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ABSTRACT:  Framed-tube system with multiple internal tubes is analysed using 

an orthotropic box beam analogy approach in which each tube is individually 

modelled by a box beam that accounts for the flexural and shear deformations, as 

well as the shear-lag effects. The method idealises the tubes-in-tube structure as a 

system of equivalent multiple tubes, each composed of four equivalent orthotropic 

plate panels capable of carrying axial loads and shear forces. By simplifying the 

assumptions in relation to the patterns of strain distributions in external and internal 

tubes, the structural analysis is reduced to the mere solution of a single second-

order linear differential equation. The proposed method, which is intended to be 

used as a tool for preliminary design purposes, can be applied for the analysis of 

framed-tube structures with single and multiple internal tubes, as well as those 

without internal tubes. The simplicity and accuracy of the proposed method is 

demonstrated through the analysis of three framed-tube structures (of different 

heights) without internal tubes. A 3-D frame analysis program and two existing 

approximate methods are also included in the comparative study. Furthermore, 

three other framed-tube structures with single, two and three internal tubes are 

analysed to verify the applicability and reliability of the proposed method. 
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INTRODUCTION 

 

 Modern highrise buildings of the framed-tube system exhibit a considerable 

degree of shear-lag with consequential reduction in structural efficiency. Despite this 

drawback, framed-tube structures are widely accepted as an economical system for 

highrise buildings over a wide range of building heights. This is because in the 

framed-tube system the lateral load resisting elements are placed on the outer 

perimeter. The “tube” comprises closely spaced columns that are connected at each 

floor level by deep spandrel beams. Such buildings are usually equipped with service 

cores, which may house the lifts, emergency stairways, electrical and mechanical 

zones and other services. These cores referred to as the internal tubes are often 

designed to provide added lateral stiffness to the building; they also interact with 

each other as well as with the external tube. Framed-tube structures with multiple 

internal tubes, or tubes-in-tube structures, are widely used due to their high stiffness 

in resisting lateral loads and the availability of the internal tubes in supporting the 

vertical loads. The use of multiple internal tubes reduces the effect of shear-lag in the 

tubes and offers additional lateral stiffness to the overall structure. 

 

 The tube-tube interaction coupled with the existence of negative shear-lag in 

the tubes complicates the estimation of the structural performance and the accurate 

analysis of tubes in framed-tube system. Existing models for approximate analysis 

not only ignore the contribution of the internal tubes to the overall lateral stiffness 

but also neglect the negative shear-lag effects in the tubes. Thus, these models cater 

only for the structural analysis of the external tube but fail to consider the shear-lag 

phenomenon of the internal tubes. As a result, they are inadequate in capturing the 

true behaviour of such structures. 
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 A number of approximate analysis methods (Coull, et al. 1975, 1978; Kwan 

1994) were introduced for the analysis of single framed-tube structures (i.e. without 

internal tubes) by modeling the entire structure as an assemblage of equivalent 

orthotropic plate panels. Khan and Smith (1976) also developed an orthotropic 

plate analogy for the simplified analysis of such single-tube structures. However, 

these methods do not take into account the existence of negative shear-lag in the 

tube, which has an adverse effect on the structural behaviour. Chang (1985), on the 

other hand, proposed an approximate method that takes into account the overall 

lateral stiffness provided by the internal tube. However, only the analysis of low-

rise structures was included in his study. In addition, the existence of the tube-tube 

interaction and the negative shear-lag, as well as the analysis of the internal tubes 

were not sufficiently discussed. 

 

 The occurrence of shear-lag has long been recognised in hollow box girders as 

well as in tubular structures. Foutch and Chang (1982) and Chang and Zheng (1987) 

observed the negative shear-lag phenomenon in box girders. Since then negative 

shear-lag effects have been considered in box girder design. However little effort has 

been made to understand the cause and the characteristics of such phenomenon. 

