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1. Abstract 

 
Generative music algorithms frequently operate by making musical decisions in a sequence, with each step of the 
sequence incorporating the local musical context in the decision process. The context is generally a short window of 
past musical actions. What is not generally included in the context is future actions. For real-time systems this is 
because the future is unknown. Offline systems also frequently utilise causal algorithms either for reasons of efficiency 
[1] or to simulate perceptual constraints [2]. However, even real-time agents can incorporate knowledge of their own 
future actions by utilising some form of planning. We argue that for rhythmic generation the incorporation of a limited 
form of planning - anticipatory timing - offers a worthwhile trade-off between musical salience and efficiency. 
 
We give an example of a real-time generative agent - the Jambot - that utilises anticipatory timing for rhythmic 
generation. We describe its operation, and compare its output with and without anticipatory timing. 
 

2. Introduction 
 
This research has been conducted in the context of a larger research program investigating real-time machine listening 
and improvisation, culminating in a real-time machine improvisation agent, the Jambot. In this paper we discuss the 
algorithm used by the Jambot for generating improvised percussive rhythms.  
This work extends previous work by the authors in the Ambidrum [3], a system for generating percussive rhythmic 
material with a specifiable degree of metric ambiguity.  The primary differences are the inclusion of many more 
rhythmic heuristics, and an extended search technique that we are calling anticipatory timing. 
 
Anticipatory timing is an extension of the typical approaches to searching for generative algorithms that operate by 
optimising a musical fitness function at each step of a sequence of decisions. It involves extending the search to look a 
short way into the future, by searching over both the best note to play next, and the best time to play it.  
 
In sections 3 - 5 we discuss existing approaches using contextual models for algorithmic music generation and analysis. 
The approaches are divided into two categories: rule-based systems and statistical models. The two categories are 
related, in that a rule-based system can be transformed into a statistical model and visa-versa. It is convenient for our 
purposes, however, to think in terms of rule-based systems because of their natural interpretation in terms of 
mathematical optimisation.  
 
Considering algorithmic music generation as a problem in optimisation brings to the fore the question of efficient search 
techniques.  Efficiency is a critical concern, even for non-real-time algorithms, because the size of the search space is 
vast due to the exponential growth of musical possibilities with the number of notes considered. 
 
Rule-based systems have utilised a number of techniques to search the space of possible actions more efficiently than a 
naive brute force search.  Many of these techniques involve performing the search in a step-by-step fashion, with the 
addition of some heuristics to ‘prune’ unlikely branches from the search tree.  
 
The most extreme form of pruning is the class of so-called ‘greedy’ search algorithms [4], which hope to create an 
optimal sequence by making a series of locally optimal choices.  Often the resulting sequence is far from globally 
optimal, however the search is extremely fast. 
 
Real-time systems are subject to much greater efficiency constraints than offline systems. Moreover, the nature of real-
time systems demands some form of sequential processing. Consequently greedy search algorithms are very common in 
real-time improvisation systems. 
 
The idea behind anticipatory timing is that it provides a mechanism to enhance greedy search to find better optima, with 
a tolerable increase in computational complexity.  We suggest that anticipatory timing is particularly efficacious for the 
modelling of rhythm, which involves a mixture of pattern based modelling with a need to align the timing of elements 
of the pattern with both previous elements of the pattern, and with contextual cues such as the underlying metre. 
 
In section 10 we describe a new generative model of rhythm that is incorporated into the Jambot. This model is a rule-
based system that combines a number of rhythmic heuristics, including heuristics regarding the relation of the rhythm 
with the underlying metre, and heuristics that describe surface properties of the onset timings irrespective of the metre. 
 



Gifford, T. and A. R. Brown. 2010. Anticipatory Timing In Algorithmic Rhythm Generation. In 
Australasian Computer Music Conference, Canberra. ed. T. Opie, 21-28: Australasian 
Computer Music Association. 

