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Abstract 
 

Bounded Model Checking (BMC) has played an im-
portant role in verification of software, embedded sys-
tems and protocols. The idea of BMC is to encode Fi-
nite State Machine (FSM) and Linear Temporal Logic 
(LTL) verification specification into satisfiability (SAT) 
instances, and then to search for a counterexample via 
various SAT tools. Improving encoding technology of 
BMC can generate a SAT instance easy to solve, and 
therefore is essential to improve the efficiency of BMC. 
In this paper, we improve the encoding of BMC by 
combining the characteristic of FSM state transition 
and semantics of LTL, get a simple and efficient recur-
sion formula which is useful to efficiently generate SAT 
instances.  We present an efficient algorithm to encode 
the modal operator (safety formula) in BMC.  The ex-
periments for comparative analysis  shows that this 
encoding algorithm is more powerful than the existing 
two mainstream encoding algorithms in both the scale 
of generated SAT instances and the solving efficiency. 
The methodology presented in this paper is 
also valuable for optimization of other modal operator 
encodings in BMC.  
 
1. Introduction 
 

Bounded Model Checking (BMC)[1] is an impor-
tant branch in the field of Model Checking, which has 
played an important role in verification of software, 
embedded systems and protocols in recent years 
[2][3][5]. It is a new technology to compensate for the 
disadvantages of the typical symbolic model checking, 
such as the space explosion caused by bad orderings of 
the variables in the OBDD, which thus limit its scale 
for the problem. One of the advantages of BMC is that 
it encodes the verification into a SAT instance, and 
utilize the powerful and industrial level SAT solvers to 

solve it. As we know now, SAT solvers nowadays are 
much more powerful in symbolic computation than 
OBDD. So inducing SAT solvers into this problem 
may greatly promote the scale and efficiency to above 
some order of magnitude.  Another advantage for 
BMC is that the counterexamples it outputs are always 
the shortest and simplest because of its breadth-first 
searching technology and thus makes it a great conven-
ience for the system designer to rectify the bugged 
system. The empirical analysis shows that when the 
bound k is smaller than 60, BMC outperforms that 
typical symbolic Model Checking [4].  

The main procedure of BMC is as follows. First we 
need to construct a Finite State Machine (FSM) for the 
system or model we are to verify,and thus the behav-
iors of the system or model are encoded into finite state 
transitions in this FSM. Secondly the expected specifi-
cations are expressed by the Linear Temporal Logic 
(LTL) such as G(p) and F(p), in their NNF forms.  
Thirdly we set the upper bound for the state transition 
of the system as K. Then the state transitions in FSM 
and the LTL specifications are combined by logical 
conjunctions as the derived BMC problem formulas. 
Finally we translate the BMC problem formula to a 
SAT instance, and then solve it by SAT solvers. It 
finds a counterexample with respect to the specifica-
tion if a satisfiable truth assignment is found in the 
formula;or it justifies that system is correct with re-
spect to the specifications up to the K steps in the state 
transition of the system if the formula is unsatisfiable. 

Recently the improvement of BMC has been a hot-
spot in the formal method research community. Now 
the performance improvements mainly rely on three 
aspects. The first one is the optimization for the trans-
lation of the BMC formula from the system FSM and 
LTL specification [6][7][8];The second one is the op-
timization of variables and clauses for the translation 
from the BMC formula to the SAT instance 
[9][10];The last one is the optimization of the SAT 
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solvers to exploit the special structure of the encoded 
SAT formulas so as to improve the efficiency [11]. The 
former two methods aim to reduce the number of vari-
ables and clauses as much as possible to produce a 
simple formula; the second way may potentially de-
stroy the inherent structure of the problem while the 
third way may not work very well by optimizing the 
SAT solvers since the whole SAT solving process oc-
cupies only 20%~30% of the total time. The first 
method is to encode the problem into a logically 
equivalent -but with simple and easy structure-
formulas to solve, and thus can produce a good SAT 
instance for further translation. This method can get a 
BMC formula in a short time and be mapped into a 
relatively small SAT instance, which results in an im-
provement in efficiency. 