Recently, Kristek and Bauer (1993) and Singh and Nagpal (1995) also observed the 

existence of negative shear-lag in framed-tube structures. Yet, there is no 

comprehensive study on the net shear-lag behaviour or on the tube-tube interaction. 

 

 A typical framed-tube structure under lateral loading is shown in Fig. 1. The 

structure behaves differently from that predicted by the primary bending theory, in 

that the stress distribution in the flange wall panels is not uniform, and that in the 

web wall panels is nonlinear. These are illustrated in Fig. 2. This (nonlinear) 

phenomenon is referred to as “shear-lag”. Positive shear-lag refers to the case 
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where the stresses in the corner columns of the flange frame panels exceed those in 

the centre columns. This leads to the warping of the floor slabs which, in turn, 

causes the deformation of the interior partitions and other secondary components. 

In the case of negative shear-lag, where the stresses in the centre columns exceed 

those in the corner columns, local buckling on the compression side and cracking 

on the tension side of the flange frame may occur. In addition, the tube-tube 

interactive stresses, referred to as the additional bending stresses, would further 

complicate the shear-lag prediction. 

 

The shear-lag phenomenon is more prominent in framed-tube structures with 

multiple internal tubes. In the present study, an analytical method is proposed for 

the accurate prediction of the axial stress distribution in the columns of each tube 

and the deflection of the structure under lateral loading. The proposed method takes 

into account the net shear-lag effects and the additional bending stresses in the 

tubes. The added lateral stiffness provided by the internal tubes is also considered. 

The numerical analysis so developed is based on the minimum potential energy 

principle in conjunction with the variational approach. 

 

 The simplicity and accuracy of the proposed method is demonstrated through 

the analysis of three single tube structures with 30, 50 and 70 storeys. The results 

due to the proposed method are compared with those produced by a 3-D frame 

analysis program (ETABS 1989). The analytical results from two existing 

approximate methods due to Coull, et al. (1975, 1978) and Kwan (1994) are also 

included in the comparative study. 

 

 To verify the applicability and reliability of the proposed method, three other 

40-storey framed-tube structures with single, two and three internal tubes are also 
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analysed. The results for lateral deflections and the axial stresses in the corner and 

centre columns of the flange frame panels in each of the tubes are compared with 

those given by the 3-D frame analysis program. The shear-lag phenomenon is also 

discussed; so are the additional bending stresses due to the tube-tube interaction. 

 

FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES 
 

 A discrete tubes-in-tube structure may be modelled as an assemblage of 

equivalent orthotropic plate panels. Consequently, a framed-tube structure may be 

analysed as a continuum. Fig. 3 shows a typical framed-tube structure with multiple 

internal tubes (two in this case). Each of the tubes is composed of four equivalent 

orthotropic plate panels. All framed-tubes under consideration consist of an 

assemblage of such plate panels of uniform thickness in vertical planes. 

 

 The following assumptions are made to simplify the modelling process and 

the associated analysis: 

(a) The floor slabs in the structure are considered to be rigid diaphragms within 

their own plane. Thus, the relative lateral displacements between the tubes are 

negligible at each level. 

(b) The behaviour of the structure is linear and elastic. 

(c) No local bending exists in the joint areas or in the panels. 

(d) The spacings of the beams and columns are uniform throughout the building height. 

(e) Both beams and columns are of uniform cross section throughout the building 

height. 

(f) The axial stiffnesses of the beams and columns may be represented, 

respectively, by the elastic moduli in the horizontal (x or y) and vertical (z) 
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directions at each frame panel (see Fig. 3). The shear stiffness is represented by 

the shear modulus. 

