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Abstract. Code equivalence is a basic concept in coding theory. The well-known theorem

by MacWilliams gives a sufficient condition for code equivalence. Recently the MacWilliams

theorem has been generalized, by Fan, Liu and Puig, making use of the generalized Hamming

weights (GHWs). In this paper, we will present a further generalization of the MacWilliams

theorem. Our result extends both the MacWilliams theorem and the result by Fan, Liu

and Puig. We will first define “relative subcodes” of a linear code, based on the relative
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establish a method based on finite projective geometry to characterize relative subcodes.

Using this method, we will prove our main result.
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1 Introduction

Code equivalence is a basic concept in coding theory. The well-known theorem

by MacWilliams [9, 10] has established a sufficient condition for code equivalence.

The theorem shows that any isomorphism between two linear codes preserving the

Hamming weight is an equivalence of the codes, where “isomorphism” is a one-to-one

correspondence preserving linearity between two vector spaces (here linear codes are

viewed as vector spaces).

Two codes which are equivalent have many common properties; for instance, they

have the same weight distribution and the same support weight distribution of sub-

codes. In particular, equivalent codes have the same generalized Hamming weights

(GHWs) [14] and the same relative generalized Hamming weights (RGHWs) [8]. In

addition, there is an obvious one-to-one correspondence between the sets of the mini-

mal codewords of equivalent codes; and thus equivalent codes can be used to construct

the same secret sharing scheme [6].

Code equivalence and the MacWilliams theorem have been extensively studied.

Bogart et al. [1] and Ward et al. [13] have given different proofs to the MacWilliams

theorem. Wood [15, 16] has generalized the MacWilliams theorem to the Frobenius

rings, and characterized the Frobenius rings by using code equivalence. Making use

of the GHWs, Fan, Liu and Puig [4] have established a new code equivalence. Their

result shows that any isomorphism φ between two k-dimensional linear codes C and

C ′, which preserves the support weights of all t-dimensional subcodes for some t (where

0 < t < k), is an equivalence of C and C ′. As the Hamming weight of a codeword is

a special case of the support weight of a t-dimensional subcode, this result obviously

has generalized the MacWilliams theorem.

In the present paper, making uses of the RGHWs, we will further generalize the

MacWilliams theorem. Our result extends both the MacWilliams theorem and the

result in [4]. The rest of the paper is organized as follows. In Section 2, preliminary

definitions and notations will be given. In Section 3, a tool for proving our main result

will be established, which is based on finite projective geometry. The main result is

presented in Section 4. In Section 5, the proof of the main result will be given. The

concluding remarks will be given in Section 6.

2 Preliminaries

Two linear codes C and C ′, with the same length n over a finite field GF (q), are

called equivalent, if there exists a one-to-one correspondence, φ : C → C ′, defined as

φ(x1, · · · , xn) = (v1xπ(1), · · · , vnxπ(n)), ∀ (x1, · · · , xn) ∈ C, (1)

where π is an arbitrary permutation of {1, 2, · · · , n}, and v1, · · · , vn are arbitrary fixed

nonzero elements of GF (q). A one-to-one correspondence defined by (1) is called a
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monomial transformation.

Obviously, a monomial transformation φ : C → C ′ is an isomorphism (i.e., one-

to-one correspondence preserving linearity between two vector spaces) that preserves

the Hamming weight of each codeword of C. On the other hand, the well-known

theorem by MacWilliams [9, 10] shows that, any isomorphism φ : C → C ′ preserving

the Hamming weight of each codeword of C is a monomial transformation; and thus

C and C ′ are equivalent.

Assume that C is an [n, k] linear code over GF (q). For any subcode D of C, the

support χ(D) of D is defined as the set of positions where not all the codewords of D

have zero coordinates.

Definition 1. The support weight (also called effective length ) w(D) of D is defined

as the size of χ(D), that is, w(D) = |χ(D)|.

Definition 2. [14] The generalized Hamming weights (GHWs) of C are a group of

parameters (d1, d2, · · · , dk), where

dr = min{w(D) : D is an [n, r] subcode of C}, 1 ≤ r ≤ k.

