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Abstract: 
We show how the first order statistic, i.e. the histogram, 

of the wavelet filtered image is related to the higher order 
statistic of the original image. We then propose a texture 
classification method that uses the histogram information of 
the filtered images as the feature vector. Classification 
experiments show that the proposed method achieves better 
classification result than the Gabor wavelet filtering method 
using only the mean and standard deviation of the absolute 
filtered images as feature vectors. 
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1. Introduction 

Texture perception is an important part of vision since 
objects can often be distinguished by their characteristic 
textures despite their similarity in colors or shapes. With 
the advent of digital storage media, the use of textural 
information in performing content-based image retrieval 
from digital image library has become indispensable. 

Most texture analysis methods can be categorized into 
either statistical approach or structural approach. The 
statistical approach attempts to use the statistical properties 
of the spatial distribution of grey level as texture 
descriptors. The structural approach, on the other hand, 
conceives of texture as an arrangement of a set of spatial 
sub-patterns or texture primitives according to some 
placement rules. Recently, wavelet filtering-based methods 
are being proposed for texture analysis and classification. 
In this paper, we discuss two well-known statistical texture 
classification methods, called the spatial grey level 
dependence (SGLD) method [1] and the wavelet filtering 
method [2, 6] and point out the underlying relationship 

between these two methods. We then propose a new 
classification method that combine features from these two 
methods and give experimental results to illustrate its 
performance. 

2. Texture Classification Methods 

The SGLD method is based on the estimation of the 
second-order joint conditional probability distribution  
p(i,j|d,θ) where each p(i,j|d,θ) is the probability of going 
from the grey level i to the grey level j given the inter-
sample distance d and the direction in angle θ. This method 
was inspired by the extensive psychovisual texture 
discrimination studies which showed human are sensitive to 
the second-order statistical variation in texture [5]. To 
characterize a texture adequately, a set of inter-sample 
distances and directions is generally used [1].  

If the grey level range is quantized into N levels, then 
each (dk,θk) will produce an N×N co-occurrence matrix. 
Instead of using these matrices directly, a number of 
parameters, e.g., angular second moment, contrast and 
entropy, are usually computed from each of these matrices 
and are used as texture descriptors. However, this 
inevitably reduces the discriminative power of the SGLD 
method. In addition, these parameters are usually proposed 
in an ad hoc manner and may be suboptimal. 

In the wavelet filtering method, each wavelet filter at a 
particular orientation produces an output image with 
localized spectrum at different location in the frequency 
plane. The localized spatial-frequency resolution of the 
wavelet function allows a local analysis of the image at 
different frequency resolution. The mean μ and standard 
deviation σ of the absolute image are usually calculated 
from each of the output images and are used as texture 



 

 

descriptors ([2] uses both μ and σ where as [6] uses only μ) 
. 

Since many image structures, i.e., directionality, 
periodicity, and coarseness, and their properties can be 
inferred from the local spectrum, the wavelet filtering 
method can produce meaningful texture descriptors 
describing these image structures. However, in attempting 
to characterize the local spectrum using only two 
parameters  μ and σ, much useful information are lost. 
Moreover, unlike the SGLD method, this method does not 
appear to relate to the extensive psychovisual texture 
discrimination studies. 

3. First Order Statistics of the Filtered Image 

We focus our attention on the 1-D case for clarity of 
presentation although the analysis extends directly to 2-D. 
Let  ,…,   be the coefficients of an N-tap filter. For 
a discrete 1-D signal f of length L, the convolution of the 
filter and the signal can be written as  
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where we assume that the signal has been reflected about 
the origin. Let F and Y be the random variables associated 
with the input image and the filter output respectively. 
Clearly, the range of value for Y is dependent on the range 
of grey level value R(F) of the input signal and the filter 
coefficients. The probability that Y assumes a particular 
value, say, yi, is then given by 
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where , , … , . In terms of the N-order 
joint conditional probability, 
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where the inter-sample distance dk denotes the distance 
between sample k-1 and sample k. Note that the subscript of 

f in (2) and (3) is not a time index but rather denotes the 
relative position of the elements in the signal vector f with 
respect to the filter coefficients. For N = 2, (3) becomes 

 
∑ , | 1  

 (4) 
 
Let M be the co-occurrence matrix with elements 

p(f0,f1|d1=1) and with the x and y-axis labeled by the 
random variables F0 and F1 respectively. Then (4) implies 
that the probability of the filter output Y=yi is given by the 
sum of the elements of the co-occurrence matrix M lying on 
the straight line with gradient given by ⁄ , 

 
     (5) 

 
Similarly, for N=3, the probability of Y=yi is given by 

the sum of the elements of a 3-D joint conditional 
probability matrix lying on the plane 

 
    (6) 

 
Thus, the first-order statistics, i.e., the histogram, of a 

signal filtered by a 2-tap filter provides a description (i.e. 
histogram of the sum of elements of M at parallel lines with 
gradient ⁄ ) of the second-order statistics, i.e., the co-
occurrence matrix, of the original signal. In general, given 
an N-tap filter with N non-zero filter coefficients, the first-
order statistics of the filtered signal provides a description 
of the N-order statistics of the original signal. The filtering 
operation therefore produces a statistical simplification of 
the original signal. It should be noted that while the first-
order statistics of the filtered signal can be obtained from 
the higher order statistics of the original signal, the 
converse is not true. 

