
+: corresponding author

Improving Encoding Efficiency for Bounded Model Checking

Jinji Yang1,2

1School of Computer,
South China Normal University,
Guangzhou, China.
2Dept. of Computer Science,
Sun Yat-Sen University,
Guangzhou, China.

yangjj@scnu.edu.cn

Kaile Su3+
3Key laboratory of High Confi-
dence Software Technologies
(Peking University),
Ministry of Education.
Beijing , China.

sukl@pku.edu.cn

Qingliang Chen4

4Dept. of Computer Science,
Jinan university,
Guangzhou, China.
tsingliangchen@gmail.com

Abstract

Bounded Model Checking (BMC) has played an im-
portant role in verification of software, embedded sys-
tems and protocols. The idea of BMC is to encode Fi-
nite State Machine (FSM) and Linear Temporal Logic
(LTL) verification specification into satisfiability (SAT)
instances, and then to search for a counterexample via
various SAT tools. Improving encoding technology of
BMC can generate a SAT instance easy to solve, and
therefore is essential to improve the efficiency of BMC.
In this paper, we improve the encoding of BMC by
combining the characteristic of FSM state transition
and semantics of LTL, get a simple and efficient recur-
sion formula which is useful to efficiently generate SAT
instances. We present an efficient algorithm to encode
the modal operator (safety formula) in BMC. The ex-
periments for comparative analysis shows that this
encoding algorithm is more powerful than the existing
two mainstream encoding algorithms in both the scale
of generated SAT instances and the solving efficiency.
The methodology presented in this paper is
also valuable for optimization of other modal operator
encodings in BMC.

1. Introduction

Bounded Model Checking (BMC)[1] is an impor-
tant branch in the field of Model Checking, which has
played an important role in verification of software,
embedded systems and protocols in recent years
[2][3][5]. It is a new technology to compensate for the
disadvantages of the typical symbolic model checking,
such as the space explosion caused by bad orderings of
the variables in the OBDD, which thus limit its scale
for the problem. One of the advantages of BMC is that
it encodes the verification into a SAT instance, and
utilize the powerful and industrial level SAT solvers to

solve it. As we know now, SAT solvers nowadays are
much more powerful in symbolic computation than
OBDD. So inducing SAT solvers into this problem
may greatly promote the scale and efficiency to above
some order of magnitude. Another advantage for
BMC is that the counterexamples it outputs are always
the shortest and simplest because of its breadth-first
searching technology and thus makes it a great conven-
ience for the system designer to rectify the bugged
system. The empirical analysis shows that when the
bound k is smaller than 60, BMC outperforms that
typical symbolic Model Checking [4].

The main procedure of BMC is as follows. First we
need to construct a Finite State Machine (FSM) for the
system or model we are to verify,and thus the behav-
iors of the system or model are encoded into finite state
transitions in this FSM. Secondly the expected specifi-
cations are expressed by the Linear Temporal Logic
(LTL) such as G(p) and F(p), in their NNF forms.
Thirdly we set the upper bound for the state transition
of the system as K. Then the state transitions in FSM
and the LTL specifications are combined by logical
conjunctions as the derived BMC problem formulas.
Finally we translate the BMC problem formula to a
SAT instance, and then solve it by SAT solvers. It
finds a counterexample with respect to the specifica-
tion if a satisfiable truth assignment is found in the
formula;or it justifies that system is correct with re-
spect to the specifications up to the K steps in the state
transition of the system if the formula is unsatisfiable.

