
Windows Rootkits: Attacks and Countermeasures

Desmond Lobo
Internet Commerce Security Laboratory

Graduate School of Information Technology and
Mathematical Sciences

University of Ballarat, Australia
desmondlobo@students.ballarat.edu.au

Xin-Wen Wu
School of Information and Communication Technology

Griffith University, Australia
x.wu@griffith.edu.au

Paul Watters
Internet Commerce Security Laboratory

Graduate School of Information Technology and
Mathematical Sciences

University of Ballarat, Australia
p.watters@ballarat.edu.au

Li Sun
School of Mathematical and Geospatial Sciences

RMIT University, Australia
lisun01@gmail.com

Abstract - Windows XP is the dominant operating system in the
world today and rootkits have been a major concern for XP
users. This paper provides an in-depth analysis of the rootkits
that target that operating system, while focusing on those that
use various hooking techniques to hide malware on a machine.
We identify some of the weaknesses in the Windows XP
architecture that rootkits exploit and then evaluate some of the
anti-rootkit security features that Microsoft has unveiled in
Vista and 7. To reduce the number of rootkit infections in the
future, we suggest that Microsoft should take full advantage of
Intel’s four distinct privilege levels.

Keywords – computer security; malicious software
(malware); rootkits; Microsoft Windows; Intel’s ring architecture

I. INTRODUCTION
Rootkits refer to software that is used to hide the

presence and activity of viruses, worms, Trojans and other
forms of malware, and permit an attacker to take control of a
computer system [21]. Installing a rootkit is usually the first
thing that an attacker will do after gaining access to a system,
as this will ensure that the attack will remain undetected [1].

Rootkits also often open a backdoor through which the
attacker can spy on the system’s activities [2]. The attacker
can then proceed to capture personal data, such as bank
account details, passwords, and credit card numbers.

In this paper, we concentrate on rootkits that target the
Windows XP operating system. We focus on this particular
operating system for obvious reasons: the Windows family
accounts for approximately 90% of the operating systems in
use today and, within the Windows family, XP is by far the
most popular [3].

There are clearly two very good reasons why it is
important to conduct research in the area of Windows
rootkits:

1. It is estimated that 85% of malicious software is
being written today with the intention of generating

profit for the malware’s author [4]. We are no
longer dealing with script kiddies just trying to
create malware for fun, but instead are targeted by
organized criminal gangs that want to steal money.
The Symantec Corporation even claims that “cyber
crime has surpassed illegal drug trafficking as a
criminal moneymaker” [5].

2. There has been an increase of several hundred
percent in both the number and complexity of
rootkits over the last few years [6]. Malicious
software is already a very big worldwide problem
and the proliferation of rootkits is only going to
serve to escalate this problem.

These two trends are illustrated in Figure 1.

This paper discusses some of the rootkits that use
hooking techniques to hide malware on a computer system.
We explain how these rootkits were able to exploit the
weaknesses of the Windows XP architecture.

Figure 1. Visibility of Malware versus Malicious Intent [13]

V
is

ib
ili

ty
 a

nd
 M

al
ic

io
us

 In
te

nt

Time

fame and glory

viruses, worms and Trojans

rootkits

highly
profitable

cybercrime

Visibility

Malicious Intent

2010 Second Cybercrime and Trustworthy Computing Workshop

978-0-7695-4186-0/10 $26.00 © 2010 IEEE

DOI 10.1109/CTC.2010.9

69

XP was released in 2001; Microsoft has recently released
two other versions of Windows, namely Vista and 7. This
paper also outlines the steps that Microsoft has taken in order
to address the weaknesses of the XP architecture. In
particular, we identify some of the anti-rootkit security
features that Microsoft has unveiled in Vista and 7.

We conclude the paper by suggesting that Microsoft
should make better use of the available hardware memory
protection mechanisms that are provided by Intel’s four
protection modes (also known as rings) in order to reduce the
incidence rate of rootkit infections in the future.

The rest of this paper is organized as follows:

• We describe how rootkits evolved in section II.

• In sections III and IV, we explain some of the
Windows XP rootkit hooking techniques and Intel’s
ring architecture, respectively.

• In section V, we assess some of the countermeasures
that Microsoft has deployed in Vista and 7 to guard
against rootkit attacks.

• Finally, we provide a discussion of and conclusion to
the paper in section VI.

II. EVOLUTION OF ROOTKITS
The Pakistani Brain, the first computer virus for the PC

that appeared in 1986, is also considered to be the first type
of malware that used stealth techniques to avoid detection.
During the following year, in 1987, another virus called
Lehigh was released into the wild. Lehigh, however, was not
nearly as successful as the Pakistani Brain virus and was
very quickly contained, primarily because it did not utilize
stealth techniques to remain hidden. Having noticed the
effectiveness of the Lehigh virus in comparison to the
Pakistani Brain, virus writers thereafter realized the
importance of making use of stealth techniques. [6]

The first true rootkits started to appear in the early 1990s.
During that period, malicious hackers often managed to
penetrate computer systems and they would then use those
compromised systems to launch attacks against other
computers. To ensure that they would be able to take
advantage of those compromised systems for an indefinite
period of time, what they needed was a way to conceal their
presence on the system. Thus, these hackers started
developing rootkits for this purpose. [7]