 

SHAPE FUNCTIONS 
 

 Fig. 3 indicates that the framed-tube structure has two horizontal axes of 

symmetry (x and y) with the vertical axis (z) passing through the centre of the cross 

section of the structure. Based on this assumption, the strain distributions in the 

external web frame panels 1 and 2 are identical in the 2 tubes-in-tube structure 

shown in Fig. 4. Note that the strain distributions in the external flange frame 

panels (3 and 4) are equal but opposite. Since the internal web frame panels 5, 6, 7 

and 8 are identical in size, their deflection profiles are also the same. The strain 

distributions in all these four internal web frame panels are therefore identical. It is 

further assumed that the strain distributions in the flange frame panels of internal 

tubes are symmetrical about the central vertical axis (z). As a result, the strain 

distributions in such panels are identical in magnitude. Similar assumptions are also 

applied to the framed-tube structures with different numbers of internal tubes. 

 

 The analytical method proposed herein has the following characteristics: 

(a) Reissner’s function (Reissner 1945) is modified to account for the independent 

distribution of the vertical displacement in the flange frame panels, thereby 

taking into consideration the net shear-lag. 

(b) The effect of shear-lag in the external and internal tubes is considered in 

assessing the global behaviour of the tubes-in-tube structures. 

(c) The overall lateral stiffness provided by the internal tubes is considered. 

(d) The additional bending stresses, due to the tube-tube interaction, are evaluated 

to assess the effect of the net shear-lag. 
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(e) The proposed method is applicable for the analysis of framed-tube structures 

with and without internal tubes. 

 

Vertical Displacements in External Tube 
 

To estimate the positive and negative shear-lags in the orthotropic plate panels, the 

distribution of vertical displacement in the flange frame panel is considered to 

closely follow the Reissner’s function (Reissner 1945). However, certain 

modification is necessary to replace the parabolic variation by a cubic one. A cubic 

function is chosen for its greater flexibility and versatility with negligible increase 

in computational effort. The vertical displacement distribution in the web frame 

panel is also assumed to be cubic. Figs. 5(a) and 5(b) show, respectively, the 

general shapes for the displacement distributions in the flange and web frame 

panels. The general expressions for the displacement distributions are assumed as 
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where )(1 zu  and )(2 zu  are the undetermined displacement functions including shear-

lag coefficients due to the shear deformation; w is the deflection of the structure; b and 

c are the half-widths of the flange and web frame panels of the external tube, 

respectively, and, x, y and z are the coordinates of the three rectangular axes. 
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Vertical Displacements in Internal Tube 
 

 The general expressions, Eqs. (1a) and (1b), for the displacement 

distributions in the external tube can also be applied to those in the flange and web 

frame panels of the multiple internal tubes. Fig. 6 shows a typical plan of 

equivalent tube structure with multiple internal tubes. When the number of internal 

tubes, N, is an even number (N = 2, 4, 6 or 8, etc), the displacement distribution in 

the flange frame, ),(1 yzUi , can be expressed as 
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for 21 nyn ≤≤ ; and, for 32 nyn ≤≤ , 
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where ibnann )2(2/)1(1 −+−= , ( ) ibnann 12/)1(2 −+−= , inbann +−= 2/)1(3  

and ( )!2/2 Nn =  ; in which bi and ci are the half-widths of the flange and web frame 

panels of the internal tubes, respectively. In Eqs. (2a) and (2b), )(1 zui  is the 

undetermined displacement function including shear-lag coefficients due to the 

shear deformation. For a framed-tube structure with an odd number of internal 

tubes, a similar consideration follows. The displacement distribution in the flange 

frame of the internal tubes can be expressed as 
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For 21 nyn ≤≤  and 32 nyn ≤≤ , respectively, the displacement distribution has the 

identical expression as Eqs. (2a) and (2b). However, with the same expressions of 

n1, n2 and n3, [ ] 12!2/)1( +×−= Nn  and N = 3, 5, or 7, etc. 

 

 An assumption analogous to that for the displacement distribution in the 

external web frame panel is also applied to the internal web frame panels (see Fig. 

6). Hence the displacement distribution, ),(2 xzUi , can be expressed as 
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where )(2 zui  is the undetermined displacement function including shear-lag 

coefficients due to the shear deformation. Differentiating Eqs. (1), (2), (3) and (4) 

with respect to z yields the vertical strains in the flange and web frame panels of the 

external and internal tubes. 