Recently the improvement of BMC has been a hot-
spot in the formal method research community. Now
the performance improvements mainly rely on three
aspects. The first one is the optimization for the trans-
lation of the BMC formula from the system FSM and
LTL specification [6][7][8];The second one is the op-
timization of variables and clauses for the translation
from the BMC formula to the SAT instance
[9][10];The last one is the optimization of the SAT

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3249-3/08 $25.00 © 2008 IEEE

DOI 10.1109/TASE.2008.23

31

solvers to exploit the special structure of the encoded
SAT formulas so as to improve the efficiency [11]. The
former two methods aim to reduce the number of vari-
ables and clauses as much as possible to produce a
simple formula; the second way may potentially de-
stroy the inherent structure of the problem while the
third way may not work very well by optimizing the
SAT solvers since the whole SAT solving process oc-
cupies only 20%~30% of the total time. The first
method is to encode the problem into a logically
equivalent -but with simple and easy structure-
formulas to solve, and thus can produce a good SAT
instance for further translation. This method can get a
BMC formula in a short time and be mapped into a
relatively small SAT instance, which results in an im-
provement in efficiency.

Our work in this paper belongs to the first category
of the above method. we introduces a concise recursive
formula to improve the encoding of modal operator
G(p) , which makes use of the state transitions of a
FSM and the semantics of G(p), and then we justify
the correctness of this formula. Based on this for-
mula, we give its related algorithm of encoding for
G(p), followed further by the complexity analy-
sis. Furthermore we analyze the characteristics
of clauses in its SAT instances. And finally we show
the validity of our work by experimental results.

This paper focuses on safety property (G(p)) in the
specifications for BMC by LTL. G(p), which are very
useful in verifications of software etc. It turns out that
verification of safety properties which is difficult for
BDD based model checking can be done with remark-
able efficiency with BMC. In fact, more than 90% of
errors in real system are violation of safety properties
[14]. A very important type of safety property is an
invariant expressed by G(p) in LTL. Most safety prop-
erties can be reduced to G(p) form [15], a property that
must hold in all reachable states. Obviously, if a se-
quence of states can be found that begins at an initial
state and ends in a state where the supposed invariant
is false, that property is not an invariant.

The structure of the paper is as follows. The coming
section gives some background knowledge on
Bounded Model Checking and the relevant theorem.
The section 3 presents the verification and optimiza-
tion of the LTL specification G(p)based on the rela-
tionship of their semantics and the state transitions in
FSM induced by the BMC, gets the relative algorithm,
and analyzes the characteristic of the clauses in the
SAT instance produced by our method. The following
section 4 is the discussion of related work. The section
5 shows the experimental results and the comparisons
between our skills and several existing ones. Finally
we will conclude the paper in section 6.

2. Bounded Model Checking (BMC) and
the relevant theorem

The specifications BMC is to check are in Linear
Temporal Logic (LTL) so we need to introduce first
the syntax and semantics of the LTL. And then we
present the reduction details of Finite State Machine
together with the expected corresponding specifica-
tions in LTL to BMC formulas. At last, some existing
optimization skill for this problem is also shown.

2.1. Syntax and Semantics of LTL

Definition 1. (syntax) Let A be a set of propositional
atoms , the syntax of the LTL formulas can be defined
recursively as follows:

1. If ϕ∈A, then ϕ is an LTL formula;
2. If ϕ and φ are LTL formulas, then, ¬ϕ, ϕ∧φ,

ϕ∨φ, Gϕ, Fϕ, Xϕ, ϕUφ, ϕRφ are all LTL formulas,
where X, G, F, U, R are temporal modalities of next,
global, eventually, until, release and ¬, ∧, ∨ are logical
connectives.

Because BMC is mainly used to find counterexam-
ples, the expected LTL specifications for BMC are
indeed in NNF (Negative Normal Form), in which
negative only appears before the propositional atoms.
If f is an LTL formula, depth(f)is defined to be the
depth of f, the nested number of the modalities in f .

Definition 2. (Semantics) The Kripke structure of the
BMC is the tuple M=(S,I,T,I), where S is the set of
possible states in the affiliated FSM ; I is the set of
initial states and I⊆S; T is the transition relation of the
states and T⊆S×S; I: S→P(A) is the evaluating func-
tion that attaches each state with a set of propositional
atoms which hold in that state.

Definition 3. The path of BMC can be defined as a
π=(s1,s2,s3,…)where si∈S, i∈N; π(i)=si; πi=
(si,si+1,si+2,…).