1997 marked a milestone in terms of rootkit technologies
as it saw the release of Cabanas, the first virus developed for
the Windows NT system. Cabanas is considered to be the
forefather of many of the rootkits in the wild today that hook
two API (Application Programming Interface) functions,
namely FindFirstFile and FindNextFile, in order to hide
some files in a folder [8]. On a Windows machine, files in a
folder are stored in a linked list. In order to display the files,
the FindFirstFile function is called to find the first file and
the FindNextFile function is called to locate subsequent files.
If these two functions have been hooked, it is then possible

to ensure that certain files in the folder are never displayed
and remain hidden. [15]

A. Rootkits Grab the Headlines
It was in 2005 that rootkits really grabbed the headlines

with an incident involving Sony BMG Music Entertainment,
the world’s second largest record label. Sony was concerned
about users making illegal copies of their music files. Thus,
they employed some stealth (rootkit) technologies on their
music CDs that would hide digital rights management files
and processes on a user’s computer. This would prevent
users from making illegal copies of the music files on their
computers. [17]

This was achieved by using some code that would hide
any file, folder or process that started with the string "sys"
[19]. However, this meant that similarly named malware
could, unfortunately, also be hidden from anti-virus scanners
[17]. It was Mark Russinovich, a security expert, who had
identified the rootkit and he subsequently made this
knowledge public.

When the two million customers who purchased these
CDs found out that their machines had been compromised,
they were outraged. After listening to lawfully purchased
music on their computers, these individuals learned that
some software had been installed on their machine without
their permission. On top of that, Sony had failed to provide
these customers with an uninstaller to completely remove
this software. [18, 19]

B. Attacks on Financial Institutions
In recent years, rootkits have been successfully used in

attacks on financial institutions. In January 2007, for
example, a large Swedish bank was attacked using Haxdoor,
a Trojan with rootkit capabilities. Phishing emails were first
sent to the bank customers urging them to download and run
an anti-spam application [9, 10, 11]. The application had the
Haxdoor malware embedded in it. When installed on the
victim’s system, the malware then proceeded to install a
keylogger to capture keystrokes [12, 10]. This keylogger lay
dormant on the user’s computer until the victim visited the
bank’s website. This action triggered the keylogger to begin
capturing keystrokes, and the stolen data was eventually sent
to servers in Russia for further processing [12, 9, 10].

The Swedish bank reported that 250 customers had been
attacked and a total of $1.17 million had been lost to the
Russian organized criminals [12, 10, 11].

This incident was successful for two reasons:

• Firstly, the criminals managed to stay below the
radar of security software by targeting a relatively
small number of customers, by using a series of
small withdrawals, and by spreading the attack over
a period of 15 months [12, 11]. By staying below
the radar in this way, the criminals made sure that
no alarms were triggered.

70

• Secondly, the Haxdoor Trojan that was used in the
attack contained a rootkit that ensured that the
Trojan was not detected by the system.

C. Proof-of-Concept Attacks on Smart Phones
The latest news about rootkits involves a group of

researchers at Rutgers University. In their research [20], they
have been able to show that smart phones are just as
vulnerable to rootkit attacks as desktop computers. The
operating systems on these phones have evolved to the point
that they are now almost as complex as those of PCs.
Detecting and removing rootkits from desktop system has
already proven to be a very challenging task, and the users of
these smart phones are undoubtedly going to face similar
challenges.

The main concern about smart phones is that these
devices can access a number of interfaces that are not
available on regular desktop computers, such as GSM, GPS
and the battery:

1. The researchers at Rutgers demonstrated how
rootkits could be used to listen in on private
telephone conversations on a GSM network, and this
could potentially lead to the leaking of sensitive
information.

2. Since most of these phones are equipped with GPS
tracking capabilities, rootkits could also be use in an
attack that aims to compromise the victim’s current
location.

3. Lastly, rootkits could be used in an attack to drain
the phone’s battery and this would result in a denial
of service for the user.

III. HOOKING WINDOWS XP
Having described how rootkits evolved in the previous

section, we now explain how rootkits manage to hook the
operating system. Hooking a Windows machine has several
malicious purposes [24]:

• By hooking the functions that list the files in a
directory, a rootkit can ensure that certain files
remain hidden on a system.

• By hooking the appropriate functions in an antivirus
program, a rootkit can guarantee that certain files are
not scanned.

• By hooking the functions involved in keyboard
input, a rootkit would have the ability to capture
keystrokes.

• Hooking certain functions can cause a process to
open a port on a system, thereby providing a
backdoor for an attacker.

Hiding files is the most common action taken by rootkits
and we now give an example to illustrate how a rootkit
created a hook in order to accomplish this on an XP system.
Figure 2 describes one of the many hooks that had been

created by the Feebs malware. Feebs is actually a worm with
rootkit capabilities. It attempts to harvest information from
an infected computer and send this stolen data to a remote
user [25]. A machine can become infected when a user
executes an email attachment containing this malware [23].

