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Abstract. Projective measurements with high quantum efficiency are often
assumed to be required for efficient circuit-based quantum computing. We argue
that this is not the case and show that the fact that they are not required
was actually known previously but was not deeply explored. We examine this
issue by giving an example of how to perform the quantum-ordering-finding
algorithm efficiently using non-local weak measurements considering that the
measurements used are of bounded weakness and some fixed but arbitrary
probability of success less than unity is required. We also show that it is possible
to perform the same computation with only local weak measurements, but this
must necessarily introduce an exponential overhead.
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1. Introduction

The work of DiVincenzo [1] states explicit requirements for scalable circuit-based quantum
computing. Given the current state of the art, meeting these requirements in even moderately
sized systems is technologically challenging ([2] and references therein). With some more
modern implementations the criteria can be difficult to apply, but a certain reinterpreted set
of criteria will apply for any particular implementation [2]. DiVincenzo’s requirements consist
of five criteria: well-defined scalable qubits, the ability to prepare fiducial states, near-perfect
(below fault tolerant threshold) unitary evolution, access to a universal set of unitary evolutions
and near-perfect quantum measurement.

There exists an assumption that the measurement criteria require strong projective
measurements with near unit quantum efficiency to achieve the efficiency possible in quantum
computing [3]. This may seem reasonable considering that the proposed quantum algorithms,
which are efficient compared with the best-known classical algorithms, are presented with
measurements in the basis of the eigenstates of Hermitian operators. Furthermore, models of
quantum computing such as cluster state quantum computing [4] rely on strong measurements
to perform the state transformations required for achieving universal computation. However, as
DiVincenzo mentions [1], this is not a strict requirement and one can make trade-offs between
conditions in order to achieve scalable quantum computing. The important issue is whether,
when making a trade-off, algorithmic efficiency is lost.

This work was motivated by this brief observation of DiVincenzo to explicitly show a
non-trivial example of an efficient quantum algorithm that involves non-ideal and, in particular,
weak quantum measurements [5]. As a result, we hope to demonstrate in theory that, when
building a demonstration quantum computer based on the circuit model, a strong projective
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measurement for readout in the computational basis is not absolutely necessary. This is an
important consideration when constructing small- to medium-scale quantum computers as it
allows for an extra degree of freedom, which can assist in the the design of algorithms matching
the strength of the particular architecture used.

In this paper, we consider working in an architecture that is constrained in such a way
that the interaction strengths for the readout measurements will only vary over a very small
range and the time taken for the measurement is limited to small values to minimize the
effects of decoherence. Within this constraint there has been some work to speed-up the
measurement process by adapting the parameters as the measurement proceeds [6]. Here,
we consider working in a non-adaptive regime and allow for arbitrarily small (but bounded)
measurement strengths. As the information gained in each measurement is small the results
from any algorithm must necessarily be formed by processing over an ensemble. The situation
we consider is distinct from the situation found in bulk ensemble nuclear magnetic resonance
quantum computing [7], as we will still require the preparation of pure quantum states before
the computation.

This paper is organized as follows. In section 2, we describe weak measurements
following the standard presentation given in the recent literature. Then we review a specific
type of weak measurement on qubits, which differs slightly from the standard presentation
but would be useful for our purposes. In section 3, we describe how to use these weak
measurements in quantum computing, and give two specific examples of algorithms that
may utilize such measurements. The two examples are of the satisfiability and order finding
algorithms that, as we will show, lead to respectively inefficient and efficient use of weak
measurements in quantum algorithms. In the penultimate section, we discuss the potential
use of fault-tolerant constructions within this model and how using local weak measurements
generally results in an inefficient overhead. Finally, we present the conclusions drawn from our
results.