Definition 4.(Semantics of LTL) Let M be a Kripke
structure , π a path of BMC,and f an LTL formula, then
the satisfaction relation π╞f can be defined as follows:

 π╞p iff p∈l(π(0))
π╞¬p iff p∉l(π(0))
π╞f∧g iff π╞f and π╞g
π╞f∨g iff π╞f or π╞g
π╞G(f) iff ∀i, πi╞f
π╞F(f) iff ∃i, πi╞f
π╞X(f) iff π1╞f
Some modalities irrelevant to our paper here are not

listed here and can refer to [1].

32

2.2. BMC Formula Transform Principles

If M is a Kripke structure, f is the LTL specification

in NNF form that BMC is to check, k is the bound of
the number of the state transition, then we can con-
struct a propositional formula kfM]],[[(called trans-
formed BMC formula)according to the semantics of
LTL, and the path π=(s0,s1,s2,…sk)is the finite state
transition series of kfM]],[[. The meaning of this
transformed BMC formula kfM]],[[is that kfM]],[[
is satisfiable in the state transition series s0,s1,s2,…sk
if and only if f is valid in the path π.

Definition 5. (BMC formula transformation) Let M
be a Kripke, and f be the LTL specification in NNF
form that BMC is to check,k be the bound of the num-
ber of the state transition,the transformed BMC for-
mula is:

kkk fMfM]][[]][[]],[[∧= (1)

where),()(]][[1

1

0
0 +

−

=
∧∧= ii

k

i
k ssTsIM ,

)]][[()]][[(]][[0

0

0
klkl

k

l
kkk fLfLf ∧∨∧¬= ∨

=

,

),(lkkl ssTL = ,
kl

k

lk LL
0=

∨= ,and the recursive defini-

tion of 0]][[kf and 0]][[kl f can be summarized in Ta-
ble 1.

kfM]],[[encodes all the paths where f holds, and
the paths start in initial state s0 with the length of k.
Practically the bound k is very hard to decide ahead of
the computation [12] so usually we increase the values
of k=k0,k0+1,k0+2,k0+3,…,and so on. k0 is called low-
est bound which is set to 0 in most cases;We solve

kfM]],[[case by case for different values of k , if a
counterexample is found or, the expected time bound
has arrived, we can stop the computation, otherwise k
will increase by one and the computation goes on to
the next case. In every case, k is an integer i, we can
turn the formula ifM]],[[into a SAT instance, and
solve it by a SAT solver. If it is satisfiable and then a
counterexample has been found, otherwise we let k be
i+1 and continue. As the LTL specification f has been
encoded into part of the Boolean formulas kfM]],[[,
the size of f decides the size of kfM]],[[when trans-
lated into SAT instances, which is different from
BDD-based approach [1]. At the same time, the size of
the SAT instance also has a lot to do with the bound k.
It will be larger if k becomes more. The first method

mentioned above is to optimize kfM]],[[by finding
the simplest and equivalent formulas for it, which can
lead to a smaller SAT instance. If we can determine an
ideal lower bound k0 for k, we can decrease the number
of calling of the SAT solvers

Table1. Recursive definition of i

kf]][[and i
kl f]][[

2.3. Related optimization methods for BMC
formulas

Here we introduce and recall the optimization meth-
ods for BMC formulas that are related to our method in
this paper. Some will be discussed in the latter section.
Paper [6] has given some interesting properties of

kf]][[in kfM]],[[, which can simplify kf]][[by
logical deduction. Some relevant theorems are the fol-
lowing two:
Theorem 1. Formula kf]][[is logically equivalent to

)]][[(]][[0

0

0
klkl

k

l
k fLf ∧∨∨

=
.

Theorem 2. If depth(f)≤1, then 0]][[kl f is independent

of l. Specially if 00]][[]][[klk ff = then 0]][[]][[kk ff = .
The details of the proof can be found in [6].