 

SOLUTION METHOD 
 

 The equilibrium equation of the overall moment at any building height is 
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where E is the modulus of elasticity; t and ti are respectively the equivalent 

orthotropic panel thicknesses in the external and internal tubes; Ac and Aci are the 

cross-sectional areas of the corner columns in the external and internal tubes, 

respectively; cε  and icε  are respectively the corner column strains in the external 

and internal tubes; zfε  and zwε  are the strains in the external flange and web 

frame panels, respectively; zifε  and ziwε  are the strains in the internal flange and 

web frame panels, respectively. 

 

 Substituting Eqs. (1), (2), (3) and (4) into Eq. (5) and integrating with respect 

to z yields 
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As a result of Eq. (6), the vertical strain distributions can be simply expressed in 

terms of the two undetermined strain functions, )(1 zu′  and )(1 zui′ . 

 

 The numerical analysis of the stress distributions is carried out using the 

principle of minimum potential energy in conjunction with the variational approach 

(Ketter, Lee, and Prawel 1979). The total potential energy (V) of a framed-tube 

structure with multiple internal tubes is obtained by summing up the total strain 

energy of the external and internal tubes (Vs and Vis) and the potential energy of the 

loading system as applied to the external and internal tubes (VL and ViL). Or, 

 

 iLisLs VVVVV −+−=  (7) 

 

where )( Ls VV −  and )( iLis VV −  are, respectively, the total potential energies of the 

external and internal tubes. Note that Vs, Vis, VL and ViL are functions of z and their 

expressions may be found elsewhere (Lee, 1999). The total potential energy given 

in Eq. (7) may be rewritten symbolically in a functional form with respect to 

1111 and,,,, ii uuuuwz ′′′′  as 
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 The total potential energy of the entire system must be minimised in 

conjunction with the variational approach. When a set of boundary conditions is 

applied, the governing differential equations can then be derived. Considering that 

the structure is fixed at its base (z = H), the geometric boundary conditions are 
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 0)()()( 11 === HuHuHw i   at  z = H ; 

 

and 0)0()0( 11 =′=′ iuu  at  z = 0 (9) 

 

where H is the structural height. Subject to the boundary conditions given in Eq. (9), 

the governing differential equations can be expressed as 
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where Pe(z) and Pi(z) are the total shear forces in the external and internal tubes, 

respectively.  In Eq. (10), X, Y, X1 and Y1 are the constants to be determined 

according to the structural properties and the geometric conditions (Lee, 1999). 

 

 The general solutions for the two non-homogeneous equations in Eq. (10) are 
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where A, B, C, D, E and F are the constants to be determined according to the 

loading conditions. 

 

 



 13

DEFLECTION AND STRESSES 
 

Deflections 
 

 The deflection of the structure, w , can be derived from the shear strain, zxγ , 

for the web frame. Or, 
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),(2γ , xzτ  is the shear stress in the web frame panel of the 

external tube and G is the shear modulus of the equivalent tube. The expressions of 

xzτ  and 
x

xzU
∂

∂ ),(2  are available elsewhere (Lee, 1999). Integrating Eq. (12) with 

respect to z and considering the boundary conditions given in Eq. (9) yield the 

horizontal deflection of the structure subjected to a lateral load. 

 

 

Stress Distributions 
 

 The deflection of the structure can be derived as 
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where ( )1111 βα is uuM ′+′−=  is an additional moment induced by the shear 

deformation due to the tube-tube interaction.  I is the second moment of area of the 
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tubes-in-tube system. Substituting Eq. (13) into the vertical strains of the external and 

internal tubes and multiplying by E yield the bending stresses in the external tube. Or, 
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for the external flange frame panel; and 
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for the external web frame panel. In Eq. (14), fsσ  and wsσ are, respectively, the 

additional bending stresses in the flange and web frame panels due to the tube-tube 

interaction. IN and IiN are the second moments of area of the flange panels in the 

external and internal tubes, respectively; 

 

 The same procedure can be applied to evaluate the bending stresses in the 

flange and web frame panels of the internal tubes. This gives, for the internal flange 

frame panels, 
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for a structure with single internal tube; and 
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for a structure with more than two internal tubes. In Eq. (15), Ii is the second 

moment of area of the internal tube. Note that the "±" sign in Eq. (15b) indicates 

that "+" is used when 21 nyn ≤≤  and "−" is used when 32 nyn ≤≤ . Note also that 

1n , 2n  and 3n  take different values for even and odd numbers of internal tubes. 