2. Weak measurements

Aharonov, Albert and Vaidman (AAV) [5] show how one can make a ‘weak’ measurement of
an observable A in which any single measurement outcome from the apparatus has very little
information about the value of A and is hence very noisy. However, averaging over a large
enough ensemble, this noise can be removed and averages of A can be recovered. It is possible
to construct the measurement such that the lower the amount of information gathered about A,
the less the system is disturbed. Quantum mechanics allows this disturbance to go to zero as the
information obtained about A goes to zero [8]. However, as the measurement becomes weaker,
larger ensembles are required to mitigate the effects of noise and maintain a desired precision
for the average of A.

AAV consider a measurement model with a system Hilbert space and a separate apparatus
Hilbert space that describes the measuring apparatus. The apparatus space is assumed to have
the same structure as a harmonic oscillator and the observable X will represent the measurement
outcomes and Px will be the generator of infinitesimal translations in X . The apparatus is
also assumed to be in an initial state that is Gaussian and separable from the system. The
system and apparatus are coupled by a Hamiltonian H = g A ⊗ Px , where A is the observable
that we wish to weakly measure and g is a scalar value that will be a factor in determining
the strength of the measurement. The observable A can be any observable on the system.

New Journal of Physics 13 (2011) 053024 (http://www.njp.org/)

http://www.njp.org/


4

A system that is strongly isolated will have small values for the coupling constants in the
Hamiltonian.

In the Heisenberg picture, the apparatus observable X evolves to X + gt A, where t is the
interaction time for the coupling between the system and the apparatus. Knowing the strength
and duration of the coupling and the initial state of the apparatus gives sufficient information
for the statistics of A to be calculated from the measurement results from the apparatus alone,
irrespective of the strengths of the interaction. However, weaker measurements will require
more measurements if some bound on the uncertainty in the statistical estimators needs to be
achieved.

2.1. Projector probability observables

Projection operators are valid observables. The expectation value of such a projector observable
is the modulus squared length of the component of the state within the subspace of the projector.
In other words, if the projector is constructed from the space spanned by eigenstates of an
observable with a particular eigenvalue, then the expectation value of the projector is the same
as the probability that a strong measurement of the observable would result in that eigenvalue
had it been made on the same ensemble. This idea of projectors as probability operators follows
naturally from the generalized theory of quantum measurement.

If one can make a weak measurement of this projector observable, then it is possible to
obtain this probability without actually having to actually perform the strong measurement of
the underlying observable or greatly disturbing the system.

Finding a system with a Hamiltonian of the right form for a projector observable might be
difficult, but one can use the quantum computing circuit model to construct a device that does
with both the system and apparatus being qubits [9]–[11]. This construction is not the same as
that considered in AAV, but of the same flavour. We will now describe this construction of a
qubit weak measurement of a projector observable.

2.2. The single-qubit measurement model

Consider a measurement with both the system and apparatus Hilbert spaces being a single qubit.
The system is assumed to be prepared in an arbitrary state |9〉 and the apparatus is prepared in
a pure state cos θ |0〉 + sin θ |1〉 uncorrelated with the system (i.e. a separable state). Instead of
specifying a Hamiltonian we will specify the coupling of the system and apparatus by a unitary
gate, in particular the controlled NOT (CNOT) operation. Finally, the apparatus will be observed
with the Z = |0〉〈0| − |1〉〈1| observable. This configuration is depicted in black in figure 1.

If the Z measurement of the apparatus is propagated back through the CNOT
(cf the Heisenberg picture), then the final measurement of the apparatus is equivalent to a
measurement of Z ⊗ Z on the system and the apparatus before the interaction. In other words,
the measurement is equivalent to a measurement of the parity subspace on the combined input
state. If the system state is written as |9〉 = α|0〉 +β|1〉, then the probabilities for the two
measurement results will be

P(+)= |α|
2 cos2 θ + |β|

2 sin2 θ, (1)