In particular, d1 is the minimum distance of C, and dk is the effective length of C.

Based on the GHW, Fan, Liu and Puig [4] have generalized the MacWilliams the-

orem by using the support weights of subcodes. The result in [4] says that for two

k-dimensional linear codes C and C ′, and an integer t with 0 < t < k, any isomor-

phism φ : C → C ′ preserving the support weights of all t-dimensional subcodes is a

monomial transformation. It is clear that the MacWilliams theorem is a special case

of the result by Fan, Liu and Puig for t = 1.

To further generalize the MacWilliams theorem, we will need the following defi-

nitions. Let J be a subset of I = {1, . . . , n}. Define CJ = {(c1, . . . , cn) ∈ C : ct =

0 for t /∈ J}. Obviously, CJ is a subcode of C.

Definition 3.[8] Let C is a k-dimensional linear code, and C1 is a given k1-dimensional

subcode of C. The relative generalized Hamming weights (RGHWs) of C with respect

to C1 are a group of parameters (M1, M2, · · · , Mk−k1), where

Mj = min{|J| : dim(CJ)− dim((C1)J) = j}, 1 ≤ j ≤ k − k1.

Obviously, the GHWs can be retrieved from RGHWs with C1 = {0}.

Liu et al. [7] have given an alternative definition for the RGHWs as follows:

Mj = min{w(D) : D is a j -dimensional subcode of C and D ∩ C1 = {0}},

1 ≤ j ≤ k − k1.
(2)

Based on (2), we are now ready to define relative subcodes.

Definition 4. A relative (r, θ) subcode of the pair (C,C1), called an (r, θ) subcode for

short, is an r-dimensional subcode D of C satisfying dim(D ∩ C1) = θ.
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By Definition 4, the j-th RGHW Mj is the minimum support weight of all (j, 0)

subcodes.

3 Finite projective geometry method

Finite projective geometry has been extensively used to study linear codes [2, 3, 5,

7, 12]. In this section, a finite projective geometry method will be introduced. The

method will be used to prove our main result.

Let L be a subset of {1, 2, · · · , k}, whose elements represent the k coordinate posi-

tions of the vectors in GF (q)k. Define

δL(i) =

{

1, i ∈ L,

0, i ∈ {1, 2, · · · , k}\L. (that is i ∈ {1, 2, · · · , k} but i /∈ L)

Definition 5. Assume v ∈ GF (q)k and v = (v1, · · · , vi, · · · , vk). The projection

operator PL : GF (q)k → GF (q)k is defined as

PL(v) = (δL(1)v1, · · · , δL(i)vi, · · · , δL(k)vk).

The operator PL is extended to a subspace U ⊂ GF (q)k by setting

PL(U) = {PL(v) : v ∈ U}. (3)

Obviously, PL(U) is also a subspace of GF (q)k.

Let C be an [n, k] linear code. Adding a zero coordinate C, we obtain an [n+ 1, k]

code

C0 = {(c | 0) : c ∈ C},

whose subcodes have the same support weight distribution as C. So, without loss of

generality, we assume that C has no zero-position from scratch; i.e., n = dk, where dk

is the last GHW of C. Or equivalently, any generator matrix of C has no zero-column.

Fix a generator matrix of C, say G. Since G has no zero-column, the columns of

G may be considered as points in the projective space PG(k − 1, q). We thus obtain

a projective multiset (or a value assignment [3]) which is a map m from PG(k − 1, q)

to the set of nonnegative integers, i.e.

m : PG(k − 1, q) → N = {0, 1, · · · }.

For a point p ∈ PG(k − 1, q), we call m(p) the value (or multiplicity ) of p. This

definition is extended to S ⊂ PG(k − 1, q) by setting

m(S) =
∑

p∈S

m(p).

m(S) is called the value of S.
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Obviously, each generator matrix G determines a value assignment m which is

dependent on both C and G. Hence, we sometimes denote the value assignment m by

mC,G (When there is no confusion, we still use m for mC,G in the paper).