The hook in figure 2 is called an inline function hook [7].
These types of hooks are created when a rootkit overwrites
the first five bytes of an API function with a JUMP
instruction. The first byte in the function is replaced with the
value E9, the opcode for a JUMP in assembly language, and
the remaining four bytes contain a 32-bit address of some
malicious code. Therefore, the process will jump to this
address to execute malicious code whenever this API
function is called.

From figure 2, it is evident that the FindNextFileA API
function in the Kernel32 DLL (Dynamic-Link Library) file
had been hooked. As mentioned earlier, the Cabanas virus is
considered to be the forefather of many of the rootkits in the
wild today (such as Feebs) that hook this function in order to
hide files.

The FindNextFileA API function had been exported by
the Kernel32 DLL file to the Ctfmon Windows process
(Process IDentifier 1776 in figure 2). This process runs in the
background on Windows XP systems:

“Ctfmon.exe monitors the active windows and provides
text input service support for speech recognition,
handwriting recognition, keyboard, translation, and other
alternative user input technologies [22].”

Whenever this particular API function was called, some
malicious code at address 10010822 was run. This code was
contained within the mscf32 DLL file; Anson and Bunting
[24] refer to such a file as a “rogue DLL” that an attacker had
managed to inject into the memory address space of the
Ctfmon process. Since this malicious code would be
executed whenever the FindNextFileA function was called,
the rootkit can ensure that certain files are never displayed.

A. Windows XP Architectural Weaknesses
It is possible to create a hook like that in figure 2 because

there are some weaknesses in the Windows XP architecture
that rootkits are able to take advantage of. In this subsection,
we identify some of these weaknesses.

Rootkits are capable of redirecting the flow of execution
of an XP system. In the example given in figure 2, the rootkit
had managed to overwrite the first five bytes of the
FindNextFileA API function and then redirect the flow of
execution to the mscf32 DLL file. How was this achieved?

Most of the system DLL files are stored in the
\Windows\System32\ directory. These critical files are
protected by the Windows File Protection (WFP) feature
[26]. This means that it is not possible to overwrite or replace
these files, except in certain situations such as during a
Windows update. This feature was incorporated in Windows
2000 and XP to help improve the stability of these systems.

71

McAfee(R) Rootkit Detective 1.1 scan report
On 21-02-2010 at 01:52:57
OS-Version 5.1.2600
Service Pack 3.0

===

Object-Type: IAT/EAT-hook
PID: 1776
Details: Export : Function :
 kernel32.dll!FindNextFileA =>
 C:\WINDOWS\system32\mscf32.dll:10010822
Object-Path: C:\WINDOWS\system32\mscf32.dll
Status: Hooked

Figure 2. Inline Function Hook Created by a Feebs Worm/Rootkit

The necessary DLL files from the \Windows\System32\
folder are then copied into memory. These copies are marked
as ‘read-only’ and all the processes have access to these
shared files. If a particular process needs to modify one of
these DLL files, a second copy of the file is created, while
the other processes can still access the original DLL copy.
This procedure is called Copy-on-Write: it protects processes
from damaging each other while consuming as few resources
as possible [27].

Rootkits exploit the fact that these DLL files can be
overwritten in memory and are thus able to change the flow
of execution. Even having modified the flow of execution,
rootkits still need to perform one additional step: in the
figure 2 example, the rootkit had managed to inject the
mscf32 DLL file, containing some malicious code, into the
Ctfmon process. The injection of this DLL file into the
address space of the Ctfmon process could have been
accomplished using, for instance, the LoadLibrary API
function.

In addition to this function, there are others (such as
CreateRemoteThread and WriteProcessMemory) that make it
trivial to inject malicious code into a running process. These
functions transcend the normal barriers that have been put in
place to protect processes from modifying each other. Sparks
et al. [34] facetiously refer these functions as the “Rootkit
API” that is provided by Windows since they simplify the
job of a rootkit writer.

B. Legitimate Uses of Hooking
The next question that arises is: why does Microsoft allow

this to occur? There are actually legitimate reasons for
deploying hooks in a Windows machine.

Way back in 1999, Microsoft provided a situation in
which hooking the operating system would be a suitable
option [33]. A company had created a DLL file that it would
inject into a database product in order to enhance the
capabilities of that product. When an attempt was made to
terminate the product, a DLL_Process_Detach notification
was sent, with the objective of unloading the DLL file from
the address space of a certain process. The DLL would then
proceed to close socket connections, files, and other

resources. However, by the time the DLL file received the
notification, other DLLs in the process’ address space would
have already received their DLL_Process_Detach
notifications. Thus, many functions that the DLL called
would fail because the other DLLs had already been
unloaded.

Microsoft’s suggestion was to hook the ExitProcess API
function. It is the ExitProcess function that ends the process
and causes the system to send the DLL_Process_Detach
notifications. If the ExitProcess function was hooked, it
could be arranged so that the company’s DLL file would be
the first one to be unloaded. The hook could then redirect the
flow of execution back to the original ExitProcess function
and the remaining DLLs could be unloaded without any
concerns.