P(−)= |α|
2 sin2 θ + |β|

2 cos2 θ. (2)
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Figure 1. Model of a qubit-based weak measurement. An apparatus (the lowest
shown qubit) is prepared in the state cos θ |0〉 + sin θ |1〉 and measured in the
Z basis after interacting with the system (the upper qubits) prepared in an
arbitrary state |ψ〉. The black lines show the case of a single-qubit weak
measurement in which the interaction between the system and the meter is of the
form of a singly-controlled NOT gate. The black and grey lines combined show
the general many-qubit case of a multi-controlled NOT gate. The weakness of
the measurement is determined by the parameter θ , where when cos θ = 1 the
measurement is strong and equivalent to a projective measurement and when
cos θ = 1/

√
2 the measurement is completely turned off. See the text for details.

From these equations it is possible to see that for θ = 0, the measurement output will be
equivalent to a projective Z measurement on the system. For θ = π/4, the output will give
either result with equal probability independent of the system state. It is possible to show that
when θ = π/4 the state of the system is undisturbed. This is unlike the AAV model in which the
strength of the interaction is tuned not only from the initial meter state, but also by the strength
of the interaction in the Hamiltonian and the interaction time. Here the full range of possible
measurement strengths are achieved by tuning the initial meter state. However, one can think of
this model as a Z measurement on the system of AAV type.

The average value of Z can be found from the expectation value of the function Z̃
defined by

Z̃(x = +)=
1

cos2 θ − sin2 θ
, (3)

Z̃(x = −)= −
1

cos2 θ − sin2 θ
, (4)

where x is the meter measurement result. This function is well defined for θ ∈ [0, π/4). The
variance of this function on a single measurement is given by

1

(cos2 θ − sin2 θ)2
− (|α|

2
− |β|

2)2. (5)

The variance can be understood as having a contribution of (cos2θ − sin2θ)−2
− 1 from the

variance due to the weakness of the measurement that can be infinitely large and 1 − (|α|
2
−

|β|
2)2 from the variance of the system state that is at most 1. For weak measurements the

variance in the output is dominated by the variance due to the weakness of the measurement.
This statement can be taken as a quantitative definition of measurement weakness.
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It is possible to make a measurement of the expectation value of the projector onto the +1
subspace of the Z operator by the same apparatus but calculating the expectation value of the
function

5̃Z(x = +)=
1

2
+

1

2(cos2 θ − sin2 θ)
, (6)

5̃Z(x = −)=
1

2
−

1

2(cos2 θ − sin2 θ)
, (7)

which has a mean of |α|
2 for all θ values except π/4 and a variance of

1

4(cos2 θ − sin2 θ)2
−
(|α|

2
− |β|

2)2

4
. (8)

A similar analysis of the contributions to the variance can be done as above.

2.3. Multi-qubit measurements

It is possible to extend this construction to build a larger class of weak measurements of
projectors using multiply-controlled NOT gates. This configuration is depicted in the combined
black and grey schematic in figure 1. Multiply-controlled NOT gates can be built efficiently
using O(n2) singly-controlled gates and local unitaries [14]. A measurement of Z on the meter
after the interaction is equivalent to a measurement of the operator

P̂⊥ ⊗ |0〉〈0| + |111 · · ·〉〈111 · · ·| ⊗ |1〉〈1|

−P̂⊥ ⊗ |1〉〈1| − |111 · · ·〉〈111 · · ·| ⊗ |0〉〈0|

(9)

on the system and meter Hilbert spaces before the interaction, where P̂⊥ is the projector onto
the subspace that is the complement of the all ones subspace (i.e. the subspace that is spanned
by all the qubit basis states except |1111 · · · 1〉).