3. The encoding optimization for G(p)

3.1. The existing encoding schemes

G(p)is the most frequently used LTL modalities in
the protocol verification by BMC. G(p) can be used to
specify the secrecy of the protocol. Also they can be
applied to verify a lot of properties for multi-agent

f i
kf]][[i

kl f]][[

p pi pi

¬p ¬pi ¬pi

h∧g i
kh]][[∧ i

kg]][[i
kl h]][[∧ i

kl g]][[

h∨g i
kh]][[∨ i

kg]][[i
kl h]][[∨ i

kl g]][[

Xg 1]][[+i
kg if i<k

⊥ otherwise

!]][[+i
kl g if i<k
l
kl g]][[otherwise

Gg ⊥ k
lij),min(=∧ j

kl g]][[

Fg k
ij=∨ j

kg]][[k
lij),min(=∨ j

kl g]][[

33

systems [5]. Usually p is Boolean formula and the
NNF forms of G(p) is F(¬p).

As depth(F(¬p))=1, we can see in Table 1 that,
00)]]([[)]]([[klk pFpF ¬=¬ . So we can get the BMC for

G(p) by Equation (1) and Theorem2:
0)]]([[]][[)]](,[[kkk pFMpFM ¬∧=¬ (2)

Although Equation (2) in [6] are well optimized
formulas and thus improve the efficiency, the optimi-
zation itself only consider kf]][[and does not con-
sider the kM]][[. If we take kM]][[into account and
introduce some corresponding optimization, we can get
the equivalent and more concise formulas according to
their increasing and recursive properties. In existing
BMC tools (such as NuSMV and VIS), this problem is
not yet implemented and not incorporated.

In the following section, we present the logically
equivalent recursive formulas for kpFM)]](,[[¬ in
Theorem 3 and the corresponding proof. Through the
recursive formulas in Theorem 3 , the size of the result-
ing SAT instances will be much smaller than those in
Equations (2) and thus can lead to significant im-
provement in performance for the overall BMC proc-
ess.

.
3.2. The optimization scheme

Theorem 3. If kpFM)]](,[[is unsatisfiable,
then 1)]](,[[+kpFM is logically equivalent to

)(]][[1
11

+
++ ∧ k

kk pM .
Proof:

0
111)]]([[]][[)]](,[[+++ ∧= kkk pFMpFM

i
k

k

i
ii

k

i

pssTsI 1

1

0
1

0
0),()(+

+

=
+

=
∨∧ ∧∧=

)(),()(1
1

0
1

0
0

+
+

=
+

=

∨∧∧= ∨∧ k
k

i
k

k

i
ii

k

i

ppssTsI

)),(),()((1
0

1

1

0
0 +

=
+

−

=

∧∧∧= ∨∧ kk
i
k

k

i
ii

k

i

ssTpssTsI

)),()((1
11

0
0

+
++

=

∧∧∨ ∧ k
kii

k

i

pssTsI

)]]([[)),()]](,([[1
111

+
+++ ∧∨∧= k

kkkkk pMssTpFM
As we know that the precondition is that

kpFM)]](,[[is unsatisfiable,
),()]](,[[1+∧ kkk ssTpFM is unsatisfiable either. If

1)]](,[[+kpFM is satisfiable, then)(]][[1
11

+
++ ∧ k

kk pM is
also satisfiable. If,)(]][[1

11
+
++ ∧ k

kk pM is satisfiable,

1)]](,[[+kpFM is also satisfiable. This justifies that
1
11]][[+

++ ∧ k
kk pM is logically equivalent

to 1)]](,[[+kpFM .