If U is a projective subspace and PL(U) 6= {0}, then dimPL(U) ≥ 0 (see (3)).

Define dimPL(U) = −1 when PL(U) = {0}, i.e. when PL(U) contains no projective

points.

Definition 6. A relative (ξ, η) projective subspace of PG(k − 1, q), denoted by P η
ξ , is

a ξ-dimensional subspace P such that dimPL(P ) = η, where L = {1, 2, · · · , k1}, and

0 ≤ k1 ≤ k.

According to the definition above, P−1
k−k1−1 represents a (k − k1 − 1)-dimensional

subspace P such that dimPL(P ) = −1, that is, a (k− k1 − 1)-dimensional subspace of

PG(k − 1, q) consists of all those points whose first k1 coordinates are all 0.

Some other examples for P η
ξ are as follows. P−1

0 represents a point in the subspace

P−1
k−k1−1, whereas P 0

0 represents a point in the set PG(k − 1, q)\P−1
k−k1−1 = {p : p ∈

PG(k − 1, q) but p /∈ P−1
k−k1−1}.

In the proof of our main result, we will denote by

[

s

t

]

q

a q-ary Gaussian binomial

coefficient [11], that is,

[

s

t

]

q

=







1, t = 0,

(qs − 1)(qs−1 − 1) . . . (qs−t+1 − 1)
(qt − 1)(qt−1 − 1) . . . (q − 1)

, t 6= 0.

4 The main result

Theorem. Assume that two k-dimensional linear codes C and C ′ have the same

effective length. Let φ : C → C ′ = φ(C) be a vector space homomorphism, and let

C ′

1 = φ(C1) be the image of C1 under φ for a fixed k1-dimensional subcode C1 ⊂ C. If

there exists some r0 satisfying k1 ≤ r0 ≤ k − 2 such that for any (r0, k1 − 1) subcode

D of (C,C1), φ(D) is an (r0, k1 − 1) subcode of (C ′, C ′

1) and w(φ(D)) = w(D), then C

and C ′ are equivalent.

Remark 1. Consider a special case of the theorem, that is, C1 = {0}. In this

case, any relative subcode D of C specified in the theorem is actually a traditional

r0-dimensional subcode of C. This is exactly the result presented in [4]. Therefore, our

result has extended the result in [4], and thus generalized the well-known MacWilliams

theorem.

Remark 2. In fact, the homomorphism φ satisfying the conditions of the theorem is

an isomorphism (see Section 5). Hence, if G is a generator matrix of C whose first k1

rows generate the subcode C1, then φ(G) is a generator matrix of C ′, and C ′

1 = φ(C1)

is generated by the first k1 rows of φ(G), where φ(G) is the matrix whose i-th row is
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φ(gi), while gi is the i-th row of G. If D is an (r, k1−1) subcode of (C,C1), then φ(D)

is an (r, k1 − 1) subcode of (C ′, C ′

1).

In the theorem above, the assumption that C and C ′ have the same effective length

is necessary. In fact, if w(φ(D)) = w(D) holds for any r0-dimensional subcode D of C

for some r0 satisfying 1 ≤ r0 ≤ k − 1, then C and C ′ have the same effective length

[4]. However, the assumption that w(φ(D)) = w(D) for any (r0, k1 − 1) subcode D for

some r0 satisfying k1 ≤ r0 ≤ k − 2, as in the theorem, is not sufficient to show that C

and C ′ have the same effective length. An example is given below.

Example 1. Let C and C ′ be the binary codes with generator matrix











1 0 1 1 1 0 0 1 1 1 0 1 1 0

0 1 0 0 1 1 1 0 1 1 1 1 0 1

0 0 0 1 0 0 1 1 0 1 1 1 0 0

0 0 1 0 0 1 0 1 1 0 1 1 0 0











and










1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1











,

respectively, and let φ : C → C ′ be a linear extension of the row-to-row correspondence

of these two matrixes. Then φ is an isomorphism. Let C1 and C ′

1 = φ(C1) be the

subcodes of C and C ′ generated by the first two rows of their generator matrixes,

respectively. Then it is not difficult to check that w(φ(D)) = w(D) for all the (2, 1)

subcodes D of (C,C1), but C and C ′ have different effective lengths.