Our work in this paper belongs to the first category 
of the above method. we introduces a concise recursive 
formula  to improve the encoding of modal operator 
G(p) , which makes use of  the state transitions of a 
FSM and  the semantics of G(p), and then we justify 
the correctness of  this formula.  Based on  this for-
mula,  we give its related algorithm of encoding for 
G(p), followed further by the complexity analy-
sis.  Furthermore we analyze the characteristics 
of   clauses in its SAT instances. And finally we show 
the validity of our work by experimental results. 

This paper focuses on safety property (G(p)) in the 
specifications for BMC by LTL. G(p), which are very 
useful in  verifications of software etc. It turns out that 
verification of safety properties which is difficult for 
BDD based model checking can be done with remark-
able efficiency with BMC. In fact, more than 90% of 
errors in real system are violation of safety properties 
[14].  A very important type of safety property is an 
invariant expressed by G(p) in LTL.  Most safety prop-
erties can be reduced to G(p) form [15], a property that 
must hold in all reachable states. Obviously, if a se-
quence of states can be found that begins at an initial 
state and ends in a state where the supposed invariant 
is false, that property is not an invariant. 

The structure of the paper is as follows. The coming 
section gives some background knowledge on 
Bounded Model Checking and the relevant theorem. 
The section 3 presents the verification and optimiza-
tion of the LTL specification G(p)based on the rela-
tionship of their semantics and the state transitions in 
FSM induced by the BMC, gets the relative algorithm, 
and analyzes the characteristic of  the clauses in the 
SAT instance produced by our method. The following 
section 4 is the discussion of related work. The section 
5 shows the experimental results and the comparisons 
between our skills and several existing ones. Finally 
we will conclude the paper in section 6. 
 

2. Bounded Model Checking (BMC) and 
the relevant theorem 
 

The specifications BMC is to check are in Linear 
Temporal Logic (LTL) so we need to introduce first 
the syntax and semantics of the LTL. And then we 
present the reduction details of Finite State Machine 
together with the expected corresponding specifica-
tions in LTL to BMC formulas. At last, some existing 
optimization skill for this problem is also shown. 

 
2.1. Syntax and Semantics of LTL 
 
Definition 1. (syntax) Let A be a set of propositional 
atoms , the syntax of the LTL formulas can be defined 
recursively as follows: 

1. If ϕ∈A, then ϕ is an LTL formula; 
2. If ϕ and φ are LTL formulas, then, ¬ϕ, ϕ∧φ, 

ϕ∨φ, Gϕ, Fϕ, Xϕ, ϕUφ, ϕRφ are all LTL formulas, 
where X, G, F, U, R are temporal modalities of next, 
global, eventually, until, release and ¬, ∧, ∨ are logical 
connectives. 

Because BMC is mainly used to find counterexam-
ples, the expected LTL specifications for BMC are 
indeed in NNF (Negative Normal Form), in which 
negative only appears before the propositional atoms. 
If f is an LTL formula, depth(f)is defined to be the 
depth of f,  the nested number of the modalities in f . 
 
Definition 2. (Semantics)  The Kripke structure of the 
BMC is the tuple M=(S,I,T,I), where S is the set of 
possible states in the affiliated FSM ; I is the set of 
initial states and I⊆S; T is the transition relation of the 
states and T⊆S×S; I: S→P(A) is the evaluating func-
tion that attaches each state with a set of propositional 
atoms which hold in that state. 

 
Definition 3. The path of BMC can be defined as a 
π=(s1,s2,s3,…)where si∈S, i∈N; π(i)=si; πi= 
(si,si+1,si+2,…). 