3.3. The algorithm

By Theorem 3, 1
11]][[+

++ ∧ k
kk pM is logically equiva-

lent to 1)]](,[[+kpFM , so the solution of the SAT
instance for 1)]](,[[+kpFM is exactly that for the

1
11]][[+

++ ∧ k
kk pM and vice versa. If the SAT instance

for 1
11]][[+

++ ∧ k
kk pM is unsatisfiable, neither is that

for 1)]](,[[+kpFM . Since the size of the SAT instance

for 1
11]][[+

++ ∧ k
kk pM is much smaller than that for

the 1)]](,[[+kpFM , replacing 1)]](,[[+kpFM by
1
11]][[+

++ ∧ k
kk pM can induce potential efficiency.Fig1

show the encoding algorithm based theorem 3.

//K is the upper bound in bounded model checking
//Solution.out:{ UNSATISFIABLE, SATISFI-

ABLE}
//Solution.Counterexample:{NULL, a solution to a

SAT instance};
begin

Solution.out⇐UNSATISFIABLE;
Solution. counterexample ⇐NULL;
k⇐0;
While (k≤K)
begin

 G_CNFk⇐EncodingCNF(k
kk pM ¬∧]][[);

 Solution⇐SAT(G_CNFk);
 if(Solution.out= UNSATISFIABLE)

k⇐k+1;
 else
 goto OK;

//G(p) is invalid, its counterexamples
// in Solution. counterexample.

end;
OK;

end.
Figure 1. the algorithm encoding G(p)

Now we proceed to discuss the efficiency improve-
ment of the SAT instance by our scheme.

First we discuss the size of the SAT instances. SAT
instance is a conjunction of all clauses, while it is dis-
junction of variables inside the clauses. In LTL formu-
las, the modalities G, F, X, U and the implication →
can be replaced by those formulas that only contain ¬ ,

34

∧ and ∨ . The resulting BMC formulas φ can be en-
coded into a SAT instance with size n(φ) that can be
recursively defined as follows:

φ n(φ) ¬n(φ)
¬φ1
φ1∧φ2
φ1∨φ2

¬n(φ1)
n(φ1)+n(φ2)
n(φ1)n(φ2)

n(φ1)
n(φ1)n(φ2)
n(φ1)+n(φ2)

Table 2. Recursive definition of clause number of φ

By Table 2, the clause number of Equation (2) is:

n([[M]]k)+n(0)]]([[kpF ¬)=n([[M]]k)+n(i
k

k

i

p¬∨
=0

)

=n([[M]]k)+)(
0

i
k

k

i

pn ¬∏
=

(3)

While by Table 2 and Theorem 3, the clause num-
ber of kpFM)]](,[[is: n([[M]]k)＋)(i

kpn ¬ (4)
Equation (3) and(4)has a same part of n([[M]]k),

thus we can just compare the second part. By Table 1,
)(i

kpn ¬ =)(j
kpn ¬ and suppose)(i

kpn ¬ =m, where m
is an integer, so the complexity of the second part in
Equation (3) is the exponential O(mk). Paper [9] has
introduced a method to transform the original formulas
to a satisfiability equivalent one and at the same time
reduce the number of the clauses to the order of tm
where t>k, by means of adding 4 times new variables
and renaming. And thus the complexity is linear O(t);
The second part of the Equation (4) is the constant or-
der of O(m), and we can see from the second parts of
the Equation (3) and (4) that the size has become from
linear complexity to constant complexity and no more
new variables are added.

Conflict clauses are produced by SAT solver when
SAT solvers process the SAT instances. The more con-
flict clauses are produced, the more time the SAT
solvers spend when they process the SAT instances in
most cases. In some times, these small scale of SAT
instances with more conflict clauses need much more
time than those large scale of SAT instances with less
conflict clauses. Let S1k be set of clauses associated
with Equation (2) 0)]]([[]][[kk pFM ¬∧ and S2k be set

of clauses associated with k
kk pM ¬∧]][[, it is easy to

see that S2k is a subset of S1k. the number of conflict
clauses of S2k is less than that of S1k in most cases.
This can be seen in Table 4. Certainly, this is only an
empirical observation, not a theoretical result.