 
 

We give some examples of the Jambot’s rhythm generation algorithm, both in solo and ensemble contexts. We compare 
the output with and without the use of anticipatory timing in the search, and conclude that the use of anticipatory timing 
enhances the musical coherence of its output. 
 
The audio examples may be downloaded from http://dr.offig.com/research/papers/ACMC2010/AudioExamples.zip 
 

3. Previous Work 
 
This work extends previous work by the authors in the Ambidrum [3]. The Ambidrum is a system for generating 
percussive rhythmic material with a specifiable degree of metric ambiguity.  It assumes that an underlying metre is 
supplied, and operates in real-time by applying heuristic rules relating the metric strength of the current beat to the 
emphasis of the note in the dimensions of velocity, duration and timbre. The generation of notes is performed at each 
beat (of a quantised time-line) by conducting an optimisation over the competing heuristics. 
 
The Jambot’s rhythm generation extends the Ambidrum by adding a number of other heuristics, including rhythmic 
properties that are not related to the metre, but reflect patterns of recurrence in the onset times.  
 
The Ambidrum produces notes of a variety of durations, often longer than a single quantised beat.  However, the 
underlying sequence that it uses is based on computing at regular time slices rather than generating one note after the 
duration of the previous has passed as is common in offline melody generation algorithms.  In the Ambidrum process 
durations are implemented using a suppression technique; at each time slice the rules first check if the previous note’s 
duration has finished, and if not the system takes no action. 
 
The Ambidrum chooses its musical actions at each time-step by searching over the space of possible notes for the best 
note at that time. This type of process is known as a greedy algorithm (discussed further in section 7) because it opts for 
the best possible choice now, without any consideration of the future. 
 
It is capable of producing simple rhythms that align closely to the metre, such as a standard rock beat. It is also capable 
of producing more complex rhythms that do not align with the metre, however it is difficult to control these more 
complex rhythms. 
 
The added heuristics in the Jambot’s rhythm generation allow for much greater control of complex rhythms by mixing 
rules that target metric ambiguity with rules that target other forms of rhythmic coherence. By adding these extra 
constraints, complex rhythms can be produced by deliberate departures from the metre that nevertheless retain musical 
coherence. 
 
3.1 Context Models 
 
Most generative music algorithms, particularly real-time algorithms, operate in a sequential fashion. The steps in the 
sequence are most commonly either regular time intervals (for example as in a step sequencing drum machine) or notes 
(as is typical of common practice notation). At each step the algorithm must make a decision as to what (if any) musical 
action to take. Generally algorithms will incorporate the local musical context into their decision making process. 
 
The context is usually taken to be the immediate history of musical material: 

 
The idea behind context models, which we are mostly interested in here, is that events in a musical piece can be predicted 
from the sequence of preceding events. [5] 
 

The notion that musical events can be predicted from a history of previous events has led to a multitude of generative 
algorithms that can be categorised into two broad categories: 
i. Rule-based systems - optimisation based approaches that combine heuristic rules with observed history to create a 

fitness function for the space of musical actions. The note to be played at each step is the note with the highest 
fitness.  

ii. Statistical models - stochastic systems that provide a probability distribution for the space of musical actions. At 
each step the note to be played is drawn randomly from this distribution. 

 
These two categories are related; a rule-based system can be transformed into a statistical model by reinterpreting the 
fitness function as a probability distribution, and a statistical model may be transformed into a rule-based optimisation 
system by choosing the maximum-likelyhood value at each step rather than making a random selection [6]. 
 
3.2 Rule-Based Systems 
 
Rule-based systems for describing music operate by supplying a collection of heuristic properties that music is expected 
to obey.  Historically, many rule-based systems have been intended for analysis rather than for generation [7, 8].  
However, if systems for analysis are formalised sufficiently to afford computational implementation, then they may be 
used ‘in reverse’ as generative algorithms [9, 10]. 
 



