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Abstract. We know that k-Uniform Nash is W [2]-Complete when we
consider imitation symmetric win-lose games (with k as the parameter)
even when we have two players. However, this paper provides positive
results regarding Nash equilibria. We show that consideration of sparse
games or limitations of the support result in fixed-parameter algorithms
with respect to one parameter only for the k-Uniform Nash problem.
That is, we show that a sample uniform Nash equilibrium in r-sparse
imitation symmetric win-lose games is not as hard because it can be
found in FPT time (i.e polynomial in the size of the game, but maybe
exponential in r). Moreover, we show that, although NP-Complete, the
problem of Best Nash Equilibrium is also fix-parameter tractable.
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1 Introduction

Game theory analyzes interactions between self-interested agents, with
the recent interest in artificial intelligence, multi-agents systems, and au-
tomatic decision making it has received much study. The first complexity
results for computing Nash equilibria used classic notions of complexity
theory [11]. Later, several researchers have introduced different types of
equilibria and games. These NP-hardness results have been extended to
the other games and solution concepts [1, 2, 5, 6].

We study the fixed-parameter tractability of NP-Hard problems for
the computation of Nash equilibria. One of the most recently studied class
of games are win-lose games [2, 5]. In these games, all payoff values are
0 or 1. We study the parameterized complexity of finding uniform Nash
equilibria in imitation win-lose games because:

- The computation complexity of a Nash equilibrium in win-lose games is
as hard as for general bi-matrix games [1].

- There is a corresponding one-to-one relation between Nash equilibria of
two-player games and Nash strategies for the row player in an imitation
game [5].

- “A uniform mixed strategy is the simplest way of mixing pure strategies”,
but deciding the existence of uniform Nash equilibria in win-lose games
is NP-Complete [2] and it is W [2]-Hard [8] in bi-matrix games.

- Deciding whether an imitation symmetric win-lose game has a uniform
Nash equilibrium with support of size k is W [2]-Complete [7].
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- It has been observed [12] that the lower bounds of Chen et al [3] and
the W [2]-hardness results imply that unless FPT=W [1], there is no no(k)

time algorithm for computing a Nash equilibrium with support size at
most k in a bi-matrix game.

In contrast, if the support is known, the equilibrium can be found in
polynomial time. Thus, there is much interest in studying the complexity
of the support size or if the support is included in a set of strategies. We
show that restrictions of the support result in fixed-parameter algorithms.

2 FPT results for win-lose games
A win-lose game G=(A,B) is called r-sparse if there are at most r nonzero
entries in each row and each column of the matrices A and B. The first
natural step to parameterize the computation of a sample Nash equilib-
rium is to consider the r as a parameter in r-sparse games. But, Chen,
Deng and Teng [4] showed that it is unlikely to find an ε-approximate
equilibrium for a 10-sparse game in time polynomial both in ε and n (the
size of game). Therefore, it is unlikely to find an FPT-time algorithm
that just considers r as the parameter. We have proved the parameter-
ized tractability of Nash equilibria in a subclass of r-sparse games.

Definition 1 Let ISWLG be the class of all Imitation Symmetric Win-
Lose Games (In×n,Mn×n) where the matrix M is a symmetric matrix,
and has diagonal equal to zero.

If a game (I,M) is in ISWLG, then this game represents a simple undi-
rected graph G=(V ,E) where the matrix M corresponds with G’s ad-
jacency matrix. We have shown that any maximal clique in the graph
representation of game G=(I,M) corresponds to a uniform Nash equilib-
rium, but the reverse is not true.

Lemma 2 Let G be the graph representation of game G=(I,M) in
ISWLG and Gx be a maximal clique of size k of G. Then the mixed
strategy profile (x,x) constitutes a uniform Nash equilibrium of G where

x is defined as: xi = { 1/k, if i is vertex of Gx;

0, otherwise.

We study the effect of sparsity. Existence of uniform Nash equilibria is
not an issue since every graph has a maximal clique. By Lemma 2, every
game in ISWLG has a uniform Nash equilibrium.

Theorem 3 Finding a uniform Nash equilibrium for a r-sparse game in
ISWLG is polynomial in the size of the game but exponential in r.

We used the link between graph theory and Nash equilibria to show our
FPT results. Now, we can provide many results regarding families of
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graphs where finding a maximal clique is in FPT. For example we show
that a sample uniform Nash equilibrium can be found in FPT-time where
the treewidth of graph is considered as the parameter.

Theorem 4 Let G=(I,M) be an imitation symmetric win-lose game with
graph representation G. If G has bounded tree-width ω, then a uniform
Nash equilibrium of the G can be found in O(2ω · ω · |I|) time.

3 FPT results when searching Nash equilibrium on a set
We can obtain a result for general bi-matrix games. The following problem
has been shown to be NP-Complete.

Nash Equilibrium In A Subset
Instance : A game G=(A,B).
Parameter : A subset of strategies Ei ⊆ {1, . . . , n} for each player i.
Question : Does there exists a Nash equilibrium of G in which all
strategies not included in Ei are played with probability zero?

There is a Feasibility Program [13], which is a linear program, and, if
the support of a Nash equilibrium is known, then the computation of
corresponding Nash equilibrium can be done in polynomial time. We use
this Feasibility Program to proof following theorem.

Theorem 5 Nash Equilibrium In A Subset is in FPT .

4 FPT results for congestion games

In congestion games (also routing games), players choose several links,
one link to route their traffic [10, and references].

Definition 6 A routing game G consists of:
• a set of m parallel links from a source node s to a terminal node t and
a capacity cj for each link j ∈ {1, 2, . . . ,m},
• a set N = {1, 2, . . . , n}, of n users,
• traffic weights, w1,w2,. . . , wn, where the i-th user has traffic wi > 0.

A pure strategy for a user i is a link j in {1, 2, . . . ,m}. Analogously, a
pure strategy profile is an n-tuples (l1, l2, . . . ln), when user i chooses link
li in {1, 2, . . . ,m}. The cost for a user i, when users choose a pure strategy
profile P = (l1, l2, . . . , ln) is Ci(P ) =

∑
k:lk=li

wk/c
li . Every routing game

admits at least one pure Nash equilibrium [9]. However, the individual
(non-cooperative) optimization of utility does not lead to a social opti-
mal outcome. Therefore, the price of stability is a measure inefficiency
of equilibria. It differentiates between games that all Nash equilibria are
inefficient or some of them are inefficient. Formally, the price of stabil-
ity of a game is the ratio between the best objective function value of a
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Nash equilibrium of the game and the optimal outcome. We consider the
makespan as the social objective function. The makespan of a strategy
profile P = (l1, l2, . . . , ln) is defined as: Cmax(P ) = maxi∈{1,2,...,n}Ci(P ).

Best Nash Equilibrium
Instance : A routing game G with identical links.
Parameter : k ∈ N.
Question : Is there a pure Nash equilibrium P with Cmax(P ) ≤ k?

Best Nash Equilibrium on identical links is a NP-Hard problem [9],
but we showed it is fix parameter tractable. with a parameterized reduc-
tion to Integer Linear Programming. The Integer Linear Pro-
gramming problem (with a number of variables bounded by the param-
eter) is FPT.

Theorem 7 Best Nash Equilibrium is in FPT.
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