If the apparatus is prepared as in the case with a single control and the system is in the state
|ψ〉, then the probabilities of the two outcomes of the apparatus measurement are

P(+)= 〈ψ |P̂⊥|ψ〉 cos2 θ + |〈111 · · · |ψ〉|
2 sin2 θ, (10)

P(−)= 〈ψ |P̂⊥|ψ〉 sin2 θ + |〈111 · · · |ψ〉|
2 cos2 θ. (11)

This distribution is the same as that with the singly-controlled CNOT gate, but with the
probabilities for the qubit in the system being in the one state replaced by the expectation values
of the projectors onto the space with all ones. The mean and variances as calculated above also
follow this replacement of variables. Therefore, the nature of the statistics does not change as
the input size of the system Hilbert space increases.

2.4. Measuring probabilities in the computational basis

This model can also be used to measure the expectation value of projectors onto any
one-dimensional subspace generated by a particular computational basis state by placing
X = |0〉〈1| + |1〉〈0| gates before the measurement to transform the desired subspace into the
all ones subspace.
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The value of the probability can be read out from the data collected at the meter by
calculating the expectation value for the estimator of the average of the projection operator
given above. Using the assumption of a weak measurement and large sample sizes, we can apply
the central limit theorem to the estimator for the probability to calculate the uncertainty in the
estimate of the expectation value. With some fixed error probability ε the estimate confidence
interval is symmetric around the mean value and has width

2
√

2
σ

√
M

erf−1 (1 − ε)6
erf−1 (1 − ε)

√
2M(cos2 θ − sin2 θ)

, (12)

where σ is the standard deviation of the measurement results, M is the number of measurements
made and erf is the standard error function.

Measuring the projectors spanned by multiple computational basis states can be simplified
for some particular combinations of states. If the states contain all combinations of particular
qubits with all other qubits constant, then the qubits that vary can simply be not measured.
However, if even a single qubit combination is missing, then each combination must be
measured separately.

3. Algorithms with weak measurements

In this section, we describe quantum computing algorithms in terms of the expectation values
and decision problems, but analyse the complexity by restricting ourselves to the qubit weak
measurement just described.

3.1. Algorithmic complexity

It is assumed that there is some (presumably small) fixed error tolerance allowed for the
computation as a whole. For algorithms utilizing the weak qubit measurement readout just
described, the temporal computational complexity is then determined by the number of
repetitions required to achieve this error value. If under these conditions the quantum algorithm
has a polynomial temporal complexity, it lies in the BQP complexity class (the class of practical
quantum problems).

We are going to assume that the strength of all measurements is well known and greater
than some fixed constant value. Hence, a worst-case value is known for the uncertainty in
the output measurement statistics, and we will assume that this worst-case value is the actual
estimate of the uncertainty. We are also going to assume that sample sizes are large enough
for the central limit theorem to apply. We are not going to be dealing with any distributions in
which the central limit theorem is not valid. These assumptions combined allow the variance of
the sample mean to be computed and hence a signal-to-noise ratio involving the estimated mean
and the worse-case standard deviation can be used to infer the maximum probability of error
inherent in the computation.

3.2. Satisfiability with expectation values

The satisfiability problem is defined as identifying whether a logical statement described by
a Boolean function f has a set of inputs that result in the function evaluating be to true.
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If the function represents a conjunction of logical statements (the inputs), then the statement
(the output) is said to be satisfied by the particular combination of truth values used to achieve
this output. This problem lies in the class of decision problems.

Cory et al [12] construct a quantum algorithm for solving the satisfiability problem. In that
paper, they assumed that the standard model of quantum computing is enhanced by special
measurements that can extract expectation values of observables for a single instance of a
quantum state in an error- and noise-free way. Their work was motivated by the nuclear magnetic
resonance quantum computing model, so this type of measurement involving ensemble averages
is a natural consequence of the output signals from that type of computation. They then show
that given an equal superposition of all possible logical inputs onto the function, of which there
are 2n possibilities, a unitary that implements f can be built efficiently and evaluates all of
these possibilities coherently in superposition. The unitary is built so that the output value of
the function is written onto another qubit register, which is zero if the input does not satisfy the
statement and one if it does. The expectation value of the output register is then obtained using
the special measurement that they added as described above. If the expectation value is non-zero,
then the logical statement is satisfiable. Although this does not say which input will satisfy the
function, it does show that such a satisfying input exists. Provided one has this enhancement
that allows for the immediate extraction of expectation values, this is a method of solving an
NP-complete problem (i.e. satisfiability) deterministically in polynomial time.