 
Definition 4.(Semantics of LTL) Let M be a Kripke 
structure , π a path of BMC,and f an LTL formula, then 
the satisfaction relation π╞f can be defined as follows: 

 π╞p  iff p∈l(π(0)) 
π╞¬p   iff p∉l(π(0)) 
π╞f∧g  iff π╞f  and π╞g 
π╞f∨g  iff π╞f  or π╞g 
π╞G(f) iff ∀i, πi╞f 
π╞F(f) iff ∃i, πi╞f 
π╞X(f) iff π1╞f 
Some modalities irrelevant to our paper here are not 

listed here and can refer to [1]. 
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2.2. BMC Formula Transform Principles 

 
If M is a Kripke structure, f is the LTL specification 

in NNF form that BMC is to check, k is the bound of 
the number of the state transition, then we can con-
struct a propositional formula kfM ]],[[ (called trans-
formed BMC formula)according to the semantics of 
LTL, and the path π=(s0,s1,s2,…sk)is the finite state 
transition series of kfM ]],[[ .  The meaning of this 
transformed BMC formula kfM ]],[[  is that kfM ]],[[  
is satisfiable in the state transition series s0,s1,s2,…sk 
if and only if  f  is valid in the path π. 

 
Definition 5. (BMC formula transformation) Let M 
be a Kripke,  and  f be the LTL specification in NNF 
form that BMC is to check,k be the bound of the num-
ber of the state transition,the transformed BMC for-
mula is: 

kkk fMfM ]][[]][[]],[[ ∧=                             (1) 

where ),()(]][[ 1

1

0
0 +
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∧∧= ii
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kkk fLfLf ∧∨∧¬= ∨
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),( lkkl ssTL = ,
kl
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lk LL
0=

∨= ,and the recursive defini-

tion of 0]][[ kf and 0]][[ kl f  can be summarized in Ta-
ble 1. 

kfM ]],[[  encodes all the paths where f holds, and 
the paths start in initial state s0 with the length of k.  
Practically the bound k is very hard to decide ahead of 
the computation [12] so usually we increase the values 
of k=k0,k0+1,k0+2,k0+3,…,and so on.  k0 is called low-
est bound which is set to 0 in most cases;We solve 

kfM ]],[[  case by case for different values of k , if a 
counterexample is found or, the expected time bound 
has arrived, we can stop the computation, otherwise k 
will increase by one and the computation goes on to 
the next case. In every case, k is an integer i, we can 
turn the formula ifM ]],[[  into a SAT instance, and 
solve it by a SAT solver. If it is satisfiable and then a 
counterexample has been found, otherwise we let k be 
i+1 and continue.  As the LTL specification f has been 
encoded into part of the Boolean formulas kfM ]],[[ , 
the size of f decides the size of kfM ]],[[  when trans-
lated into SAT instances, which is different from 
BDD-based approach [1]. At the same time, the size of 
the SAT instance also has a lot to do with the bound k. 
It will be larger if k becomes more. The first method 

mentioned above is to optimize kfM ]],[[  by finding 
the simplest and equivalent formulas for it, which can 
lead to a smaller SAT instance. If we can determine an 
ideal lower bound k0 for k, we can decrease the number 
of calling of the SAT solvers 
 

 
Table1. Recursive definition of i

kf ]][[  and i
kl f ]][[  

 
2.3. Related optimization methods for BMC 
formulas 
 

Here we introduce and recall the optimization meth-
ods for BMC formulas that are related to our method in 
this paper. Some will be discussed in the latter section. 
Paper [6] has given some interesting properties of 

kf ]][[  in kfM ]],[[ , which can simplify kf ]][[  by 
logical deduction. Some relevant theorems are the fol-
lowing two:  
Theorem 1. Formula kf ]][[  is logically equivalent to 

)]][[(]][[ 0

0

0
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k

l
k fLf ∧∨∨

=
. 

Theorem 2. If depth(f)≤1, then 0]][[ kl f  is independent 

of l.  Specially if 00 ]][[]][[ klk ff =  then 0]][[]][[ kk ff = . 
The details of the proof can be found in [6]. 

 
3. The encoding optimization for G(p) 
 
3.1. The existing encoding schemes 
 

G(p)is the most frequently used LTL modalities in 
the protocol verification by BMC. G(p) can be used to 
specify the secrecy of the protocol. Also they can be 
applied to verify a lot of properties for multi-agent 
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systems [5]. Usually p is Boolean formula and the 
NNF forms of  G(p) is  F(¬p). 