Gifford, T. and A. R. Brown. 2010. Anticipatory Timing In Algorithmic Rhythm Generation. In 
Australasian Computer Music Conference, Canberra. ed. T. Opie, 21-28: Australasian 
Computer Music Association. 

 
 

A frequently cited example of a rule-based system for musical analysis is the Generative Theory of Tonal Music 
(GTTM) [11].  The GTTM supplies a collection of preference rules that well-formed music should conform to. Actually 
performing an analysis using the GTTM involves coming to a compromise between competing preference rules. 
Lerdahl & Jackendoff’s model stops short of providing a computationally implementable scheme for deciding between 
competing rules. 
 

The reason [that we have not implemented our theory computationally] is that we have not completely characterized what 
happens when two preference rules come into conflict. Sometimes the outcome is a vague or ambiguous intuition ... We 
suggested above the possibility of quantifying rule strengths, so that the nature of a judgment in a conflicting situation 
could be determined numerically. [11:54] 

 
There have been various efforts to provide computational implementations of the GTTM or similar preference rule 
systems [12, 2].  These implementations consider the problem as a question of optimisation. In other words the correct 
analysis is found by searching through the space of possible analyses for the best analysis according to some weighted 
combination of the rules. 
 

In a given preference rule system, all possible analyses of a piece are considered. Following Lerdahl & Jackendoff, the 
set of  “possible” analyses is define by basic “well-formedness rules”. Each preference rule then assigns a numerical 
score to each analysis ... The preferred analysis is the one with the highest score. [2:15] 

 
The task of implementing a computational version of the GTTM (or any rule-based system) as an optimisation problem 
is made difficult by vast number of possible analyses to be searched over for any given piece of music. To perform a 
naive search over all analyses in search of the optimal one is generally computationally intractable. There are, however, 
a number of search techniques that are substantially more efficient than the ‘brute force’ approach of exhaustive search. 
 
A common approach to dealing with the combinatorial explosion of searching over all possible analyses is to perform a 
search in a sequential fashion, and to use some heuristics for ‘pruning’ unlikely branches of the search tree. Such 
approaches also seem more likely to provide a model for “the moment to moment course of processing as it unfolds 
during listening” [2:14]. One such approach is dynamic programming [13] which has found use in a number of 
algorithmic analysis and generation systems [14, 15, 16, 17, 2, 1]. 
  
Temperley has constructed a preference rule system similar to the GTTM called the Melisma model that affords 
computational implementation, and utilises dynamic programming to search for the ‘best’ analysis for a given piece of 
music. 
 

When the program searches for a globally optimal analysis based on the results of the local analyses, it must consider 
global analyses rather than simply choosing the best analysis for each segment in isolation ... Usually, even for a 
monophonic short melody, the number of possible local analyses may grow exponentially with the number of segments, 
and the size of the best-so-far analysis becomes extremely large. The Melisma system suppresses the explosion of 
analyses by properly pruning less significant analyses by dynamic programming. Temperley argues that, to some extent, 
this searching process reflects the human moment-to-moment cognitive process of revision, ambiguity and expectation 
when listening to music [12] 

 
The Melisma system, although originally intended for computational analysis, has been ‘reversed’ to be a generative 
algorithm, the Melisma Stochastic Melody Generator [18], providing both an example of an analytic theory transformed 
into a generative process, and an example of a (deterministic) rule based system reinterpreted as a stochastic statistical 
model.  
 