Today, a lot of legitimate software, including several
security packages such as antivirus and firewall applications,
deploys hooks in the operating system to receive
notifications about events like file creation and opening of
ports [47]. Unfortunately, as we stated earlier, there are
scores of rootkits that also exploit these techniques.

IV. INTEL'S RING ARCHITECTURE
In the previous section, we identified some of XP’s

architectural flaws that rootkits could take advantage of.
Another weakness of the Windows design relates to the
hardware that this software runs on. Intel processors were
created with four protection rings, as illustrated in figure 3.
These rings could be used to help separate user applications,
operating system services, device drivers and the operating
system’s kernel. The inner rings have more privileges than
the outer rings; in other words, the inner rings have full
access to the outer rings and follow the principle of least
privilege.

On the other hand, there are special gates between the
rings that control the access that an outer ring has to an inner
ring. This helps improve security since an outer ring would
not be able to gain access to an inner ring at will. For
example, a user mode rootkit running in ring 3 would be
prevented from turning on a web camera since the drivers for
this hardware would only be accessible from ring 1 [37].
Furthermore, this design ensures that misbehaving
applications, services or drivers will not disrupt the stability
of the operating system’s kernel [28].

Even though Intel processors offered four distinct rings,
the OS/2 operating system, which was initially created by
Microsoft and IBM, made use of just three of these: ring 3
for user applications and OS/2 services, ring 2 for device
drivers, and ring 0 for the OS/2 kernel [38].

For the Windows family of operating systems, Microsoft
reduced that number further and only made use of rings 3
and 0: ring 3 was used for user applications while ring 0 was
used for Windows services, device drivers and the Windows
kernel. There were some concerns with this design; for
example, there would be a need for driver signing (which we
will elaborate on in the following section).

72

Figure 3. Intel’s Ring Architecture [28, 37, 24, 14]

Microsoft did provide a reason for this decision to only

use two rings:

 “Some hardware that was supported in the past (such as
Compaq Alpha and Silicon Graphics MIPS) implemented
only two privilege levels [28].”

It is clear that Windows was first designed for a single-user
PC without a network connection, and security features were
not built in from the outset; Microsoft was more concerned
about compatibility. Their strategy was to get their product to
market as fast as possible and, given the success that they
have had with Windows, you have to applaud them for that.
The trouble was that rootkit writers began to take advantage
of this architecture. With only two rings in use, there was no
obstacle or barrier between the kernel space and user land. It
was quite possible for rootkits to gain access to ring 0 and,
once they did, they would then be able to take full control of
the computer system.

V. DEFENSE-IN-DEPTH
The Haxdoor Trojan that was used in the attack on the

Swedish bank is typical of the malware that we can expect to
witness more often in the future. In addition to its keylogging
abilities, it also has screen capturing and form grabbing
capabilities. These features will ensure that the malware will
somehow manage to gather the personal data that it is after.
Furthermore, its rootkit features are also proving that this
strategy of quietly stealing information without raising any
alarms is very effective.

It is, therefore, logical to take the necessary steps to
prevent infection of the system in the first place, and the best
strategy to tackle such an attack-in-depth is to develop an
effective defense-in-depth approach. This was a term that
was originally associated with a military tactic that tried to
buy some time for soldiers when they came under attack.
The defense-in-depth method, in terms of information
security, uses multiple layers of security to ensure that

confidential data is protected, even if the attackers manage to
circumvent some of the layers.

After enduring years of attacks on its operating systems,
Microsoft has in recent years started to focus more on
security and has invested considerable resources to protect its
operating systems [16]. They have adopted a defense-in-
depth strategy to prevent rootkits from infecting their
operating systems. Their multi-layered approach includes
items such as:

A. Kernel Patch Protection (KPP)

B. Data Execution Prevention (DEP) and Address
Space Layout Randomization (ASLR)

C. Driver Signing

D. Windows Service Hardening

While it might be possible to circumvent each individual
defensive method, the cumulative effect of several layers of
defenses will make the job of the attacker much more
difficult. These defensive features are described in the
following sections.

A. Kernel Patch Protection (KPP)
The kernel is the central component of the operating

systems and can be considered to be a bridge between
application programs and the hardware. This is illustrated in
figure 4. Having such a key role to play in an operating
system, Microsoft introduced Kernel Patch Protection (KPP),
also known as Patchguard, to help protect the kernel and to
improve the overall reliability, performance and security of
Windows [31].

In particular, KPP can help prevent modifications of the
System Service Descriptor Table (SSDT), which is often
hooked by rootkits. For instance, figure 5 describes one of
several SSDT hooks that had been created by Haxdoor, the
Trojan/rootkit that was used in the attack on the Swedish
bank.

Figure 4. Kernel of the Operating System [30]

RING 0

RING 1

RING 2

RING 3

KERNEL

DRIVERS

SERVICES

APPLICATIONS

73

Native system services refer to undocumented API
functions for the Windows operating system that are callable
from user mode [28]. In figure 5, for example,
ZwCreateProcess is an internal system service that the
CreateProcess API function calls to create a new process. A
native system service call is thus a mechanism that allows a
user mode application to access the operating system’s
kernel [8].