This result is possible only when neglecting the noise in the output of such a measurement.
If one requires this measurement to be a standard quantum measurement rather than the special
one used, then the complexity will change as more measurements are required to counter the
effects of the noise. Consider the possible case where only a single particular input satisfies
the function (as is possible for any size satisfiability problem). A measurement that determines
satisfiability then needs to distinguish between two cases, the case of being unsatisfiable and the
output register is in the state |0〉 and the case of having a single satisfying input and the output
register is in the state (1 − 2−n)|0〉〈0| + 2−n

|1〉〈1|. The distinguishing property of these two states
is the probability of measuring the output register in the state |1〉. Therefore, the readout must
estimate a probability of size 2−n, and if the number of measurements made, M , is large, then,
as the output is binomially distributed, the noise in the estimate of the probability approaches
2−n/2/

√
M . Hence, the signal-to-noise ratio decreases exponentially in the size of the input.

This overcomes the apparent speed-up offered by the enhanced model of quantum computing
considered as the sample size needed to achieve a particular probability of error in the decision
problem will increase exponentially. This overhead due to the nature of quantum measurements
applies to all types of possible readout measurements, be they weak measurements or not.

As we show next, not all useful ensemble averages from the output of quantum
computations necessarily have this problem.

3.3. Order finding with expectation values

The order finding problem is a critical part of the quantum prime factorization algorithm [13].
The definition of the order finding problem is: given positive integers N and x < N , find the
least positive integer r such that xr

= 1(modN ). This problem is an instance of the hidden
subgroup problem, which is a more general class of problems [14]. The problem of factoring
integers can be reduced to this problem [14]. Currently, the best-known classical algorithms
have exponential complexity.
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Figure 2. An example distribution of output values for the denominator register
when the order is known to be 432. If the order is prime, then all of the probability
is concentrated at the highest value.

The quantum order finding algorithm utilizes a quantum modular exponentiation operation
defined by the unitary

Ux,N = |y〉 = |xy(modN )〉, (13)

which can be done efficiently using O(n3) gates where n is the number of bits needed to
represent integers up to N . The eigenvalues of this unitary are exp(2π is/r), where r is the order
of N and s is an integer satisfying 06 s < r which labels each of the eigenstates. Therefore,
performing a quantum phase estimation on an eigenstate of the modular exponentiation
operator is a method of finding information about the order of x [14]. However, preparing the
eigenstate would require that the order of the integer of interest be known already. Therefore, a
superposition state of all possible eigenstates is used. This state happens to be equal to a state
that is the representation of the multiplicative identity in the computational basis. Therefore, the
output of the order finding algorithm is a phase φ = s/r , where r is the order that we desire
and s is equally distributed among the allowed values. The continued fractions expansion of φ
allows for the computation of values for r . However, if s and r share a factor, then this method
will give the value of r with this factor divided out. This is then not the order that was desired
but a factor of the order.

For a randomly selected value of s, the probability that it is prime for large values of N is
at least and will asymptotically approach

1

2 log N
>

1

n(2 log 2)
. (14)

This guarantees that there will be some probability that the correct answer is contained within
the output and that this probability drops as �(n−1) with the size of the problem. An example
of the distribution for values of r read out from the continued fractions algorithm is shown in
figure 2.