3.3 Statistical Models 
 
There have been many statistical models of music generation, from simple mapping of mathematical functions such as 
periodic motion and random walks, to the use of more complex processes such as chaos theory and cellular automata. 
Some of the more musically successful statistical models have been probabilistic, often based on probability 
distributions derived from analysis of previously composed material. Recent coverage of probabilistic tendencies in 
music have been written by Huron [20] and Temperley [21]. Whilst these publications have been focused on music 
analysis the use of these approaches for music generation is widely acknowledged, as described by Conklin: 
 

Analytic statistical models have an objective goal which is to assign high probability to new pieces in a style. These 
models can guide the generation process by evaluating candidate generations and ruling out those with low probabilities. 
The generation of music is thereby equated with the problem of sampling from a statistical model, or equivalently, 
exploring a search space with the statistical model used for evaluation. [10] 

 
In a simplistic sense statistical models can be used to generate musical material at each step in sequence independently 
of context, however, as Conklin again acknowledges, it is also common and often more effective to use previous and 
concurrent note events to inform statistical processes of generation. 
 

The most prevalent type of statistical model encountered for music, both for analysis and synthesis, are models which 
assign probabilities to events conditioned only on earlier events in the sequence. [10] 
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The most common type of probabilistic models that uses past events as context are Markov models. These have been 
used for generation of computer music since Hiller and Isaacson’s compositions in the late 1950s. Markov models are 
useful for sequential processes such as music because they describe the frequency of sequences of events, such as which 
rhythmic values follow each other. 
 
Markov models, and many other statistical approaches, while they take account of past context, do not take account of 
future possibilities and therefore, we suggest miss an important opportunity to produce more optimal event selections. 
One challenge for extending statistical models to consider multiple future scenarios is the computational complexity of 
that can result. 
 
3.4 Greedy Algorithms 
 
Many real-time generative systems that utilise either Markov models or rule based operation operate as what is 
described as a greedy algorithm [4:370].  In an optimisation context a greedy algorithm is one which generates each 
step of the sequence by optimising locally. Generally greedy algorithms fail to find the global optima [21]. However, 
they are often used because they are much faster than exhaustive searches. 
 

The random walk method, while applicable for real- time music improvisation systems that require fast and immediate 
system response (Assayag et al., 1999; Pachet, 2002), is flawed for generating complete pieces because it is “greedy” and 
cannot guarantee that pieces with high overall probability will be produced. The method may generate high probability 
events but may at some stage find that subsequently only low probability events are possible, or equivalently, that the 
distribution at subsequent stages have high entropy. [10] 

 
Greedy algorithms represent the most extreme form of ‘pruning’ of the search tree; only the current action is searched 
over – which amounts to pruning all of the branches of the tree, leaving only the current node. 
 
 
3.5 Existing Approaches to Rhythm Generation 
 
There have been a number of approaches to the creation of rhythmic material in generative music research. We will 
describe some of them here so as to assist with comparison with our anticipatory timing approach. 
 
A number of projects simply utilise existing or fixed rhythmic material for their generative music and thus focus 
attention on the pitch and or harmonic generative processes. Such systems include the Continuator [22] which replays 
rhythms played into it, and computational creativity experiments by Pearce & Wiggins [23] that utilise human 
composed rhythmic material and vary the pitched material. 
 
In a more granular way systems such as Cope’s EMI [24] re-use sampled rhythmic material and rhythmic structure 
rather than generating it from rules. 
 
Generative rhythmic systems include those that use onset probabilities at each time slice as described by [20:30].  
 
Oscillating Rhythms [25] uses cyclic functions to achieve patterns of recurrence of various rhythmic dimensions (onset, 
velocity and timbre). 
 
OMax [5] uses a predictive coding structure trained on a database of rhythmic features, including duration, to decide on 
the next most likely note. 
  
OMax relies time based sequencing using a greedy algorithm, however it just uses probabilities of the current temporal 
location and does not employ any look ahead [5]. 
 
Collins [1] uses dynamic programming for his offline music generation algorithm.  He also provides a greedy online 
version as an option for faster calculation. 
 