The above analysis shows how the filter outputs are 
related to the higher order statistics of the original image. 
So rather than trying to summarize the N-order statistics of 
the original image with simple statistics such as μ and σ, 
the complete histogram of the filtered image would provide 
better discriminating power. Although the above discussion 
is applicable to any filtering scheme, the wavelet filtering 
scheme does have some advantages. Firstly, the localized 
spatial-frequency support of the wavelet functions enables 
local analysis of texture elements. Secondly, the wavelet 
multiresolution framework allows texture to be analyzed at 
different resolution in a consistent manner. 



 

 

4. Proposed Classification Method and Results 

In the proposed method, a texture image is first 
filtered with a set of cortex wavelet filters [4] tuned to 4 
orientations and 4 scales. A schematic of the spatial 
frequency plane division of this filter is shown in Fig. 1. 

  

 
Fig. 1: Spatial frequency plane division of the cortex wavelet 

filters. The scales are in octave, orientation in 45o. 
 
After filtering, the grey level cumulative density 

function (cdf) of each filtered image is computed and the 
grey levels corresponding to the 0.1k (k=1 to 10) 
probability of the cdf are used as the texture features. The 
features from the 16 filtered images, together with the 
features from the original image, the low-pass and high-
pass residues which are obtained similarly, are 
concatenated to form the raw feature vector for the texture 
image.  

We performed a classification experiment in which the 
task is to assign a test image to one of the known texture 
classes. We collected 35 512×512 images consisting of 33 
classes from the Brodatz texture set [5]. Images of size 
128×128 are extracted from these larger images and 
randomly rotated, and 10 images from each class are used 
for training while 30 images from each class are used for 
testing. Some of the test images are shown in Fig. 2. 

 

 

  

 

 

 
Fig. 2:  Some test images obtained from [7]. Left to right, top to 
bottom: Grass, Bark, Straw, Woolen cloth, Herringbone weave, 

Pressed calf leather, Beach sand, Water, Wood grain, Raffia, 
Pigskin, Brick wall, Plastic bubbles. 

 
For the training phase, the raw feature vector for each 

training image is first computed. The raw feature vectors 
then undergo Principle Component Analysis (PCA) 
followed by Linear Discriminant Analysis (LDA) [3]. 
During PCA, only the 80 most significant elements of the 
feature vector corresponding to the 80 largest eigenvalues 
are kept. At the LDA stage, the length of the feature vector 
is further reduced to 10. Finally, the class centroids are 
computed from the feature vectors. 

During testing, the feature vector of the test image is 
projected onto the PCA and LDA spaces using the 
projection matrices obtained at the training phase. The 
resulting feature vector x is then compared to the class 
centroid ci using the following distance metric,  

, ∑         (7) 

where  is the standard deviation of the jth element 
in the class centroid ci of class i. For comparison, we also 
performed the classification experiment using the Gabor 
wavelet filtering method as in [2]. Let the Gabor wavelet 
transform of an image I(x,y) be given by 

 , , ,  (8) 

where  is the Gabor wavelet at scale m and orientation 



 

 

n. The μmn and σmn is given by 
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In [2], m and n are chosen to be 4 and 6, respectively, 
giving a total of 24 filtered images. This gives a feature 
vector of length 48. To allow a direct comparison, the 
Gabor texture feature vectors also undergo PCA and LDA 
to give a final length of 10 and use the same distance metric 
as in (7). Table 1 presents the average classification 
performance of each class for both methods. The overall 
average classification performance of our approach and 
Gabor approach are 98.4% with standard deviation of 3.9 
and 92.8% with standard deviation of 9.6 respectively. 
Thus, with a smaller standard deviation, our approach is 
more robust and reliable. 

5. Conclusions 

We presented the theoretical basis for using the 
histograms of the wavelet filtered images as texture 
descriptor and showed its relationship to the spatial grey 
level dependence matrix when the number of filter tap 
equals to 2. Experimental results and comparison with the 
well known wavelet based texture classification method of 
Manjunath [2] have shown the feasibility and robustness of 
our approach. The histogram of the wavelet filtered images 
is able to provide rich description that better characterizes 
the texture than the simple mean and standard deviation of 
the absolute image. The method developed can be used to 
perform image region segmentation. 
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TABLE 1.  AVERAGE CLASSIFICATION PERFORMANCE (%)  

Class Our method  Gabor filtering 
1 100 93.3 
2 100 100 
3 100 100 
4 100 100 
5 100 51.7 
6 96.7 86.7 
7 100 100 
8 100 96.7 
9 100 96.7 
10 100 100 
11 100 93.3 
12 100 100 
13 100 96.7 
14 100 100 
15 96.7 86.7 
16 93.3 100 
17 100 86.7 
18 96.7 96.7 
19 100 100 
20 96.7 76.7 
21 100 90 
22 100 90 
23 100 100 
24 100 100 
25 93.3 93.3 
26 80 83.3 
27 100 100 
28 100 96.7 
29 100 93.3 
30 100 100 
31 100 100 
32 93.3 100 
33 100 86.7 

Average 98.4 (s.d=3.9) 92.8 (s.d=9.6) 
 