We are now in a position to describe the quantum order finding algorithm using only
weak measurements. The procedure that will be described here is also shown schematically in
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Figure 3. Schematic diagrams showing the difference between the strong
(a) and weak (b) measurement versions of the ordering finding algorithm. FT
represents the Fourier transform unitary and the unitary Ux,N is defined in the
text. S and W represent strong and weak measurement readout, respectively.
The continued fraction algorithm as utilized for this order finding algorithm
has two outputs, the numerator represented by s and whose information is not
utilized and the denominator register represented by r . They key distinction is
that in this presentation the continued fractions algorithm is performed quantum
mechanically in the weak measurement version.

figure 3. Firstly, build the order finding algorithm as done for projective readout measurement,
but do not measure the register containing the phase φ = s/r result. This requires no projective
measurements, only good state preparation and precise unitary evolution. Secondly, implement
the continued fractions algorithm and calculate the rational convergent on the s/r register in the
computational basis quantum mechanically using a construction based on universal reversible
gates [14]. This construction requires no measurement or feed-forward, but does require multi-
qubit conditional unitaries. This shifts O(n3) classical gates to quantum gates and represents
part of the overhead to this method. Tracing over the numerator, the reduced density operator
for the convergent’s denominator register will be

p|9〉〈9| + (1 − p)ρ̂e, (15)

where |9〉 is the state of the denominator register representing r (the result). ρ̂e is a density
operator orthogonal to |9〉 representing those terms when the numerator had a common factor
with the denominator. The standard procedure for the readout is to make a strong projective
measurement on this state in the computational basis to read out a result, test to see if it is a
solution and repeat the algorithm (possibly modified) if the order is found not to be correct
but a factor of the order. Here, we wish to only use weak measurements to extract the answer.
It is clear that the largest value of any component from the denominator register will be the
order we are seeking and not merely a factor of the order. Therefore, we propose to extract the
register state with the largest numerical value through a bi-sectional search on the properties of
denominator register using ensemble averages.

The bi-sectional search proceeds by a series of decision problems. The problems
form the answer bit by bit, generating the largest value with non-zero probability from
the most significant bit to the least significant bit. These probabilities are extracted by
estimating expectation values via repeated measurements of carefully selected projectors on
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the denominator register ensemble as we will now detail. Consider the projector onto the space
containing a logical one state for the most significant qubit of the denominator register and all
other registers allowed any value. This projector is

5̂1... =
1
2(Z − I )⊗ I ⊗ I ⊗ . . . . (16)

If the average of this projector was non-zero, then it is known that the largest numerical value in
the computational basis for the denominator register state has its most significant bit as a 1.
If the average is zero, then the largest value must have a zero for the most significant bit.
This procedure is this repeated for the next most significant bit using the appropriate projector
adapted from the previous result. For example, if the most significant bit was a zero, then the
next measurement to be made would be

5̂01... =
1
2(Z + I )⊗ 1

2(Z − I )⊗ I ⊗ . . . , (17)

or if it was a one, then the next measurement is

5̂11... =
1
2(Z − I )⊗ 1

2(Z − I )⊗ I ⊗ . . . . (18)

This continues for each bit and when all have been read out the largest value with non-
zero probability for the register is known. At each step, the projector representing the space
containing the answer has its dimension halved; however, the size of the expectation value is
bounded by the probability given in equation (14). An illustration of how the bi-sectional search
works is shown in figure 4.

To achieve an overall algorithmic error probability less than ε, the error probabilities for
each bit readout measurement must be less than ε/n. This is because if the probability of failure
for one run is ε ′, then the overall probability of failure is 1 − (1 − ε ′)n < nε ′ and hence nε ′ < ε.
If we invoke the central limit theorem as foreshadowed above and assume that the estimator
for the mean is normally distributed with a variance of σ 2

0 /n with σ0 being the variance in a
single outcome and we are deciding between two means of s0 and s1 (which we will call the
signal), then we define SNR0 = |s1 − s0|/σ0. Here we are assuming that the variance from the
two distributions is equal. We can do this by choosing a worse-case variance as described above.
Taking a threshold halfway between the two signal values, the probability of making an error is