As depth(F(¬p))=1,  we can see in Table 1 that, 
00 )]]([[)]]([[ klk pFpF ¬=¬ . So we can get the BMC for 

G(p) by Equation (1) and Theorem2: 
0)]]([[]][[)]](,[[ kkk pFMpFM ¬∧=¬               (2)  

Although Equation (2)  in  [6] are well optimized 
formulas and thus improve the efficiency,  the optimi-
zation itself only consider kf ]][[  and does not con-
sider the kM ]][[ . If we take kM ]][[  into account and 
introduce some corresponding optimization, we can get 
the equivalent and more concise formulas according to 
their increasing and recursive properties. In existing 
BMC tools ( such as NuSMV and VIS), this problem is 
not yet implemented and not incorporated.    

In the following section, we present the logically 
equivalent recursive formulas for kpFM )]](,[[ ¬  in 
Theorem 3 and the corresponding proof. Through the 
recursive formulas in Theorem 3 , the size of the result-
ing SAT instances will be much smaller than those in 
Equations (2)  and thus can lead to significant im-
provement in performance for the overall BMC proc-
ess. 

. 
3.2. The optimization scheme 
 
Theorem 3. If kpFM )]](,[[  is unsatisfiable, 
then 1)]](,[[ +kpFM  is logically equivalent to 
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As we know that the precondition is that 

kpFM )]](,[[  is unsatisfiable, 
),()]](,[[ 1+∧ kkk ssTpFM  is unsatisfiable either. If 

1)]](,[[ +kpFM  is satisfiable, then )(]][[ 1
11

+
++ ∧ k

kk pM  is 
also satisfiable. If, )(]][[ 1

11
+
++ ∧ k

kk pM  is satisfiable, 

1)]](,[[ +kpFM  is also satisfiable. This justifies that 
1
11]][[ +

++ ∧ k
kk pM  is logically equivalent 

to 1)]](,[[ +kpFM . 
  
3.3. The algorithm 
  

By Theorem 3, 1
11]][[ +

++ ∧ k
kk pM  is logically equiva-

lent to 1)]](,[[ +kpFM  , so the solution of the SAT 
instance for 1)]](,[[ +kpFM  is exactly that for the 

1
11]][[ +

++ ∧ k
kk pM  and vice versa. If the SAT instance 

for 1
11]][[ +

++ ∧ k
kk pM  is unsatisfiable, neither is that 

for 1)]](,[[ +kpFM . Since the size of the SAT instance 

for  1
11]][[ +

++ ∧ k
kk pM  is much smaller than that for 

the 1)]](,[[ +kpFM , replacing 1)]](,[[ +kpFM  by 
1
11]][[ +

++ ∧ k
kk pM  can induce potential efficiency.Fig1 

show the encoding algorithm based theorem 3. 
 

//K is the upper bound in bounded model checking 
//Solution.out:{ UNSATISFIABLE, SATISFI-

ABLE} 
//Solution.Counterexample:{NULL, a solution to a 

SAT instance}; 
begin 

Solution.out⇐UNSATISFIABLE; 
Solution. counterexample ⇐NULL; 
k⇐0; 
While (k≤K) 
begin 

     G_CNFk⇐EncodingCNF( k
kk pM ¬∧]][[ ); 

    Solution⇐SAT(G_CNFk); 
    if(Solution.out= UNSATISFIABLE) 

k⇐k+1; 
      else 
          goto OK;   

//G(p) is invalid, its counterexamples 
// in Solution. counterexample. 

end; 
OK; 

end. 
Figure 1. the algorithm encoding G(p) 
  

Now we proceed to discuss the efficiency improve-
ment of the SAT instance by our scheme. 