Remark 3. When r0 = k1 − 1 or r0 = k − 1, the theorem is not true. See the

following two examples.

Example 2. Consider the case r0 = k1−1. Let C and C ′ be four-dimensional binary

codes with generator matrix











1 0 0 0 1 1 0 0

0 1 0 0 1 1 0 0

0 0 1 0 1 1 1 1

0 0 0 1 0 1 0 1











and










1 0 0 0 1 1 0 0

0 1 0 0 1 1 0 0

0 0 1 0 1 1 0 1

0 0 0 1 0 1 1 1











,

respectively, and let φ : C → C ′ be a linear extension of the row-to-row correspondence

of these two matrixes. Assume that C1 is a two-dimensional subcode generated by the
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first two rows of the generator matrix of C, and that C ′

1 = φ(C1). Then w(φ(D)) =

w(D) for all (1, 1) subcodes D, but C and C ′ are not equivalent.

Example 3. Consider the case r0 = k− 1. Let C and C ′ be four-dimensional binary

codes with generator matrix











1 0 0 0 1 0 0 0

0 1 0 0 1 1 0 0

0 0 1 0 1 1 1 0

0 0 0 1 0 1 0 1











and










1 0 0 0 1 0 0 0

0 1 0 0 1 1 0 0

0 0 1 0 1 1 1 1

0 0 0 1 0 1 1 1











,

respectively. Let C1 denote the two-dimensional subcode generated by the first two

rows of the generator matrix of C, and let C ′

1 = φ(C1). Then it is easy to verify that

w(φ(D)) = w(D) for all (3, 1) subcodes D. However, C and C ′ are not equivalent.

5 Proof of the main result

In this section, we first give a number of lemmas. Using these lemmas, we then

prove the theorem presented in the previous section.

5.1 Some lemmas

We assume that φ : C → C ′ is an isomorphism throughout this subsection, and that

G is a fixed generator matrix of C with the first k1 rows generating the subcode C1.

Denote the image of C1 by C ′

1 = φ(C1). Let mC,G and m′

C′,φ(G) be the corresponding

value assignments (denote them by m and m′, respectively, for short).

Lemma 1 will give a one-to-one correspondence between the set of relative subcodes

and the set of relative projective subspaces. In this way we characterize the support

weights of relative subcodes by using the values of relative projective subspaces.

Lemma 1. Assume that C and C ′ have effective lengths n and n′. Let φ, C1, C
′

1, G,

m and m′ be defined as above.

(R1). φ is a natural one-to-one correspondence between the (r, k1 − 1) subcodes of

(C,C1) and the (r, k1 − 1) subcodes of (C ′, C ′

1).

(R2). There is a one-to-one correspondence between the (r, k1 − 1) subcodes D of

(C,C1) and the projective subspaces P 0
k−r−1, such that ifD corresponds to P 0

k−r−1, then

n−w(D) = m(PG(k−1, q))−w(D) = m(P 0
k−r−1) and n′−w(φ(D)) = m′(PG(k−1, q))

− w(φ(D)) = m′(P 0
k−r−1).
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Proof. (R1) is proven in Remark 2. We now prove (R2). According to Definition 4,

we may assume that a generator matrix of an (r, k1 − 1) subcode D is Ar×kG, where

Ar×k =

(

A(k1−1)×k1 0(k1−1)×(k−k1)

A(r−k1+1)×k1 A(r−k1+1)×(k−k1)

)

and rank(A(k1−1)×k1) = k1 − 1, rank(A(r−k1+1)×(k−k1)) = r − k1 + 1. Then a generator

matrix of φ(D) is Ar×kφ(G). Let U represent the vector space orthogonal to the

vector space spanned by the rows of Ar×k. Then dim(U) = k − r. Since PL(U) for

L = {1, 2, · · · , k1} is orthogonal to the vector space spanned by the first k1 − 1 rows of

Ar×k, we have dimPL(U) ≤ 1. If dimPL(U) = 0, then a generator matrix of U is

(

0(k−r)×k1 U (k−r)×(k−k1)

)

.