 Let S2k+1 be set of clauses associated with
1
11]][[+

++ ¬∧ k
kk pM .although S2k is not a subset of

S2k+1,but there are many characteristic of BMC be-
tween them. As),(]][[]][[11 ++ ∧= kkkk ssTMM ,so the
set of clauses associated with kM]][[is a subset of the
set of clauses associated with

1]][[+kM . The variables in

the formula k
kp¬ don’t equal to the variables in the

formula 1
1

+
+¬ k

kp , but both of them have the same clause
structure .

4. Related Work

This work is a further step of that in [6]. Paper [6]
points out the problem in the original SAT encoding
for BMC. This paper is mainly to optimize kf]][[in
the transformation formulas for BMC and give some
highly efficient storage structures as well. All these
ideas are implemented in the tool NuSMV2.1.2 and
perfected continuously in later version. Timo, etc [8]
utilize the properties of lasso-shaped Kripke Structure,
and apply the fixed point techniques for model check-
ing CTL (Computation Tree Logic) [1] to BMC formu-
las. Empirical analysis shows that the way in [8] is
more effective than those in [6] [7]. Frisch, etc [7]
represent the BMC formulas in a fixed point-theoretic
way by SNF and standard form of fixed point, respec-
tively. The standard form of fixed point takes good
advantages of the properties of the standard form, and
utilizes similar symbolic tableau style method. Ex-
periments shows that the resulting SAT instances for
this form are smaller than those in [6], and are also
better than those in SNF.

Sheridan, etc [9][10] try to optimize the encoded
SAT instances for the BMC so as to reduce the size.
But they introduce new variables and renaming during
encoding and thus have a lot of redundancy. Later by
the ideas of Boy de la Rour, they give a compact and
optimal way to reduce the SAT instance size greatly
but this will as well lose some inherent structure of the
BMC during encoding.

Strichman, etc [11] exploit some properties of the
SAT instances for the BMC such as: the order of the
variables, the conflicting clauses, etc, to optimize the
SAT solving process by the SAT solvers; Similarly,
Gupta, etc [13] enhance the SAT solving efficiency by
extracting some structure information hidden in the
SAT instances. They accomplish this by using some
results from the model checking process in a pure
BDD way ahead of time before the BMC, then find
and convey them to the SAT solvers.

5. Experimental Results

35

We implement our optimization ideas in
NuSMV2.3.1. We here compare our results with the
original method in NuSMV2.3.1 and another wonder-
ful method in [8]. The original method in
NuSMV2.3.1, denoted as AA_BMC, is based on that
in [1] and optimized in [6]; Another method is by
Timo, etc and implemented in NuSMV2.4.0. We de-
note it as Timo_BMC. Because Timo_BMC generally
outperforms other optimization schemes [6][7], we do
not need to compare ours with any other ones any
more. We denote our schemes for optimizing G(f)as
G_BMC in the following.

The experiments are carried out on a PC equipped
with INTEL core 4300 CPU, 2G memory, Windows
XP Professional with winGW32 complier for NuSMV.
Our experimental model is mainly from [16].

BMC has the following properties: the needed ac-
count of time will be smaller if k becomes smaller;the
needed account of time will be larger if k becomes
larger. So if the bound of the model k is relatively
smaller then the verification is more efficient than any
other ones; In our experiments, we use simple models
in order to shorten the running time. If the running
time is still unbearable, we just choose a smaller k. All
the models contain the examples with the specifica-
tions G(p). In the following experiments, most of the
specifications in the models are in CTL, we have to
translate to the equivalent LTL specifications. We can
see that if the resulting SAT instance has solutions
within bound k, we have to adjust the LTL specifica-
tions so that it will be unsatisfiable, and thus it is easy
to validate the efficiency of the algorithm.

 The following tables illustrate every item we check:
the number of variables and clauses in the resulting
SAT instances, the overall time needed to generate and
verify the SAT instances in the bound of k(time unit:
second).