First we discuss the size of the SAT instances. SAT 
instance is a conjunction of all clauses, while it is dis-
junction of variables inside the clauses. In LTL formu-
las, the modalities G, F, X, U and the implication → 
can be replaced by those formulas that only contain ¬ , 
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∧  and  ∨ .  The resulting BMC formulas φ  can be en-
coded into a SAT instance with size n(φ)  that can be 
recursively defined as follows: 
  

φ n(φ) ¬n(φ) 
¬φ1 
φ1∧φ2 
φ1∨φ2 

¬n(φ1) 
n(φ1)+n(φ2) 
n(φ1)n(φ2) 

n(φ1) 
n(φ1)n(φ2) 
n(φ1)+n(φ2) 

  
Table 2. Recursive definition of clause number of φ 
 
By Table 2, the clause number of Equation (2) is: 

n([[M]]k)+n( 0)]]([[ kpF ¬ )=n([[M]]k)+n( i
k

k

i

p¬∨
=0

) 

=n([[M]]k)+ )(
0

i
k

k

i

pn ¬∏
=

(3) 

While by Table 2 and Theorem 3, the clause num-
ber of kpFM )]](,[[ is:  n([[M]]k)＋ )( i

kpn ¬              (4)                                                    
Equation (3) and(4)has a same part of n([[M]]k), 

thus we can just compare the second part. By Table 1, 
)( i

kpn ¬ = )( j
kpn ¬  and suppose )( i

kpn ¬ =m, where m 
is an integer, so the complexity of the second part in 
Equation (3) is the exponential O(mk). Paper [9] has 
introduced a method to transform the original formulas 
to a satisfiability equivalent one and at the same time 
reduce the number of the clauses to the order of tm 
where t>k, by means of adding 4 times new variables 
and renaming. And thus the complexity is linear O(t); 
The second part of the Equation (4) is the constant or-
der of O(m), and we can see from the second parts of 
the Equation (3) and (4) that the size has become from 
linear complexity to constant complexity and no more 
new variables are added.  

Conflict clauses are produced by SAT solver when 
SAT solvers process the SAT instances. The more con-
flict clauses are produced, the more time the SAT 
solvers spend when they process the SAT instances in 
most cases. In some times,  these small scale of SAT 
instances with more conflict clauses need much more 
time than those large scale of SAT instances with less 
conflict clauses.  Let S1k be set of clauses associated 
with Equation (2) 0)]]([[]][[ kk pFM ¬∧  and S2k be set 

of clauses associated with k
kk pM ¬∧]][[ , it is easy to 

see that S2k is a subset of S1k. the number of conflict 
clauses of S2k is less than that of S1k in most cases. 
This can be seen in Table 4. Certainly, this is only an 
empirical observation, not a theoretical result. 

  Let S2k+1 be set of clauses associated with 
1
11]][[ +

++ ¬∧ k
kk pM .although S2k is not a subset of 

S2k+1,but there are many characteristic of BMC be-
tween them. As ),(]][[]][[ 11 ++ ∧= kkkk ssTMM  ,so the 
set of clauses associated with kM ]][[  is a subset of the 
set of clauses associated with 

1]][[ +kM . The variables in 

the formula k
kp¬ don’t equal to the variables in the 

formula 1
1

+
+¬ k

kp , but both of them have the same clause 
structure . 
 
4. Related Work 
 

This work is a further step of that in [6]. Paper [6] 
points out the problem in the original SAT encoding 
for BMC. This paper is mainly to optimize kf ]][[  in 
the transformation formulas for BMC and give some 
highly efficient storage structures as well. All these 
ideas are implemented in the tool NuSMV2.1.2 and 
perfected continuously in later version. Timo, etc [8] 
utilize the properties of lasso-shaped Kripke Structure, 
and apply the fixed point techniques for model check-
ing CTL (Computation Tree Logic) [1] to BMC formu-
las. Empirical analysis shows that the way in [8] is 
more effective than those in [6] [7].  Frisch, etc [7] 
represent the BMC formulas in a fixed point-theoretic 
way by SNF and standard form of fixed point, respec-
tively. The standard form of fixed point takes good 
advantages of the properties of the standard form, and 
utilizes similar symbolic tableau style method. Ex-
periments shows that the resulting SAT instances for 
this form are smaller than those in [6], and are also 
better than those in SNF. 