Thus, A(r−k1+1)×(k−k1)U
T
(k−r)×(k−k1) = 0, where UT

(k−r)×(k−k1) denotes the transpose of

the matrixU (k−r)×(k−k1). Therefore, rank(A(r−k1+1)×(k−k1))+rank(UT
(k−r)×(k−k1)

) ≤ k−

k1. This is a contradiction to the fact that rank(A(r−k1+1)×(k−k1)) + rank(UT
(k−r)×(k−k1))

= (r − k1 + 1) + (k − r) = k − k1 + 1. Thus, dimPL(U) = 1. U is exactly P 0
k−r−1,

corresponding to the (r, k1 − 1) subcode D. �

The following Lemmas 2 and 3 give some useful properties of the values of relative

projective subspaces; and Lemma 4 presents the relationship between m and m′.

Lemma 2. Assume m(PG(k− 1, q)) = m′(PG(k− 1, q)) and m(P k1−1
i0

) = m′(P k1−1
i0

)

for any P k1−1
i0

for some i0 satisfying k1 ≤ i0 ≤ k − 2. Then, m(P k1−1
i ) = m′(P k1−1

i ) for

any P k1−1
i , where k1 − 1 ≤ i ≤ k − 1.

Proof. For any fixed P k1−1
i0−1 , the number of the P k1−1

i0
satisfying PG(k − 1, q) ⊃

P k1−1
i0

⊃ P k1−1
i0−1 is equal to

[

k − i0

1

]

q

(see [11, pp. 698]). Thus,

(

[

k − i0

1

]

q

− 1
)

m(P k1−1
i0−1 )

=
∑

P
k1−1

i0
⊃P

k1−1

i0−1

m(P k1−1
i0

)−m(PG(k − 1, q))

=
∑

P
k1−1

i0
⊃P

k1−1

i0−1

m′(P k1−1
i0

)−m′(PG(k − 1, q))

=
(

[

k − i0

1

]

q

− 1
)

m′(P k1−1
i0−1 ).

From k1 ≤ i0 ≤ k − 2, it follows that

[

k − i0

1

]

q

− 1 6= 0. Therefore,

m(P k1−1
i0−1 ) = m′(P k1−1

i0−1 ), ∀ P k1−1
i0−1 . (4)
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Similarly, for any fixed P k1−1
i0−2 , we have

(

[

k − i0 + 1

1

]

q

− 1
)

m(P k1−1
i0−2 )

=
∑

P
k1−1

i0−1
⊃P

k1−1

i0−2

m(P k1−1
i0−1 )−m(PG(k − 1, q))

=
∑

P
k1−1

i0−1
⊃P

k1−1

i0−2

m′(P k1−1
i0−1 )−m′(PG(k − 1, q)), ( by (4))

=
(

[

k − i0 + 1

1

]

q

− 1
)

m′(P k1−1
i0−2 ).

Therefore,

m(P k1−1
i0−2 ) = m′(P k1−1

i0−2 ), ∀ P k1−1
i0−2 .

We prove the following in the similar way

m(P k1−1
k1

) = m′(P k1−1
k1

), ∀ P k1−1
k1

, and m(P k1−1
k1−1 ) = m′(P k1−1

k1−1 ), ∀ P k1−1
k1−1 . (5)

Now for any P k1−1
i , k1 − 1 ≤ i ≤ k − 1, there is a P k1−1

k1−1 such that P k1−1
k1−1 ⊂ P k1−1

i ,

and the number of the P k1−1
k1

satisfying P k1−1
k1−1 ⊂ P k1−1

k1
⊂ P k1−1

i is

[

i− k1 + 1

1

]

q

.

Thus, we have

m(P k1−1
i )

=
∑

P
k1−1

k1−1
⊂P

k1−1

k1
⊂P

k1−1

i

m(P k1−1
k1

)−
(

[

i− k1 + 1

1

]

q

− 1
)

m(P k1−1
k1−1 )

=
∑

P
k1−1

k1−1
⊂P

k1−1

k1
⊂P

k1−1

i

m′(P k1−1
k1

)−
(

[

i− k1 + 1

1

]

q

− 1
)

m′(P k1−1
k1−1 ), ( by (5))

= m′(P k1−1
i ).