The SSDT contains a list of pointers with the addresses
of the internal kernel function that implements the
corresponding service [28, 8, 7]. A rootkit can intercept calls
that are made to a specific native system service by replacing
the SSDT entry with the address of its own code. After this
rootkit code is executed, the original native system service
can be called or some fabricated data can be returned instead
[7, 29]. A graphical representation of the status of an SSDT
hook is given in figure 6.

Microsoft introduced KPP in 2005 and this consequently
prevented rootkits from modifying any part of the kernel,
such as the SSDT, the interrupt descriptor table (IDT), the
global descriptor table (GDT), etc. [31]. Every five to ten
minutes, KPP checks to confirm that these critical
components of the kernel have not been modified. It does
this by comparing against known good copies or signatures.
If KPP determines that one of these components has been
altered, it forces the system to crash. [39]

KPP was only available for 64-bit versions of Windows,
though, and there is a perfectly good reason for this. In 2005,
32-bit versions of Windows were ubiquitous and, hence,
there was an abundance of application programs available for
these versions of Windows. Since Microsoft had not
implemented any sort of KPP prior to 2005, many of the
developers of these application programs took the liberty of
hooking the kernel. This included products from several
prominent security vendors, such as McAfee, Symantec and
Kaspersky [32]. If Microsoft had employed KPP on 32-bit
versions of Windows, these products that were hooking the
kernel would have ceased functioning. This is not something
that Microsoft would have wanted: they strongly encourage
compatibility between their operating systems and third-
party application software.

McAfee(R) Rootkit Detective 1.1 scan report
On 16-11-2009 at 03:55:05
OS-Version 5.1.2600
Service Pack 3.0

===

Object-Type: SSDT-hook
Object-Name: ZwCreateProcess
Object-Path: C:\WINDOWS\system32\vdnt32.sys

Figure 5. SSDT Hook Created by a Haxdoor Trojan/Rootkit

Figure 6. Before and After an SSDT Hook is Implemented [29]

On the other hand, a relatively small percentage of 64-bit
versions of Windows were running in 2005. Thus, Microsoft
took the step to implement KPP just on 64-bit versions as
this would raise an insignificant number of compatibility
issues. As a final point, to appease vendors such as McAfee,
Symantec and Kaspersky, Microsoft created additional APIs
to ensure that these companies would still be able to develop
64-bit versions of their products without having to hook the
kernel.

We conclude that this is an indication that Microsoft has
definitely started taking security very seriously with the
development of KPP. When it comes to protesting the kernel,
Microsoft has, in essence, given up on 32-bit versions of its
operating systems. Nevertheless, the software giant has taken
a strong stance to ensure that the 64-bit kernel will be
protected. Not only will a 64-bit machine be able to
accommodate significantly more RAM, users of these
systems can rest assured that they will be provided with
increased security as well.

B. Data Execution Prevention (DEP) and Address Space
Layout Randomization (ASLR)
Prior to deploying a rootkit in a computer system, the

attacker must gain access to that system. Often, attackers
manage to exploit the software on the system by using buffer
overflows [7]. In response to these attacks, Microsoft has
recently introduced two defensive techniques: Data
Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR). We first briefly explain how buffer

SSDT

SSDT

After:

Before:

Native
System
Service

Rootkit

Native
System
Service

74

overflow attacks work and then describe the two
countermeasures.

1) Buffer Overflows

Basically, attackers who make use of buffer overflows
take advantage of the fact that most high-level language
programmers do not fully understand what is occurring at the
assembly level. Suppose, for example, a program has been
designed to request some type of input and this information
is stored on the stack in a buffer of maximum size 100. To
cause the buffer to overflow, the attacker could possibly send
1000 characters, with the remaining 900 characters
overwriting the adjacent memory on the stack. [35]

A well-designed buffer overflow attack would ensure that
the 900 excess characters, in this case, contained some
malicious rootkit code that would be stored on memory.
Once this code has been executed, the attacker would be able
to take control of the system. [36]

It should be pointed out that Linux- and Unix-based
operating systems are susceptible to these types of attacks as
well. The telnet daemon (telnetd), for instance, which allows
users to remotely log in to a machine, was found to contain a
vulnerability that would allow an attacker to trigger a buffer
overflow and cause a denial of service (DoS) or possibly
execute malicious code [50].

2) DEP and ASLR Countermeasures

Windows machines that have enabled DEP, which is also
referred to as eXecute Disable (XD) by Intel and No eXecute
(NX) by AMD, are less vulnerable to buffer overflow
attacks. DEP first identifies which memory locations in a
process contain data and which contain code. After this has
been established, DEP can then block the execution of any
code in the data content area [16]. Thus, an attacker might,
for instance, endeavor to use a buffer overflow exploit to
inject some malicious code and overwrite data on the stack.
If an attempt is then made to execute that code, DEP
immediately triggers an alarm and the program is terminated.
[40]

ASLR also helps prevent buffer overflow attacks. With
ASLR, modules are loaded into random locations whenever
a system boots and this makes it difficult for shellcode to
operate successfully [42, 39]. Suppose, for example, an
attacker had managed to introduce some malicious code onto
the stack. Next, suppose that this code then attempts to inject
a rogue DLL into a process by calling the LoadLibrary API
function in the Kernel32 DLL file. The location of the
LoadLibrary function would need to be determined. This
task would be more complicated with ASLR because the
Kernel32 DLL file might have been loaded into any one of
256 different locations.