 

 The bending stress in the internal web frame panels is 
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In Eqs. (15) and (16), fisσ  and wisσ  are, respectively, the additional bending 

stresses in the internal flange and web frame panels due to the tube-tube 

interaction; M(z) and Mi(z) are the total bending moment of the entire system and 

that of the internal tubes, respectively. Note that the behaviour of the tubes-in-tube 

structure, when subjected to the lateral load, is similar to that of a frame-shear wall 

structure (Schueller 1992). The moment of the internal tubes, Mi(z), can therefore 

be derived from the analysis of the frame-shear wall structure (Smith and Coull 

1991). 
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NUMERICAL APPLICATIONS 
 

Example 1 - Analysis of Framed-tube Structures without Internal Tubes 
 

 To demonstrate the simplicity and accuracy of the proposed method, three 

single framed-tube structures of 30, 50 and 70 storeys are analysed. The results due 

to the proposed method are compared with those produced by a 3-D frame analysis 

program (ETABS 1989). Also included in the comparative study are the analysis 

results from the two existing approximate methods due to Coull, et al. (1978) and 

Kwan (1994). The capabilities of the proposed method and those of the two 

approximate methods are compared in Table 1. 

 

The plan and sectional views of the three structures are shown in Fig. 7. Each 

of the three structures is 30m×30m in plan and has a 3.0m storey height. The 

centre-to-centre column spacing is 2.5m. A uniformly distributed lateral load of 

88.24 kN/m is applied along the entire height of the structure. The cross-sectional 

area of all the columns and beams is taken to be 0.64m2, and the Young’s modulus 

E and the shear modulus G are 2.06×1010 N/m2 and 0.2×1010 N/m2, respectively. 

 

 Figs. 8 and 9 illustrate, respectively, the lateral deflections of the three framed-

tube structures and the corresponding axial stresses in the centre and corner columns 

of the flange frame panels. Compared to the 3-D frame analysis results, the proposed 

method yields good correlations in both deflection and axial stresses for all three 

structures. On the other hand, the two existing approximate methods give rather poor 

results in deflection, especially at higher storeys. Some discrepancies are also found 

between the existing methods and the 3-D frame analysis in predicting the column 

axial stresses. This is particularly true for Kwan's method (1994) in predicting the 
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centre-column axial stress in the flange frame panel. It may be further observed from 

Fig. 8 that the proposed analysis is more accurate for structures with over 30 storeys. 

In addition, it is found from the comparisons that the proposed method requires 

minimal data preparation effort, and for each analysis, the personal computer running 

time is absolutely negligible when compared with the 3-D frame analysis. 

 

 In view of its simplicity, efficiency and accuracy, the proposed method is 

considered to be a suitable design tool for framed-tube structures, particularly at the 

preliminary stages where numerous analysis iterations need to be carried out. 

 

Example 2 - Analysis of Tube(s)-in-Tube Structures 
 

 To further demonstrate the applicability and reliability of the proposed method, 

three 40-storey framed-tube structures with single, two and three internal tubes are 

analysed and the results are compared with the 3-D frame analysis program (ETABS 

1989). The structural dimensions are the same as those adopted in Example 1. Each 

structure is subjected to a 88.24 kN/m lateral load. The second moment of area of 

each internal tube is taken to be 90 m2. The plan views of the three structures are 

shown in Fig. 10. The geometry of the structures are summarised in Table 2. 