4. Anticipatory Timing 
 

4.1 Definition of Anticipatory Timing 
 
To incorporate planning by naively searching over even a short number of future actions is computationally intractable. 
Even for offline systems this is not feasible, so smarter approaches to searching, such as dynamic programming, must 
be employed. For real-time systems such as we are concerned with computational efficiency is a strong constraint, and 
even full dynamic programming may be too expensive, so that greedy online variants of dynamic programming are 
sometimes used [1] 
 
We propose anticipatory timing as a computationally tractable means of improving upon greedy algorithms. 
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Anticipatory timing is an extension of greedy optimisation to include some level of anticipation in the timing of the next 
action. This involves searching both over possible actions and possible times for the next action. At each step of the 
optimisation, the fitness function is calculated for each possible action, and recalculated again at each time slice (for a 
short window of the future). This calculation is done with the constraint that only one action is considered. If the highest 
overall value for the optimisation occurred at the current time slice, then that action is taken. Otherwise no action is 
taken at the current time slice. 
 
 If the algorithm anticipates that the best time for action is a few steps into the future then it does nothing at the current 
time slice. Supposing that nothing else changes (in the environment for example) then at that future time the action is 
likely to be taken. However, if in the meantime something unexpected has happened, then the algorithm may re-asses 
the situation and decide against taking action at this time. This is particularly important in a real-time improvisation 
context, because it allows for planning without commitment, so that the algorithm may be flexible to unexpected 
changes in the improvisation. 
 
4.2 Interpretation as pruning the search tree 
 
Anticipatory timing is similar to greedy optimisation in only planning a single action at a time, but allows for the 
possibility of adapting the timing of this event if required. At each step of the generation the optimisation routine 
examines future outcomes at each time slice until the next event, but not every possible outcome in the rhythmic space. 
This increases the computational demand linearly with the number of beats that we look ahead. This compares 
favourably with the exponential increase of complexity in planning a number of actions ahead. 
 
In terms of ‘pruning’ the search tree, anticipatory timing amounts to pruning down to just a single branch. This branch 
consists of a series of ‘take-no-action’ nodes and terminates when an action is taken. This means that the number of 
computations required overall is equal to the number required for searching over a single action multiplied by the 
number of time slices into the future that we look. 
 
4.3 Comparison with full search 
 
An alternative to anticipatory timing would be to plan a number of notes in advance.  Presuming that we have a fixed 
amount of computational power available, a quick computation demonstrates how much further into the future we can 
look using anticipatory timing, rather than searching over the entire tree.  
 
Suppose, for purposes of demonstration, that there are 16 possible notes to consider at each time slice.  Suppose further 
that the bar is divided into 16 semi-quaver time slices. Using anticipatory timing we look a full bar ahead: i.e. at each of 
the 16 time slices in the bar we search over 16 notes. Then the total computation involves searching over 16 x 16 = 256 
notes. 
 
On the other hand, consider attempting to plan some number of notes into the future considering all possible 
combinations.  Each time slice we must search over 16 notes, and for each of these notes we must search over 16 notes 
at the next time slice, and so on. Then by the second time slice we must examine 16 x 16 = 256 notes. 
 
So for the same computation budget, we can look ahead a full bar of 16 semiquavers with anticipatory timing, but can 
only look one semiquaver ahead if we attempt to search the entire tree. To look ahead the full bar for all possible notes 
would require searching over 16^16 notes, which is approximately the number of grains of sand in the earth [26]. 

 
4.4 The Chess Analogy 
 
Lets consider an analogy with chess. In playing chess it is generally important to think as many moves ahead as 
possible. Computer chess programs such as Deep Blue have typically required vast amounts of computing power to be 
able to do this because of the enormous number of states required to search over.  The problem arises because the 
number of states grows exponentially with the number of moves ahead to be searched. Even supercomputers like Deep 
Blue do not attempt to naively search over the entire tree of future moves, but use heuristics to prune the tree to a 
manageable size: 
 