�

Lemma 3. Assume m(PG(k − 1, q)) = m′(PG(k − 1, q)) and m(P 0
s ) = m′(P 0

s ) for

any P 0
s and some s satisfying 1 ≤ s ≤ k − k1 − 1. Then, m(P t

s+t) = m′(P t
s+t) for any

P t
s+t, where −1 ≤ t ≤ k1 − 1.

Proof. The number of the P−1
s−1 contained in the P−1

k−k1−1 is

X =

[

k − k1

s

]

q

, (6)

and the number of the P−1
s−1, p0 ∈ P−1

s−1 ⊂ P−1
k−k1−1, for a fixed point p0 ∈ P−1

k−k1−1, is

Y =

[

k − k1 − 1

s− 1

]

q
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(see [11, pp. 698]). Thus,
∑

P−1

s−1
⊂P−1

k−k1−1

m(P−1
s−1) = Y m(P−1

k−k1−1), and

∑

P−1

s−1
⊂P−1

k−k1−1

m′(P−1
s−1) = Y m′(P−1

k−k1−1).
(7)

For any given P−1
s−1 ⊂ P−1

k−k1−1, the number of the s-dimensional projective subspaces

in PG(k − 1, q) containing the P−1
s−1 is

[

k − s

1

]

q

,

and the number of the P−1
s , P−1

s−1 ⊂ P−1
s ⊂ P−1

k−k1−1, is

[

k − k1 − s

1

]

q

.

Therefore, the number of the P 0
s , P

0
s ⊃ P−1

s−1, is

Z =

[

k − s

1

]

q

−

[

k − k1 − s

1

]

q

.

For any given P−1
s−1 ⊂ P−1

k−k1−1, we have

∑

P 0
s ⊃P−1

s−1

m(P 0
s ) = Zm(P−1

s−1) +m(PG(k − 1, q)\P−1
k−k1−1)

= Zm(P−1
s−1) +m(PG(k − 1, q))−m(P−1

k−k1−1).

(8)

Similarly, we have
∑

P 0
s ⊃P−1

s−1

m′(P 0
s ) = Zm′(P−1

s−1) +m′(PG(k − 1, q))−m′(P−1
k−k1−1). (9)

From (8), (9), the assumption that m(P 0
s ) = m′(P 0

s ) for any P 0
s , and m(PG(k−1, q) =

m′(PG(k − 1, q)), we have

Zm(P−1
s−1)−m(P−1

k−k1−1) = Zm′(P−1
s−1)−m′(P−1

k−k1−1). (10)

Note that (10) is correct for any P−1
s−1 ⊂ P−1

k−k1−1. Summing up both sides of (10) over

all the possible P−1
s−1, P

−1
s−1 ⊂ P−1

k−k1−1,

∑

P−1

s−1
⊂P−1

k−k1−1

(Zm(P−1
s−1)−m(P−1

k−k1−1))

= Z
∑

P−1

s−1
⊂P−1

k−k1−1

m(P−1
s−1)−

∑

P−1

s−1
⊂P−1

k−k1−1

m(P−1
k−k1−1)

= ZYm(P−1
k−k1−1)−Xm(P−1

k−k1−1), ( by (6) and (7) )

= (ZY −X)m(P−1
k−k1−1),

10



and
∑

P−1

s−1
⊂P−1

k−k1−1

(Zm′(P−1
s−1)−m′(P−1

k−k1−1)) = (ZY −X)m′(P−1
k−k1−1).