Sheridan, etc [9][10] try to optimize the encoded 
SAT instances for the BMC so as to reduce the size. 
But they introduce new variables and renaming during 
encoding and thus have a lot of redundancy. Later by 
the ideas of Boy de la Rour, they give a compact and 
optimal way to reduce the SAT instance size greatly 
but this will as well lose some inherent structure of the 
BMC during encoding. 

Strichman, etc [11] exploit some properties of the 
SAT instances for the BMC such as: the order of the 
variables, the conflicting clauses, etc, to optimize the 
SAT solving process by the SAT solvers; Similarly, 
Gupta, etc [13] enhance the SAT solving efficiency by 
extracting some structure information hidden in the 
SAT instances. They accomplish this by using some 
results from the model checking process in a pure 
BDD way ahead of time before the BMC, then find 
and convey them to the SAT solvers. 
 
5. Experimental Results 
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We implement our optimization ideas in 
NuSMV2.3.1. We here compare our results with the 
original method in NuSMV2.3.1 and another wonder-
ful method in [8]. The original method in 
NuSMV2.3.1, denoted as AA_BMC, is based on that 
in [1] and optimized in [6]; Another method is by  
Timo, etc and implemented in NuSMV2.4.0. We de-
note it as Timo_BMC. Because Timo_BMC generally 
outperforms other optimization schemes [6][7], we do 
not need to compare ours with any other ones any 
more. We denote our schemes for optimizing G(f)as 
G_BMC in the following. 

The experiments are carried out on a PC equipped 
with INTEL core 4300 CPU, 2G memory, Windows 
XP Professional with winGW32 complier for NuSMV. 
Our experimental model is mainly from [16]. 

BMC has the following properties: the needed ac-
count of time will be smaller if k becomes smaller;the 
needed account of time will be larger if k becomes 
larger. So if the bound of the model k is relatively 
smaller then the verification is more efficient than any 
other ones; In our experiments, we use simple models 
in order to shorten the running time. If the running 
time is still unbearable, we just choose a smaller k. All 
the models contain the examples with the specifica-
tions G(p). In the following experiments, most of the 
specifications in the models are in CTL, we have to 
translate to the equivalent LTL specifications.  We can 
see that if the resulting SAT instance has solutions 
within bound k, we have to adjust the LTL specifica-
tions so that it will be unsatisfiable, and thus it is easy 
to validate the efficiency of the algorithm. 

 The following tables illustrate every item we check: 
the number of variables and clauses in the resulting 
SAT instances, the overall time needed to generate and 
verify the SAT instances in the bound of k(time unit: 
second).  

From the data in Table 3 we can conclude that 
Timo_BMC does not outperform AA_BMC in verify-
ing G(p), while our methods G_BMC  obviously out-
perform  both of them because of less number of vari-
ables and clauses. For the case of BRP model, it is a 
small improvement, but for the case of SEMAPHORE 
model and SYNCARB5 model, the improvement is 
significant. In general, the more complex the formula p 
in G(p) is ,the more significant improvement can be 
achieved. 

The number of every conflict clause is produced by 
a well-known SAT tool MINISAT [17]. From the data 
in Table 4, we can conclude that MINISAT doesn’t 
produce any conflict clause when processing the SAT 
instance about BRP model in the three methods; the 
number of conflict clauses in our method is less than 

that of the other two methods in most cases, but with a 
few exception such as DME2 model. 
 
6. Conclusion and Future Work 
 

We in this paper have implemented  to optimize the 
SAT encoding phase of BMC for a very important 
LTL modalities G(p). We have deduced a very concise 
and recursive formula for it and at the same time prove 
their equivalence to the original formulas, by the se-
mantics of these modalities and the state transition re-
lation of FSM. We have also analyzed the complexity 
of the optimized SAT instance, and justified the effec-
tiveness of our method by concrete models in experi-
ments.  

One of our future work will point to apply our re-
cursive ideas in this paper for optimizing other LTL 
modalities in BMC. In another perspective, since the 
SAT instances produced by our method preserve many 
characteristics of  BMC,  another future work would be 
to utilize those methods such as variable order, sharing 
conflict clause etc proposed in [11] to process these 
SAT instances and further improve efficiency. 
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