At the heart of Deep Blue's ability to play chess is its evaluation function. The evaluation function is an algorithm that 
measures the "goodness" of a given chess position. Positions with positive values are good for White, and conversely, 
positions with negative values are good for Black. If the overall score is negative, for example, this means that Black has 
the advantage ... Deep Blue employs a system called selective extensions to examine chessboard positions. Selective 
extensions allow the computer to more efficiently search deeply into critical board arrangements. Instead of attempting to 
conduct an exhaustive "brute force" search into every possible position, Deep Blue selectively chooses distinct paths to 
follow, eliminating irrelevant searches in the process. [27] 
 

 
This is a similar problem to the one faced by a rule-based generative algorithm in attempting to incorporate planning: to 
attempt to search over the entire tree of future actions is computationally infeasible for even a small number of future 
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actions. If planning is to be incorporated there must be some mechanism for pruning the tree. Deep Blue's approach is a 
form of online greedy optimisation with forward thinking; the evaluation function is akin to the heuristic rules. 
 
The solution that we propose - anticipatory timing - involves draconian pruning indeed. As we discussed above, 
anticipatory timing only plans one action ahead, but allows for finessing of the timing of this action. In the analogy of 
the chess game, this corresponds to thinking just one move ahead - but considering the possibility of ‘passing’ until the 
best time to pull of this masterstroke. As it happens the rules of chess do not allow players to pass, so the analogy fails 
in this respect. However, as chess players can attest, at certain times it would be advantageous to pass. In terms of 
pruning the search tree, this corresponds to searching just a single branch of the tree, i.e., the branch that takes no action 
until an optimal time and then makes a single move. 

 
5. Examples using the Jambot 

 
5.1 The Jambot’s Rhythm Generation 
 
The heuristics used in the Jambot’s rhythm generation are a combination of rules that relate the accent structure of the 
rhythm to the metre, and rules that target patterns of recurrence in the onset times of the rhythm.  
 
The rules that relate the rhythmic structure to the metre include the rules used by the Ambidrum [3] for targeting 
metrical ambiguity, and additionally include a measure of syncopation - defined as occurring when a note’s duration 
extends through a beat of greater metrical strength than that of the note’s onset. 
 
The rules that relate purely to the surface rhythmic structure, regardless of the metre, include a measure of the frequency 
of a given inter-onset-interval (defined as the difference in onset times between any pair of notes, not just successive 
notes) and a simple measure of the density of the rhythm. 
 
5.1 Offbeat snare 
 
The anticipatory timing approach that uses this look-ahead procedure seems to be most helpful when constructing 
rhythms that utilise a mixture of the metrical and non-metrical heuristics.  
 
The anticipatory timing approach that uses this look-ahead procedure seems to be most helpful when constructing 
rhythms that utilise a mixture of the metrical and non-metrical heuristics.  
 
As a first example, consider trying to construct a rhythm in 4/4 quantised to 8 quavers, consisting of a kick on the 
downbeat, hi-hats on each crotchet beat alternating with snares on each quaver offbeat.  
 
The heuristics that we use for the hi-hat are density, syncopation and a periodicity of 2 quavers. The density is set to 
50%, since we want high hats on the crotchet beats, but not the quaver offbeats. The syncopation is set to 0% since we 
want the hi-hats to be on all the on-beats. Finally, we set a large weighting towards a periodicity of 2 quavers.   
 
For the snare we use similar heuristics, except we target a syncopation of 100%, so as to force the snare drum to sound 
on the offbeats. 
 
The resulting rhythm, using look-ahead, is shown  below in figure 1. and can be heard in the example file: 
AlternatingSnareAndHatAnticipation.mp3. 
 
 

 
Figure 1: Offbeat snare hits with anticipatory timing 

 
However, using the same settings for the heuristics but with the look-ahead turned off results in the music shown in 
figure 2. and heard in the example file: 
AlternatingSnareAndHatNoAnticipation.mp3. 
 