Perror = 1 −8

(
SNR0

√
M

2
√

2

)
, (19)

where 8 is the cumulative distribution function of the standard normal distribution. We require
this probability to be less than ε ′

= ε/n. The number of samples required to meet the error
budget must therefore satisfy

M =

[
2
√

2

SNR0
erf−1

(
1 −

2ε

n

)]2

, (20)

which scales poly-logarithmically in n for the bi-sectional search algorithm. To prove this
scaling, rearranging this expression gives

erf

(
SNR0

√
M

2
√

2

)
= 1 −

2ε

n
, (21)
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Figure 4. An illustration of the steps involved for the bi-sectional search for
the readout of the largest value of the register with non-zero probability. The
distribution chosen is the same as figure 2; hence, the answer read out should
be a binary representation of 432 (110110000). Initially, the most significant bit
is weakly measured, the remaining qubits are not measured and their values are
not yet known. This state of knowledge is shown in the title of the plot of part
(a) with # representing unknown information that is not to be measured and ?
representing unknown information that is currently being measured. The weak
qubit measurement described in the text is used to determine whether there is
any probability of the most significant bit value being one. The measurement
is equivalent to determining whether there is any probability on the right-hand
side of the plot as shown by the central dividing line. If there is any probability
that the state is one (as is the case here), then the measurement proceeds to
determining whether there is any probability in the output where the two most
significant bits are |11〉, as depicted in part (b). If it was determined that there
was no probability that the most significant bit was one, then the measurement
proceeds to determining whether there is any probability in the output where the
two most significant bits are |01〉. In either case, if there is a probability that the
second most significant bit is one, then the state is kept and the search continues
to the next most significant bit. If there is zero probability, then the bit being
determined is flipped (e.g. |11〉 → |10〉) and the search then continues. This is
repeated until all qubits are measured and the final readout value will be the
largest non-zero probability value within the qubit register. If there are n qubits,
then this procedure has n steps.
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which is equivalent to

ε

n
=

1
√
π

∫
∞

SNR0
√

N/2
√

2
e−t2

dt. (22)

For M sufficiently large (in particular SNR0

√
M > 2

√
2),∫

∞

SNR0
√

M/2
√

2
e−t2

dt <
∫

∞

SNR0
√

M/2
√

2
e−t dt

= e−SNR0
√

M/2
√

2. (23)

Therefore,

n > ε
√
πeSNR0

√
M/2

√
2 (24)

or rearranging

√
M <

2
√

2

SNR0
(log n − log ε

√
π), (25)

and therefore [
2
√

2

SNR0
erf−1

(
1 −

2ε

n

)]2

= O(n log(n)2), (26)

where we have used the �(n−1) scaling of SNR0 from equation (14). Therefore, the number of
total weak measurement samples needed in the algorithm is �(n log(n)2).

This requirement to make poly-logarithmically extra samples forms another part to the
overhead of this procedure. Furthermore, the multiplying factor in the scaling will depend on
the weakness of the measurement which may be large for very weak measurements. However,
none of the overheads introduced in this presentation scale exponentially in the size of the input.

4. Discussion

4.1. Local weak measurements

Resch and Steinberg [15] have shown that it is possible to extract non-local weak values
from local weak measurements. Therefore, one might be tempted to measure the multi-qubit
expectation value using local single-qubit measurements instead of the non-local measurements
used here. However, this does introduce an inefficient overhead.