A security expert from Microsoft demonstrated how
ASLR works [41]. He first determined the location of several
DLL files on his laptop:

• wsock32.dll 0x73ad0000

• winhttp.dll 0x74020000

• user32.dll 0x779b0000

• kernel32.dll 0x77c10000

• gdi32.dll 0x77a50000

After rebooting his machine, he then found that, because of
ASLR, those same DLLs had moved to the following
locations:

• wsock32.dll 0x73200000

• winhttp.dll 0x73760000

• user32.dll 0x770f0000

• kernel32.dll 0x77350000

• gdi32.dll 0x77190000

DEP and ASLR are most effective when they are used
together [39, 42]. If DEP is used without ASLR, the code
that has been injected onto the stack could be used to redirect
the flow of execution to a known function address.
Conversely, if ASLR is used without DEP, the attacker could
simply execute code off the stack.

C. Driver Signing
As noted earlier, the Windows family of operating

systems only uses two of the four protection rings offered by
the processor. Intel had originally anticipated that device
drivers would operate in ring 1 but, because ring 1 is not
used in Windows machines, these drivers execute instead in
ring 0. This means that they have full access to the computer
system, and this raises some concerns. The driver might
possibly contain some malicious code, such as a rootkit, that
could be used to take control of the machine.

This vulnerability was one of the reasons that Microsoft
introduced a driver signing mechanism, where the computer
user would be warned whenever an attempt was made to
install an unauthorized driver [28].

D. Windows Service Hardening
Windows services refer to programs that run quietly in

the background on a Windows machine [28, 24]. As
mentioned previously, these services, device drivers and the
kernel all operate in ring 0, and this causes some concerns. If
a rootkit manages to grab control of one of these services, it
could execute with unrestricted privileges and take over the
whole computer system [14]. Another reason that these
services are attractive to rootkit writers is that they are
normally running from the time the machine boots up until it
shuts down [43].

Thus, Microsoft introduced Windows service hardening
to restrict the privileges that were available to these services,
thereby removing any privileges that each service did not
require. Furthermore, there were procedures put into place to
ensure that the services were isolated from each other,

75

consequently protecting each of these services from the other
services and applications. [43]

VI. DISCUSSION AND CONCLUSION
This paper has outlined some of the anti-rootkit features

that Microsoft has introduced in the last few years: Kernel
Patch Protection, Data Execution Prevention, Address Space
Layout Randomization, Driver Signing, Windows Service
Hardening, etc. Essentially, Microsoft has had to resort to
these measures because of the decision that they took to
make use of only two of the four protection rings that were
available on the processor:

• If the kernel had been isolated in ring 0, there might
not have been any need for implementing Kernel
Patch Protection.

• If device drivers had been installed in ring 1 as Intel
had planned, there might not have been any need
for requiring Driver Signing.

• If Windows services had been executing in ring 2 as
Intel had intended, there might not have been any
need for employing Windows Service Hardening.

Was it then a good decision for Microsoft to use just two
of the four protection rings? There is no question that
because Microsoft made this decision, their operating
systems are not as secure as they could have been. On the
other hand, because Microsoft was concerned about
compatibility from the very beginning, they now have 90%
of the operating systems market share, and you can’t really
argue with those results.

So, where does Microsoft go from here? We feel that this
is the time for Microsoft to completely redesign their
Windows operating system and adopt a four-ring architecture
as Intel had originally proposed. We conclude this paper by
providing some justification for making this statement:

• Microsoft needs to take back control of the kernel.
Having device drivers and Windows services also
operating in ring 0 should not be permissible. Ring
0 needs to be reserved exclusively for the kernel.

Because Microsoft does not have full control of the
kernel, they have had to resort to deploying
strategies such as Kernel Patch Protection. These
short term solutions do not address the real
problem. In fact, Authentium and Uniformed [44,
45] have already demonstrated that it is possible to
circumvent Kernel Patch Protection.

• Microsoft is a well established company with a
strong brand name and an abundance of resources
available to them. They could invest some of these
resources into developing a new version of
Windows, based on a four-ring architecture, from
scratch. The demand is there for a top quality
product.

• Microsoft is facing some formidable competition in
Google. Google is definitely more than just a search

engine, offering products and services such as
Gmail, Google Docs, YouTube and Google Maps.
Most importantly, Google is about to unveil a brand
new operating system that, unlike Windows, has
been designed from the ground up with security in
mind [46].

Google’s new operating system will also appeal to
financial institutions, such as the Swedish bank and
its 250 customers that were attacked. One of
Google’s guiding principles is, “Don’t scapegoat
the users” [46]. The burden of ensuring that the
computer system is secure should not be the
responsibility of the bank’s customers and they
should not be held accountable when attacked. In
fact, David Shroyer, vice president of online
security and enrollment at Bank of America, goes
on to point out that “customer education is less
powerful of a weapon against stealthy malware that
is constantly finding ways to avoid detection” [48].