 
Figure 2: Offbeat snare hits without anticipatory timing 

 
Without the look-ahead function the hi-hat pattern remains intact, but the snare pattern is all over the place. One way to 
think about what is happening here is that the offbeat alignment is being forced by syncopation, but without the look-
ahead the algorithm can’t tell that a given offbeat is a good opportunity for a syncopation because it’s not looking ahead 
to the stronger on-beat. 
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5.2 Dancehall kick pattern 
 
As another example we try to construct a ‘dancehall’ pattern with the kick drum, being a 3 + 3 + 2 rhythm in quavers in 
4/4. The heuristics that we use are a combination of periodicities of 3 and 8. The periodicity of 3 on it’s own would tend 
to produce a stream of 3 + 3 + 3 ... indefinitely. However, the addition of a periodicity of 8 constrains the rhythm to 
attempt to repeat itself every 8 quavers, and so we hope that this combination of settings should tend to produce the 
desired pattern, or a permutation of it (i.e., 3 + 2 + 3). To obtain the desired permutation, and have it align to the metre, 
we also specify the metric ambiguity heuristic to be low, meaning that the rhythm should adhere to the metre as closely 
as possible.  The resulting rhythm (with a cow bell and clave click to show the metre) with the look-ahead turned on is 
shown in figure 3. and can be heard in the example file: 
DanceHallKickAnticipation.aif. 
 

 
Figure 3. Dancehall beat with anticipatory timing 

 
To see the effect of the look-ahead, note that the same settings with the look-ahead turned off gives the result shown in 
figure 4 and heard in the example file: 
DanceHallKickNoAnticipation.aif. 
 

 
Figure 4. Dancehall beat without anticipatory timing 

 
Without anticipatory timing the 3  + 3 + 2 pattern is lost. 
 
 
5.3 Ensemble Interaction 
 
In the examples above the context for the Jambot’s rhythm model has been a short window of history of its own musical 
actions. The Jambot is, however, primarily designed to be used for improvising in an ensemble, in which case the 
context consists of both its own musical actions and those of the ensemble.  
 
As an example of this mode of interaction we had the Jambot improvise in real-time to a pre-recorded drum loop, the 
infamous Amen Break, shown in figure 5, and heard in the example file AmenBreak.mp3. 
 

 
Figure 5. The Amen Break 

 
The heuristic settings used were just the density and syncopation for each of the hi-hat, snare and drum. The settings 
used were: 
 
Hi-hat: density 95%  syncopation 0% 
Snare: density 33% syncopation 50% 
Kick: density 33% syncopation 0% 
 
The resulting rhythmic improvisations with anticipatory timing is given in EnsembleAnticipation.mp3. The Jambot’s 
improvisation is relatively sparse, consisting of a repeated pattern of a few snare hits only. This is because the Hi-hat 
and the Kick parts in the loop are already sufficiently busy to satisfy the density target.  
The snare pattern, to our ears, complements the input rhythm in a musically appropriate and coherent fashion. 
 
The same settings without anticipatory timing produced the result heard in EnsembleNoAnticipation.mp3. As with the 
previous improvisation it is restricted to the snare. The snare pattern in this example is, to our ears, still interesting but 
less musically coherent than the example with anticipatory timing. 
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6. Conclusion 

 
We have described a method for assisting rule-based generative rhythm algorithms to produce more musical outcomes 
by anticipating possible future events and using this information as a constraint on committing to note generation (or 
early termination). We have examined previous computational approaches to generative rhythmic material and seen that 
the use of future context is very rare. This is somewhat understandable given the exponential increase in computational 
expense normally associated with searching future outcomes. This is a complex problem faced by many tasks, not just 
music, as we can see in the case of the Deep Blue chess playing system.  
 
Our approach to anticipatory timing uses substantial search tree pruning and limits look-ahead to one note, such that it 
allows for this approach to be practical in real-time generative music systems. We have provided examples of an 
implementation of this approach in the Jambot interactive music system that provide data that allow us to make 
provisional claims about the success of this approach in practical musical contexts. We conclude that the use of 
anticipatory timing provides an effective means for increasing musical salience with a tolerable increase in 
computational complexity. 
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