In general, measuring an n-qubit output will need to have estimates of the expectation
values for observables of the form A1 A2 · · · An. When observing the correlations in the local
meter readouts to estimate this value, the variance of the correlation constructed from all the
meters is

var(X1 X2. . .Xn)o = 〈(X1 X2. . .Xn)
2
〉o − 〈X1 X2. . .Xn〉

2
o, (27)

where X represents the meter observables as per section 2 and the subscript o is a reminder that
this description is for measurements at the meter output. If each meter is initialized separately
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with a mean of zero and a variance of σ 2, then the variance at the meter output in terms of the
inputs becomes

var(X1 X2 · · · Xn)o = 〈(X1 + γ A1)
2(X2 + γ A2)

2
· · · (Xn + γ An)

2
〉i − γ

2n
〈A1 A2 · · · An〉

2
i (28)

= σ 2n + γ 2σ 2(n−1)
n∑

k=0

〈A2
k〉i + γ 4σ 2(n−2)

n∑
k=0

n∑
l=0

〈A2
k A2

l 〉i + · · · + γ 2n

×var(A1 A2 . . . An), (29)

where we have used the commutativity of the different subsystems to rearrange terms and
statistical independence of the meters and the meter and system to remove terms. This
expression has a scaling of O(σ 2n) from the first term on the right-hand side which is
independent of the actual signal from the system observable. Therefore, the SNR0 term
decreases exponentially, introducing an inefficient overhead.

Observables of the type just mentioned are observed locally in the standard presentation
of quantum computing algorithms using strong measurements. Clearly there must be a point
of transition in the initial variance of the meter states compared to the measurement strength
where the exponential scaling term from the meter noise does not play a significant role in the
data extraction. This quantity will be dependent on the observables needed and hence the type of
algorithm being implemented. For example, a fault-tolerant implementation would have a point
in which the noise scaling decreases as the size of the observables rises, rather than increasing
as is the case for this simple example.

Another possible way to avoid this problem of local weak measurement introducing an
exponential overhead is to break the requirement of local preparation of initial meter states. If the
initial meter state was correlated, then the equality reached above would change significantly.
If the right state is chosen for the observable of interest, then it may be possible to avoid the
exponential scaling.

Other works on non-local weak measurements in a completely different context have also
found that estimating non-local correlations is inefficient and requires large ensembles [16, 17].
So it appears that for efficient quantum information processing with weak measurements, non-
locality is strictly required. This means that schemes for extracting conditional expectation
values using informationally complete but not full strength measurements [20] cannot be used
to perform efficient computation.

4.2. Decoherence times

One may argue that the weakness of the readout and the length of time for the output for the
algorithm counteract one another. However, this is not true for the algorithm presented here
as the algorithm is rerun, qubits are reprepared and the unitary evolution is run again, which
removes any of the effects of previous decoherence. Hence, the important time to consider is
decoherence over the time taken to execute all the operations needed to run the algorithm in
total as is the case for strong measurements. With the standard model of weak measurements
(as presented here and in [5]) the interaction time for a weak measurement is much smaller
than that for the corresponding strong measurement and hence could act to reduce the effects of
decoherence.
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4.3. Fault tolerance

Fault tolerance encoding, evolution and decoding can still be performed if the final
measurements are not strong measurements. For the CSS class of quantum codes, one can avoid
using measurements completely and still achieve fault tolerance [18]. Doing so involves some
penalty in the fault-tolerant threshold, but as shown recently this penalty is not as great as has
been believed previously [19].

4.4. Implications for the experimental implementation of quantum computing

This result suggests that in the pursuit of preliminary or proof-of-principle quantum computing
experiments, strong-isolation and high-fidelity operations are where effort should focus
provided one has the ability to read out data even if very noisy. For the order finding algorithm
presented here, having a weak readout does not harm the efficiency of quantum computing.
Increasing the strength of the readout clearly has an advantage in the rate at which computation
can occur, but this should not be done to the detriment of the ability for the data to be preserved
within the quantum computer to complete the computation.

5. Conclusion

We have outlined how weak measurements in quantum computing can be modelled theoretically
and modified a quantum algorithm using this model in such a way that the computational
efficiency of performing the algorithm quantum mechanically is maintained. The requirements
on state preparation and control over the evolution are the same as for any other model of
quantum computation. This may be able to assist in the technological challenge of building
demonstration quantum computers.
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