From the data in Table 3 we can conclude that
Timo_BMC does not outperform AA_BMC in verify-
ing G(p), while our methods G_BMC obviously out-
perform both of them because of less number of vari-
ables and clauses. For the case of BRP model, it is a
small improvement, but for the case of SEMAPHORE
model and SYNCARB5 model, the improvement is
significant. In general, the more complex the formula p
in G(p) is ,the more significant improvement can be
achieved.

The number of every conflict clause is produced by
a well-known SAT tool MINISAT [17]. From the data
in Table 4, we can conclude that MINISAT doesn’t
produce any conflict clause when processing the SAT
instance about BRP model in the three methods; the
number of conflict clauses in our method is less than

that of the other two methods in most cases, but with a
few exception such as DME2 model.

6. Conclusion and Future Work

We in this paper have implemented to optimize the
SAT encoding phase of BMC for a very important
LTL modalities G(p). We have deduced a very concise
and recursive formula for it and at the same time prove
their equivalence to the original formulas, by the se-
mantics of these modalities and the state transition re-
lation of FSM. We have also analyzed the complexity
of the optimized SAT instance, and justified the effec-
tiveness of our method by concrete models in experi-
ments.

One of our future work will point to apply our re-
cursive ideas in this paper for optimizing other LTL
modalities in BMC. In another perspective, since the
SAT instances produced by our method preserve many
characteristics of BMC, another future work would be
to utilize those methods such as variable order, sharing
conflict clause etc proposed in [11] to process these
SAT instances and further improve efficiency.

 Acknowledgements

We gratefully acknowledge the financial support of the
National Science Foundation for Distinguished Young
Scholars of China under Grant No. 60725207, the Na-
tional Natural Science Foundation of China under
Grant No.60473004 ; the National Grand Fundamental
Research 973 Program of China under Grant
No.2005CB321900, the Research Foundation of Sci-
ence and Technology Plan Project in Guangdong Prov-
ince of China under Grant No.2007B010400068 and
the Startup Research Fund for Talents in Jinan Univer-
sity.

We would also like to thank Biere , Cimatti for
sharing their NuSMV implementation with us.

References

[1] A. Biere, A . Cimatti , E.M. Clarke, and Y .Zhu.

Symbolic model checking without BDDs. In
Tools and Algorithms for the Constructions and
Analysis of Systems (TACAS’99), volume 1579
of LNCS. Springer, 1999. 193–207.

[2] G. Daniel, K.Ulrich, D.Rolf. HW/SW CoVerifica-

tion of Embedded Systems using Bounded Model
Checking Proceedings of the 16th ACM Great

36

Model K AA_BMC Timo_BMC G_BMC
 Num

of Var
Num
ofClau

Time Num
of Var

Num
ofClau

Time Num
of Var

Num
ofClau

Time

Dme2 10
20
23

6384
12519
14379

14727
29277
33642

5
22
30

7053
13727
15750

16347
32517
 37368

7
29
41

6325
12305
14099

14547
28917
33228

4
18
25

Brp 10
35
50

4597
16072
23257

13294
46169
65894

<1
16
39

5279
18479
26699

15677
54577
77917

<1
19
51

4543
15443
21983

13264
46064
65744

<1
15
37

Semaphore 10
14

1248
2188

1959
2759

2
315

1349
2329

2329
3277

2
215

534
742

1404
1956

<1
7

Syncarb5 30
50
70

3229
5819
8809

7023
11603
16183

15
55
132

3530
6320
9510

7923
13103
18283

16
58
136

2718
4498
6278

3153
5153
7153

2
7
15

Table 3. Comparison of SAT Instances of Encoding for G(p)

Model K AA_BMC Timo_BMC G_BMC
 literials clauses literials clauses literials clauses
Dme2 10

20
23

4569
20738
44357

602
2341
4341

1916
44471

122255

395
3474
9538

2217
31513
61697

346
2950
4680

Semaphore 10
14

2678
8527

479
1282

2396
8682

416
1349

2048
4755

430
865

Syncarb5 30
50
70

777
1426
1909

365
607
862

758
1425
1804

342
634
837

17
9
7

10
9
7

Table 4. Comparisons of Conflict Clauses in SAT Instances of Encoding for G(p)

