 = 0,1, … , 𝑊 − 1       (16) 
where 𝑥௧௥௔௡௦,௜௣௤  and 𝑦௧௥௔௡௦,௝௣௤  are normalized transformed 
patch coordinates of the points in the (𝑝, 𝑞)th patch. The 
origin of the normalized transformed patch coordinates 
system is located at the centre point of the patch. 

The Equation (14) is the continuous form of the PZM. 
By using Equations (15) and (16) in (14) we can derive a 
discrete form of PZM compatible for the transformed image. 
The discrete form of PZM of order n and repetition m for 
the (𝑝, 𝑞) th patch in the transformed texture image is 
written as 

          
where 𝑥௧௥௔௡௦,௜  and 𝑦௧௥௔௡௦,௝  are normalized transformed 
coordinates in the transformed texture image. The 
normalization factor 𝜆(𝑊) is the ratio between the number 
of pixels in the patch before and after normalizing into the 
unit circle. This normalization factor for our mapping is  𝑊 2⁄ .  

In this paper, the magnitudes of PZMs of order 1 up to 𝑛௠௔௫  with repetition 𝑚 ≥ 0 will be considered as moment 
features. The 𝑛௠௔௫  will be defined in section 3.1 by the 
experiment. The feature vector for the (𝑝, 𝑞)th patch can be 
represented as 

 
where the symbol |•| denotes the absolute value operator. 

The output of the patch descriptor section is a feature 
vector for each patch in the transformed texture image. In 
the next section, we use these feature vectors to calculate the 
dissimilarity between two subjects. 

D. Dissimilarity Measurement 
In this section, we calculate the distance of a given query 

3D image and a model in the gallery. We use the extracted 
PZMs to measure the dissimilarity between images. The 
Texture Distance Vector (TDV) between the (𝑝, 𝑞)th patch 
of the transformed texture images in the query and the 
model is defined as  
              𝑇𝐷𝑉௣௤  = ቄൣ𝑃𝑍𝑀௡೘ೌೣ௣௤ ൧௙ − ൣ𝑃𝑍𝑀௡೘ೌೣ௣௤ ൧௚ቅ          (19) 
where f and g are the transformed texture images of the 
query and the model faces, respectively.  

In order to decrease the effect of the boundary patches, 
patches located on the face border (see Fig. 2), on the 
extracted moments, an adaptively weighting technique is 
used to weight the moment features of each patch. For this 
purpose, we define the weight of each patch based on the 
patch area in the transformed query image and the 
corresponding patch area in the transformed model image. 

We map both patches into the unit circle as the procedure 
described in the previous section and compute the 
proportion of the intersection area of two patches to the 
whole area as  

                                  𝛾௣௤ = ௌ೛೜ೂ ∩ௌ೛೜ಾଶ                                   (20) 
where 𝛾௣௤  is the weightage for the (𝑝, 𝑞)th patch, 𝑆௣௤ொ  and 𝑆௣௤ெ  are the mapped area of the (𝑝, 𝑞) th patch of the 
transformed texture images in the query and transformed 
model images, respectively. The superscripts Q and M stand 
for query and model, respectively. The symbol ∩ denotes 
the intersection operator. 

By using 𝑇𝐷𝑉௣௤  and 𝛾௣௤ , we can compute the distance 
between the query face (f) and the model face (g) as 
            𝐷(𝑓, 𝑔) = ቛቄ𝛾௣௤ • 𝑇𝐷𝑉௣௤|𝑝, 𝑞 = 1, … , ேௐቅቛ       (21) 
where the symbol •  denotes the mathematical 
multiplication.  
For a given query image, we compute the distance to all 
models in the gallery using Equation (21). The model in the 
gallery with the minimum distance (D) is considered as the 
correct return. 

III. EXPERIMENTAL RESULTS 
In order to evaluate the feasibility and effectiveness of 

the proposed approach, an extensive experimental 
investigation is conducted, covering face recognition under 
different facial expressions. The experiments were 
conducted on the BU-3DFE [15] which contains 3D face 
models under all different expression changes. The database 
contains 100 subjects (56 females, 44 males) and each 
subject has seven expressions. With the exception of the 
neutral expression, each of the six prototypic expressions 
(happiness, disgust, fear, angry, surprise and sadness) 
includes four levels of intensity. The performance of the 
proposed method is compared with two benchmark 
approaches: 1) the method proposed by Bronstein for 
expression-invariant face recognition (Canonical Image 
Representation) [13], 2) the method proposed by Mpiperis 
for expression-invariant face recognition (Geodesic Polar 
Representation) [14]. 

A. Determination of Parameters 
In this section, we determine two parameters involved in 

the proposed method, i.e. the maximum order of the PZMs 
(𝑛௠௔௫) and the size of the patches (𝑊). In theory, the PZM 
with order zero represents the DC component (mean value 
of the pixels in the image) and do not carry personal identity 
information. Hence, we set the minimum order of the PZMs 
as 1.  