 

 The deflections of the three tube(s)-in-tube structures and the axial stress 

distributions, along z/H, in the centre and corner columns of the flange frame 

panels are obtained using the proposed method and the 3-D frame analysis program. 

They are presented in Figs. 11 and 12, respectively. It can be seen in Fig. 11 that 

the discrepancy between the deflection curves is more pronounced in the lower 

storeys. This phenomenon is due to the effects of the additional lateral stiffness 

provided by the internal tubes, which is not considered in the 3-D frame analysis 
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program. The column axial stress distributions in the flange frame panels shown in 

Fig. 12 indicate that the stress reversals for the internal tubes take place at two level 

points (near the middle level and top level); for the external tube, the stress reversal 

takes place at near-top level only. It is further observed that all three structures 

having the same second moment of area of the internal tubes, show similar 

characteristics in deflection and axial stresses. This implies that increasing the 

number of internal tubes has little effect on the structural behaviour of the framed-

tube structures. However, when the second moment of area of the internal tubes 

increases, the structural behaviour would vary significantly between structures with 

different numbers of internal tubes. 

 

 Shown in Fig. 13 are the distributions of the additional bending stresses in 

the centre and corner columns of the flange frame panels for the three structures. It 

is found that as the second moment of area of each internal tube is identical, 

increasing the number of internal tubes gradually reduces the increment in the 

additional bending stresses from centre to corner columns in the internal tubes. In 

other words, a reduction occurs in bending stresses between centre and corner 

columns. As a result, the shear-lag is also reduced. However, the number of internal 

tubes does not have much effect on the additional bending stresses in the external 

tube. It is further observed that the effect of the positive shear-lag is greater at the 

bottom of the structures, whereas the negative shear-lag in the external tube occurs 

at around 1/4 of the building height. For all three structures, the shear-lag reversal 

point for the internal tubes locates at a lower level than that for the external tube. 
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CONCLUSION 
 

 Based on the minimum potential energy principle in conjunction with the 

variational approach, a simple mathematical model is proposed for the approximate 

analysis of framed-tube structures with multiple internal tubes. The structures are 

modelled as a box assemblage of the orthotropic plate panels, each composed of 

horizontal beams and vertical columns. In the proposed method, Reissner's function 

is modified to account for the independent distribution of the vertical displacement 

in the flange frame panels of each tube, thereby taking the net shear-lag into 

consideration. By simplifying the assumptions in relation to the patterns of the 

vertical displacement distributions in the tubes, the complex three-dimensional 

structural analysis is reduced to the mere solution of a single second-order linear 

differential equation. The proposed method is applicable to the analysis of framed-

tube structures with any number of internal tubes. This is an advancement over the 

existing methods which are restricted to the single tube structures. Note that the 

structures to be analysed should preferably possess a high degree of regularity for 

the simplification of the analysis procedure. The bay widths and storey heights 

should be the same over the major part of the structures, and the same member sizes 

should be used in both the horizontal and vertical directions. 

 

 The accuracy, simplicity and reliability of the proposed method are verified 

through the comparisons with the two existing simplified methods and a 3-D frame 

analysis program. The comparative study is carried out based on the analysis of 

various types of framed-tube and tube(s)-in-tube structures. The accuracy and 

economy of the proposed method is confirmed. 
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 The additional lateral stiffness due to the tube-tube interaction is also 

accounted for in the analysis. The additional bending stresses are observed to have 

significant effect on the shear-lag phenomenon. In comparison with the 3-D frame 

analysis program, the only other approach available for the tubes-in-tube system, 

the proposed method provides similarly accurate results in predicting the deflection 

response and the column axial stress distributions. 