Lakes symposium on VLSI .Philadelphia, PA,
USA SESSION: CAD for embedded sys-
tems 2006 . 43 - 48

[3] F. Ivancic , Z. Yang , M. K. Ganai , P. Ashar

.Efficient SAT-based bounded model checking
for software verification , in International Sympo-
sium on Leveraging Applications of Formal
Methods (ISoLA), November 2004. 168-179

[4] N .Amla, R .Kurshan, K .McMillan, and R.

Medel. Experimental analysis of different tech-
niques for bounded model checking. In TACAS,
2003. LNCS 2619, Springer 2003. 34–48,

[5] X.Y Luo, KL Su, J.J. Yang. Bounded Model

Checking for Temporal Epistemic Logic in Syn-

chronous Multi-Agent Systems. Journal of Soft-
ware, 2006, 17(12):2485−2498 (in Chinese with
English abstract). http://www.jos.org.cn/1000-
9825/17/2485.htm

[6] A .Cimatti, M .Pistore, M .Roveri, and R

.Sebastiani. Improving the encoding of LTL
model checking into SAT. In Verification, Model
Checking, and Abstract Interpretation
(VMCAI’2002), volume 2294 of LNCS,
Springer, 2002. 196–207.

[7] A. Frisch , D .Sheridan, and T .Walsh. A fixpoint

encoding for bounded model checking. In Formal
Methods in Computer-Aided Design
(FMCAD’2002), volume 2517 of LNCS,.
Springer, 2002. 238–255

37

[8] T .Latvala, A . Biere., K .Heljanko ., T .Junttila .:

Simple bounded LTL model checking.In: Formal
Methods in Computer-Aided Design (FMCAD
2004). Volume 3312 of LNCS., Springer, 2004.
186–200

[9] P .Jackson and D .Sheridan. Clause Form Conver-

sions for Boolean Circuits. In Theory and Appl.
of Sat. Testing, 7th Int. Conf. (SAT’04), volume
3542 of LNCS, Springer 2004. 183-198

[10] P .Jackson and D .Sheridan. The optimality of a

fast CNF conversion and its use with SAT. Tech-
nical Report APES-82-2004, APES Research
Group, March 2004.http://www.dcs.st-
and.ac.uk/~apes/apesreports.html.

[11] O .Strichman. Accelerating bounded model

checking of safety properties. Formal Methods in
System Design, 24(1):5–24, 2004.

[12] E.M Clarke, D . Kroenig, J . Oukanine, and O

.Strichman. Completeness and complexity of
bounded model checking. In Verification, Model
Checking, and Abstract Interpretation
(VMCAI’2004), volume 2937 of LNCS,
Springer, 2004. 85–96.

[13] A .Gupta, M .Ganai, C .Wang, Z .Yang, and P

.Ashar. Learning from BDDs in SAT-based
bounded model checking. In Proceedings of the
40th Conference on Design Automation, IEEE,
2003. 824–829.

[14] A. Podelski, B. Steffen, and L. Zuck. Liveness

Manifestos. Beyond Safety, International Work-
shop, Schloß Ringberg, Germany, April 25–28,
2004.http://www.cs.nyu.edu/acsys/beyond-
safety/liveness.htm.

[15] I. Beer, S. Ben-David, and A. Landver, “On-the-

fly model checking of RCTL formulas,” in A.J.
Hu and M.Y.Vardi (Eds.), Proc. 10th Intl. Con-
ference on Computer Aided Verification

(CAV’98), Vol. 1427 of Lect. Notes in Comp.
Sci., Springer-Verlag, 1998, pp. 184–194.

[16]http://nusmv.irst.itc.it/examples/examples.html

[17]http://www.cs.chalmers.se/Cs/Research/FormalMe

thods/MiniSat/MiniSat.html

38