To determine 𝑛௠௔௫  and 𝑊 , an experimental 
investigation on recognition accuracy is conducted on a 
training dataset. For this purpose, we created a training 
dataset from the BU-3DFE database [15]. For each subject, 
we selected two faces: one is the neutral face and another is 
one of the six prototypic expressions with one of four 

𝑃𝑍𝑀௡೘ೌೣ௣௤ = ൛ ห𝑃𝑍𝑀௨,௩௣௤ ห  |  𝑢= 1, . . . , 𝑛௠௔௫ 𝑎𝑛𝑑  𝑣= 0, … , 𝑢ൟ 

𝑃𝑍𝑀௡,௠௣௤ ቀℱ൫𝑥௧௥௔௡௦,௜, 𝑦௧௥௔௡௦,௝൯ቁ= 𝑛 + 1𝜋𝜆(𝑊) ෍ ෍ 𝑉௡,௠∗ ൫𝑥௧௥௔௡௦,௜௣௤ , 𝑦௧௥௔௡௦,௝௣௤ ൯ℱ௣,௤௧ ൫𝑥௧௥௔௡௦,௜௣௤ , 𝑦௧௥௔௡௦,௝௣௤ ൯ௐିଵ
௝ୀ଴

ௐିଵ
௜ୀ଴  

(17)

(18)
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expression levels selected randomly. In the training set, all 
neutral faces are selected as the gallery and others are used 
as the probe. In this experiment, we change the size of the 
patch (𝑊) in the range of 80, 40, 32, 20, 16, and 10. For 
each patch size, we measure the accuracy of the system for 
different values of the maximum order of the PZMs (𝑛௠௔௫) 
and draw the corresponding curve. The result is displayed in 
Fig. 3.  

It can be observed that through reducing the patch size, 
system accuracy continuously increased and reached the 
highest rate when W=16, then decreased when W=10. It is 
encouraging to see that the required 𝑛௠௔௫ (i.e. the value of 𝑛௠௔௫  when the curve starts to remain flat) continuously 
decreases when W decreases. In the rest of experiments, we 
choose W=16 as the patch size, and  𝑛௠௔௫ = 3  as the 
maximum order of PZM. 

 
Figure 3.   The effect of 𝑊 and 𝑛௠௔௫on the recognition rate 

B. Face Recognition 
The robustness to facial expression variation is an 

important issue in a face recognition system. Some 
experiments were conducted to evaluate the effects of 
different facial expressions (angry, disgust, fear, happy, sad, 
and surprise) on the proposed approach. To have more 
reliable comparison with the results of benchmarks reported 
in [14], the same experiment strategy used in [14] is adopted 
in our study. The performance is measured in term of the 
rank-1 recognition rate [23]. For each person, a single 
neutral model is used as representative in the gallery, while 
the rest images depicting expressions are used as probe. In 
total we have seven probe sets: six probe sets for the 
recognition rate under six different face expression changes 
(angry, disgust, fear, happy, sad, and surprise) and one 
probe set for the recognition on whole database.  

The rank-1 recognition rates of the proposed algorithm 
for each type of the expression changes and for whole 
database are tabulated in table I. For comparison, the rank-1 
recognition rates for the benchmarks on whole database are 
reported from [14]. As can be seen, the angry expression has 
the best accuracy (90%), while the disgust expression has 
the worst accuracy (78%). The overall accuracy for the 

proposed method (82.2%) is higher than the benchmark 
approaches (80.3% and 77.2% for Geodesic Polar 
Representation and Canonical Image Representation, 
respectively).    

TABLE I.  PERFROMANCE COMPARISON UNDER EXPRESSION 
CHANGES 

Expression 
Considered 

The 
Proposed 
Method 

Geodesic Polar 
Representation 

Canonical 
Image 

Representatio
n 

Angry 90 N/A N/A 
Disgust 78 N/A N/A 

Fear 80 N/A N/A 
Happy 82 N/A N/A 

Sad 82 N/A N/A 
Surprise 81 N/A N/A 
Overall 82.2 80.3 77.2 

 

IV. CONCLUSION 
In this paper, a novel expression-invariant face 

recognition method is proposed called Patched Geodesic 
Texture Transform (PGTT). PGTT is particularly designed 
to handle the variations in face surface due to the 
expression. The Pseudo Zernike Moments are adapted to use 
in the proposed face recognition algorithm as moments. The 
algorithm has been evaluated and compared with two 
benchmarks. It is very encouraging finding that the PGTT 
performs consistently superior to the benchmarks under the 
expression variations. This research reveals that the PGTT 
provides a new solution for expression-invariant face 
recognition.  
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