Google has already entered the smartphone market
and, if the statistics in table 1 are anything to go by,
Microsoft needs to take note and should be
concerned about the impending release of Google’s
desktop operating system. In the three-month period
from the end of November 2009 until the end of
February 2010, Google increased their market share
of smartphone operating systems by 5.2 points, in
large part at the expense of Microsoft.

Security is certainly a very high priority for
computer users today and Microsoft does not have a
very good reputation when it comes to security. If
these users are not satisfied with the security that is
being provided by Windows and if Google offers a
better (and cheaper) alternative, they will surely
make the switch.

Table 1: Top Smartphone Platforms in the US [49]

 Share (%) of Smartphone Subscribers

Three Month
Avg. Ending
Nov. 2009

Three Month
Avg. Ending

Feb. 2010

Point
Change

RIM 40.8% 42.1% 1.3

Apple 25.5% 25.4% -0.1

Microsoft 19.1% 15.1% -4.0

Google 3.8% 9.0% 5.2

Palm 7.2% 5.4% -1.8

76

 ACKNOWLEDGMENT
This research was funded by the University of Ballarat,

the Australian Government and the Internet Commerce
Security Laboratory (which includes Westpac Banking
Corporation, IBM Australia, the Australian Federal Police
and the State Government of Victoria). We would like to
thank the anonymous reviewers for their helpful comments.

 REFERENCES
[1] M. Alvarez, M. Vucelich, and L. Johnson, “IBM Internet Security

Systems X-Force Threat Insight Monthly”, July 2008, IBM
Corporation

[2] N. A. Quynh, and Y. Takefuji, “Towards a Tamper-Resistant Kernel
Rootkit Detector”, Symposium on Applied Computing, Proceedings
of the 2007 ACM Symposium on Applied Computing, pp. 276-283,
Seoul, South Korea

[3] W3Schools, “OS Platform Statistics”, Retrieved from
http://www.w3schools.com on 10 March 2010

[4] L. Wang and P. Dasgupta, “Kernel and Application Integrity
Assurance: Ensuring Freedom from Rootkits and Malware in a
Computer System”, Proceedings of the 21st International Conference
on Advanced Information Networking and Applications Workshops,
2007, IEEE Computer Society

[5] Symantec, “Cyber Crime has Surpassed Illegal Drug Trafficking as a
Criminal Moneymaker; 1 in 5 will become a Victim”, Symantec
Corporation Press Release, Retrieved from http://www.symantec.com
on 5 December 2009

[6] McAfee, “Rootkits - Part 1 of 3: The Growing Threat”, McAfee Inc.,
Apr. 2006

[7] G. Hoglund and J. Butler, “Rootkits: Subverting the Windows
Kernel”, Addison-Wesley Software Security Series, Pearson
Education Inc., 2006

[8] K. Kasslin, M. Stahlberg, S. Larvala, and A. Tikkanen, “Hide 'N Seek
Revisited - Full Stealth is Back”, Proceedings of the 15th
International Virus Bulletin Conference, 2005, Dublin, Ireland

[9] D. Ladd, “News Briefs”, IEEE Security and Privacy, March/April
2007, IEEE Computer Society

[10] Y. Ben-Itzhak, “Defending Your Organization Against the New
Generation of Web-Based Hybrid”, Infosecurity, Volume 4, Number
3, 2007, pp. 42-43

[11] X. Zhang and K. C. Tadi, “Modeling Virus and Antivirus Spreading
Over Hybrid Wireless Ad Hoc and Wired Networks”, Proceeding of
the IEEE Global Telecommunications Conference, 2007, USA

[12] P. Wollacott, “Cybercrime Comes of Age”, ITNOW, Vol. 49, No. 2,
2007, pp. 6-7, The British Computer Society, Oxford University Press

[13] OECD, “Malicious Software (Malware): A Security Threat to the
Internet Economy”, Organization for Economic Co-operation and
Development, June 2008, OECD Ministrial Meeting on the Future of
the Internet Economy

[14] M. Davis, S. Bodmer and A. LeMasters, “Hacking Exposed Malware
and Rootkits: Malware and Rootkits Secrets and Solutions”,
McGraw-Hill Osborne Media, 2010

[15] J. Butler and S. Sparks, “Windows Rootkits of 2005”, Security Focus,
Retrieved from http://www.securityfocus.com on 12 March 2010

[16] J. Allchin, “Security Features Versus Convenience”, The Windows
Blog, Microsoft Corporation, 23 January 2007, Retrieved from
http://windowsteamblog.com on 12 March 2010

[17] McAfee, “Rootkits - Part 1 of 3: The Growing Threat”, McAfee Inc.,
Apr. 2006

[18] D. K. Mulligan and A. K. Perzanowski, “The Magnificance of the
Disaster: Reconstructing the Sony BMG Rootkit Incident”, Berkley
Technology Law Journal, Vol. 22, p. 1157, 2007