Therefore, from (10),

(ZY −X)m(P−1
k−k1−1) = (ZY −X)m′(P−1

k−k1−1). (11)

If ZY −X = (
qk−k1−s(qk1 − 1)

q − 1 −
qk−k1 − 1
qs − 1

)Y = 0, then

qk−k1−s(qk1 − 1)

q − 1
=

qk−k1 − 1

qs − 1
. (12)

Note that qk−k1−s is always a positive power of a certain prime p1 under the assumption

k − k1 − s > 0. Then it follows from (12) that p1|q
k−k1 − 1, which is a contradiction,

since qk−k1 ≥ q. Thus, ZY −X 6= 0. Then, from (11) we have

m(P−1
k−k1−1) = m′(P−1

k−k1−1). (13)

With (10) and (13), it is easy to verify that

m(P−1
s−1) = m′(P−1

s−1) for any P−1
s−1 ⊂ P−1

k−k1−1. (14)

Now, for any given P t
s+t, 0 ≤ t ≤ k1 − 1, there is a P−1

s−1 satisfying P−1
s−1 ⊂ P t

s+t.

Moreover, the number of the P 0
s , P

−1
s−1 ⊂ P 0

s ⊂ P t
s+t, is

[

t+ 1

1

]

q

. Thus, by (14), we

have

m(P t
s+t) =

∑

P−1

s−1
⊂P 0

s ⊂P t

s+t

m(P 0
s )−

(

[

t+ 1

1

]

q

− 1
)

m(P−1
s−1)

=
∑

P−1

s−1
⊂P 0

s ⊂P t

s+t

m′(P 0
s )−

(

[

t + 1

1

]

q

− 1
)

m′(P−1
s−1)

= m′(P t
s+t).

�

Lemma 4. Assume m(PG(k − 1, q)) = m′(PG(k − 1, q)), and m(P 0
s ) = m′(P 0

s ) for

any P 0
s for some s satisfying 1 ≤ s ≤ k − k1 − 1. Then, m(p) = m′(p) for any point

p ∈ PG(k − 1, q).

Proof. It follows from Lemma 3 that

m(P t
s+t) = m′(P t

s+t), for any P t
s+t and any t, −1 ≤ t ≤ k1 − 1. (15)

In particular, m(P k1−1
s+k1−1) = m′(P k1−1

s+k1−1). Then, it follows from Lemma 2 that

m(P k1−1
i ) = m′(P k1−1

i ), for any P k1−1
i and any i, k1 − 1 ≤ i ≤ k − 1. (16)

11



For any fixed P k1−2
s+k1−3, there exists a P k1−1

s+k1−1 such that P k1−2
s+k1−3 ⊂ P k1−1

s+k1−1. Note that

the number of the P k1−1
s+k1−2 satisfying P k1−2

s+k1−3 ⊂ P k1−1
s+k1−2 ⊂ P k1−1

s+k1−1 is q, and the number

of the P k1−2
s+k1−2 satisfying P k1−2

s+k1−3 ⊂ P k1−2
s+k1−2 ⊂ P k1−1

s+k1−1 is one. So,

qm(P k1−2
s+k1−3)

=
∑

P
k1−2

s+k1−3
⊂P

k1−1

s+k1−2
⊂P

k1−1

s+k1−1

m(P k1−1
s+k1−2) + m(P k1−2

s+k1−2) − m(P k1−1
s+k1−1)

=
∑

P
k1−2

s+k1−3
⊂P

k1−1

s+k1−2
⊂P

k1−1

s+k1−1

m′(P k1−1
s+k1−2) + m′(P k1−2

s+k1−2) − m′(P k1−1
s+k1−1), ( by (15), (16))

= qm′(P k1−2
s+k1−3).

Thus, we have

m(P k1−2
s+k1−3) = m′(P k1−2

s+k1−3), ∀ P k1−2
s+k1−3. (17)

For any fixed P k1−3
s+k1−4, there is a P k1−1

s+k1−2 such that P k1−3
s+k1−4 ⊂ P k1−1

s+k1−2. The number of

the P k1−2
s+k1−3, P

k1−3
s+k1−4 ⊂ P k1−2

s+k1−3 ⊂ P k1−1
s+k1−2, is q + 1. Therefore,

qm(P k1−3
s+k1−4) =

∑

P
k1−3

s+k1−4
⊂P

k1−2

s+k1−3
⊂P

k1−1

s+k1−2

m(P k1−2
s+k1−3)−m(P k1−1

s+k1−2)

=
∑

P
k1−3

s+k1−4
⊂P

k1−2

s+k1−3
⊂P

k1−1

s+k1−2

m′(P k1−2
s+k1−3)−m′(P k1−1

s+k1−2), ( by (16), (17))

= qm′(P k1−3
s+k1−4).