 

 The proposed method is simple, accurate, economical and reliable. It is 

especially suitable for use at preliminary design stages where a large number of 

structures with different features are required to be analysed repeatedly. 
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APPENDIX II.  NOTATION 
 

The following symbols are used in this paper: 

 

Ac, Aci = cross-sectional areas of corner columns in the external and 

internal tubes, respectively 

b, c = half-widths of the external flange and web frame panels, 

respectively 

bi, ci = half-widths of the internal flange and web frame panels, 

respectively 

E = modulus of elasticity 

G = shear modulus of elasticity 

H = structural height 

iI , I = second moments of area of the internal tube and the entire 

tubes-in-tube system, respectively 

IN, IiN = second moments of area of the flange panel in the external 

and internal tubes, respectively 

MS = additional moment 

)(zM , )(zM i = total bending moment of the entire system and bending 

moment of the internal tube 

N = number of internal tubes 

Pe(z), Pi(z) = shear forces of the external and internal tubes, 

respectively 
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t, ti = equivalent orthotropic panel thicknesses of the external 

and internal tubes, respectively 

),(1 yzU , ),(2 xzU = displacement distributions in the external flange and web 

frame panels, respectively 

),(1 yzUi , ),(2 xzUi = displacement distributions in the internal flange and web 

frame panels, respectively 

)(1 zu , )(2 zu = undetermined functions for displacement distribution in 

the external flange and web frame panels, respectively 

)(1 zui , )(2 zui = undetermined functions for displacement distribution in 

the internal flange and web frame panels, respectively 

)(1 zu′ , )(2 zu′ = undetermined functions for strain distribution in the 

external flange and web frame panels, respectively 

)(1 zui′ , )(2 zu i′ = undetermined functions for strain distribution in the 

internal flange and web frame panels, respectively 

V = total potential energy 

ViS(z), ViL(z) = strain and potential energies of the load system in the 

internal tubes, respectively 

VS(z), VL(z) = strain and potential energies of the load system in the 

external tube, respectively 

w(z) = deflection 

X, Y = variables for undetermined function, )(1 zu  

X1, Y1 = variables for undetermined function, )(1 zui  
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x, y, z = coordinates of three rectangular axes 

cε , ciε = corner column strains in the external and internal tubes, 

respectively 

zfε , zwε = strains in the external flange and web frame panels, 

respectively 

zifε , ziwε = strains in the internal flange and web frame panels, 

respectively 

γxz = shear strains in the web frame panel of the external tube 

fsσ , wsσ = additional bending stresses in the external flange and web 

frame panels, respectively 

fisσ , wisσ = additional bending stresses in the internal flange and web 

frame panels, respectively 

fzσ , wzσ = bending stresses in the flange and web frame panels of 

external tube, respectively 

ifzσ , iwzσ = bending stresses in the flange and web frame panels of 

internal tubes, respectively 

τxz = shear stress in the web frame panel of the external tube 
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Table 1. Comparison of the proposed method and two approximate methods 

 

Characteristics 

of the method 

(1) 

Proposed 

method 

(2) 

Coull, et al. 

(1978) 

(3) 

Kwan 

(1994) 

(4) 

Methodology Equivalent orthotropic panel 

Applied structural 

system 

Tubes-in-tube 

Tube-in-tube 

Tube 

Tube Tube 

Consideration of 

negative shear-lag 
Yes No No 

Stress distribution 

in web panel 
Cubic Cubic Cubic 

Stress distribution 

in flange panel 
Cubic Parabolic Parabolic 

Consideration of 

lateral stiffness 
Yes No No 

Consideration of 

additional bending stress 
Yes No No 
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Table 2. Geometry of three tube(s)-in-tube structures 

 

Structural 

data 

(1) 

Tube- 

in- 

tube 

(2) 

Tube structure 

with two 

internal tubes 

(3) 

Tube structure 

with three 

internal tubes 

(4) 

Column and beam 

sizes in external 

tube (cm×cm) 

80 × 80 

Column and beam 

sizes in internal 

tube (cm×cm) 

91 × 91 80 × 80 72 × 72 

Size of external 

tube (m×m) 
30 × 15 

Size of internal 

tube (m×m) 
15 × 5 2@7.5 × 5 3@5 × 5 

Total storey 

height (m) 
120 
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