[19] J. A. Halderman and E. W. Felten, “Lessons from the Sony DRM
Episode”, Proceedings of the 15th USENIX Security Symposium, pp.
77-92, 2006

[20] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy and L. Iftode,
“Rootkits on Smart Phones: Attacks, Implications and Opportunities”,
Proceedings of the Eleventh Workshop on Mobile Computing
Systems & Applications, ACM, pp. 49-54, Annapolis, Maryland,
USA, 2010

[21] A. Emigh, “The Crimeware Landscape: Malware, Phishing, Identity
Theft and Beyond”, Journal of Digital Forensic Practice, Vol. 1, No.
3, September 2006, pp. 245-260

[22] Microsoft Support, “Frequently asked questions about Ctfmon.exe”,
29 January 2007, Retrieved from http://support.microsoft.com on 15
March 2010

[23] McAfee, “W32/Feebs!rootkit”, Retrieved from http://vil.nai.com on
15 March 2010

[24] S. Anson and S. Bunting, “Mastering Windows Network Forensics
and Investigation”, Wiley Publishing, 2007

[25] Sophos, “W32/Feebs-Gen”, Retrieved from http://www.sophos.com
on 15 March 2010

[26] Microsoft Support, “Description of the Windows File Protection
Feature”, 11 September 2009, Retrieved from
http://support.microsoft.com on 18 March 2010

[27] P. Dabak, S. Phadke and M. Borate, “Undocumented Windows NT”,
Hungry Minds, 1999

[28] M. E. Russinovich and D. A. Solomon, “Microsoft Windows
Internals”, 4th Edition, Microsoft Press, 2005

[29] C. Ries, “Inside Windows Rootkits”, VigilantMinds, 2006
[30] Daymix, “Kernel Computing”, Retrieved from http://daymix.com on

12 April 2010
[31] Windows Hardware Developer Central, “Kernel Patch Protection:

Frequently Asked Questions”, 22 January 2007, Retrieved from
http://www.microsoft.com on 19 March 2010

[32] M. Oiaga, “Windows vs. Rootkits: The root(kit) of all evil”, 20
February 2010, Retrieved from http://news.softpedia.com on 20
March 2010

[33] J. Richter, “Programming Applications for Microsoft Windows”,
Microsoft Press, 1999

[34] S. Sparks, S. Embleton and C. Zou, “Windows Rootkits: A Game of
Hide and Seek”, School of Electrical Engineering and Computer
Science, University of Central Florida, USA [n.d.]

[35] McAfee, “Buffer Overflow Exploits: The Why and How”, McAfee
System Protection Solutions, April 2005

[36] H. M. Deitel, P. J. Deitel and D. R. Choffnes, “Operating Systems,
Third Edition”, Prentice Hall, 2004

[37] C. Mitchell, “Trusted Computing Platforms: Intel’s Trusted
eXectuion Technology (TXT)”, Information Security Group, Royal
Holloway University of London, Retrieved from
http://www.isg.rhul.ac.uk on 1 April 2010

[38] WarpSpeed Computers, “Presentation Device Driver Reference for
OS/2”, Retrieved from http://www.warpspeed.com.au on 2 April
2010

[39] B. Blunder, “The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System”, Wordware Publishing, 2009

[40] K. Kubicki, “CPU & Chipset: A bit about the NX bit; Virus
Protection Woes”, AnandTech Incorporated, 11 October 2004,
Retrieved from http://www.anandtech.com on 8 April 2010

[41] M. Howard, “Address Space Layout Randomization in Windows
Vista”, Microsoft Corporation, 26 May 2006, Retrieved from
http://blogs.msdn.com on 8 April 2010

[42] M. Howard and M. Thomlinson, “Windows Vista ISV Security”,
Microsoft Corporation, April 2007, Retrieved from
http://msdn.microsoft.com on 26 March 2010

[43] W. Moses, “Security Watch: Services Hardening in Windows Vista”,
TechNet Magazine, Microsoft Corporation, January 2007

77

[44] Authentium, “Microsoft Patchguard and Authentium”, Authentium
Virus Blog: Authentium Malware Information Exchange Portal, 25
October 2006, Retrieved from http://blogs.authentium.com on 11
April 2010

[45] Skywing, “PatchGuard Reloaded: A Brief Analysis of PatchGuard
Version 3”, Uninformed Journal, Volume 8, September 2007

[46] Google, “The Chromium Projects: Security Overview”, Retrieved
from http://www.chromium.org on 11 April 2010

[47] M. Jakobsson and Z. Ramzan, “Crimeware: Understanding New
Attacks and Defenses”, Addison Wesley, Symantec Press, 2008

[48] M. Savage, “The Banking Malware Scourge”, Information Security,
May 2010

[49] comScore “comScore Reports February 2010 U.S. Mobile Subscriber
Market Share”, 5 April 2010, Retrieved from
http://www.comscore.com on 18 May 2010

[50] Cisco, “Linux/Unix: Telnet Daemon Buffer Overflow Vulnerability”,
Cisco Systems Inc., 6 October 2004, Retrieved from http://cisco.com
on 12 June 2010

78