It follows that

m(P k1−3
s+k1−4) = m′(P k1−3

s+k1−4), ∀ P k1−3
s+k1−4. (18)

Similarly, using (17) and (18), we get

m(P k1−4
s+k1−5) = m′(P k1−4

s+k1−5), ∀ P k1−4
s+k1−5.

Then through deduction, we have

m(P 0
s−1) = m′(P 0

s−1), ∀ P 0
s−1. (19)

For any fixed P 0
s−2, there exists a P 0

s such that P 0
s−2 ⊂ P 0

s . Thus,

qm(P 0
s−2) =

∑

P 0
s−2

⊂P 0
s−1

⊂P 0
s

m(P 0
s−1)−m(P 0

s )

=
∑

P 0
s−2

⊂P 0
s−1

⊂P 0
s

m′(P 0
s−1)−m′(P 0

s ), ( by (19))

= qm′(P 0
s−2).

It follows that

m(P 0
s−2) = m′(P 0

s−2), ∀ P 0
s−2. (20)

Similarly, by using (19) and (20), we obtain

m(P 0
s−3) = m′(P 0

s−3), ∀ P 0
s−3.
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Through deduction, we have

m(P 0
1 ) = m′(P 0

1 ), ∀ P 0
1 , and m(P 0

0 ) = m′(P 0
0 ), ∀ P 0

0 . (21)

Note that P 0
0 is a point of the set PG(k − 1, q)\P−1

k−k1−1, and P 0
1 is a projective line

containing q points of the set PG(k − 1, q)\P−1
k−k1−1 and one point of the subspace

P−1
k−k1−1. Then, by (21), m(p) = m′(p), for any point p ∈ PG(k − 1, q). �

5.2 Proof of the theorem

Now we are ready to prove the main result.

Proof of the theorem. To prove the theorem, we first show that φ : C → C ′ is an

isomorphism, and then show that the isomorphism φ is a monomial transformation.

To show that φ : C → C ′ is an isomorphism, by the assumption that C ′ = φ(C),

it is sufficient to prove that φ is a monomorphism. If φ is not a monomorphism, there

exists a c ∈ C\{0} such that φ(c) = 0. Then, there is an (r0, k1 − 1) subcode D such

that c ∈ D. Therefore, dim(φ(D)) ≤ r0−1; and thus φ(D) is not a relative (r0, k1−1)

subcode of (C ′, C ′

1). This is a contradiction. Therefore, φ is an isomorphism.

To show that the isomorphism φ is a monomial transformation, it is sufficient to

prove that m(p) = m′(p), ∀p ∈ PG(k − 1, q), according to (1). Since C and C ′ have

the same effective length, and w(φ(D)) = w(D), for all (r0, k1 − 1) subcodes D, by

Lemma 1 we have

m(PG(k − 1, q)) = m′(PG(k − 1, q)), and

m(P 0
k−r0−1) = m′(P 0

k−r0−1), ∀P 0
k−r0−1 ⊂ PG(k − 1, q).

Then, the conclusion follows from Lemma 4. �

6 Conclusions

Based on the relative generalized Hamming weights, for a linear code C, we have

first defined relative (r, θ) subcodes of the pair (C,C1), where C1 is any subcode of C.

We then established a tool to characterize relative subcodes, by using finite project

geometry. Making use of this tool, we have proved that any isomorphism between

two linear codes C and C ′ of the same effective length, which preserves the support

weights of a kind of relative subcodes, is an equivalence of the codes. In a special case

of our result, that is, C1 = {0}, the relative subcodes of (C,C1) are actually traditional

subcodes of C. Therefore, we have extended the result in [4]; and thus we have further

generalized the well-known MacWilliams theorem.
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