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Abstract 
 

          This paper examines the finite-sample size of a class of Dickey-Fuller-type 
tests in the presence of GARCH errors, with and without the influence of initial 
conditions of the underlying simulated path.  Oversizing is observed for all tests 
when the GARCH process is nearly degenerate and the volatility parameter is 
large, but the degree of size distortion varies across tests and is contingent on the 
initial condition. The result due to the initial effect is linked to the size distortion 
caused by a sequence of small downward variance breaks arising in the early 
stage of the underlying process. 
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[1] Introduction 

 

         It is a well known fact that the Dickey-Fuller (DF) test tends to over-reject 

the null of a unit root in the presence of GARCH errors.   Kim and Schmidt (1993) 

first investigated the reliability of the DF test in this regard.  They concluded that 

the DF test is generally oversized and that the problem becomes serious when the 

underlying GARCH process is nearly degenerate, nearly integrated and the 

volatility parameter is relatively large – that is, when the GARCH effect is 

“strong”.  Similar results were found in Haldrup (1994) and Lin et al. (2003).  

Valkanov (2005) also demonstrated that with strong GARCH effects, while the 

small-sample DF distribution appears to converge to the asymptotic distribution, 

the convergence is rather slow.  Because macroeconomic and financial time series 

are typically characterized by strong GARCH effects, it may rise suspicion about 

the result in the standard practice of the DF test in empirical work. 

         The over-rejection problem appears in a class of modified DF tests too.  

According to Cook (2006), where the standard DF test and several modified DF 

tests were examined, while on the whole the modified tests appear to be robust to 

GARCH, the advantage of using them over the standard test is moderate.  When 

the sample size gets larger, since the standard DF test statistic moves closer to its 

asymptotic distribution, the advantage of the modified tests becomes even less 

noticeable.   Similar to Kim and Schmidt (2003), Cook (2006) identified that the 

over-sizing of all DF-type tests is mainly driven by the volatility rather than the 

persistence of the variance process.  
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         An important but commonly neglected or inadequately treated issue 

concerning the oversizing problem for unit-root tests is the effect of initial values 

of a simulated I(1)-GARCH series.  Kim and Schmidt (1993), Lin et al. (2003), 

Valkanov (2005) and Cook (2006) did not deal with such an effect in their Monte 

Carlo exercises.  Haldrup (1994) is the only paper in the unit root test literature 

that dealt with this effect.  In order to get rid of the effect Haldrup (1994) 

suggested generating additional ten observations for each simulating path and then 

deleted the first ten from the path.  Although such a rule seems to work well in the 

elimination of the initial effect when the GARCH effect is moderate, it does not 

work well when the effect becomes “strong”.  Lee and Tse (1996), in their study 

regarding cointegration tests, argued that when the GARCH process is nearly 

integrated and nearly degenerate the simulated process takes a long while to settle 

down.  In such a case discarding the first 500 observations is required to get rid of 

the initial effect.   Though the same simulation rule should be adopted for unit root 

tests, it has been largely ignored in the unit-root literature. 

         In this paper, extensive Monte Carlo simulations are conducted to examine 

the influence of initial values of a simulated I(1)-GARCH process to several DF-

type unit root tests.  Basically, it is found that the over-rejection problem for the 

standard DF test with GARCH errors can become much more serious if the initial 

effect is not trimmed.  In contrast, the initial effect does rather limited impact to 

the modified tests.  The result due to the mixed effect of GARCH and the initial 

conditions is linked to the literature of Kim et al. (2002) and Cook (2003, 2004) 
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where the oversizing problem for the DF-type tests is caused by an early break in 

the innovation variance.   

         The paper proceeds as follows.  In section 2, several DF-type tests are 

presented.  Section 3 states design and reports results of the Monte Carlo 

experiment.  Section 4 concludes. 

 

[2] Dickey-Fuller-type Tests 

 

         Consider the model 

                                             ( )1t t ty yµ ρ µ ε−− = − + ,                                          (1) 

where ty , t = 1,2, …, T, are observations, tε  is a serially-uncorrelated zero-mean 

process, and µ , ρ  are unknown parameters.  Let t ty y y= −  and 1
1

T
t ty T y−
== ∑ . 

The standard DF test tests the unit root hypothesis 0 : 1H ρ =  against the 

alternative 1 : | | 1H ρ <  using a test statistic  

                                                   ( )ˆ ˆ1 / ( )seτ ρ ρ= −                                                (2) 

where 2
2 21 1ˆ /T T

t tt t ty y yρ = =− −= ∑ ∑    is the OLS estimator of ρ  in (1) and ˆ( )se ρ  is its 

standard error.  Despite its popularity, the DF test is known to have low power 

when ρ  is close to one. 

         Several attempts have been made to improve the power of the standard DF 

test in the literature.  Pantula et al. (1994) introduced a weighted symmetric (WS) 

estimator 

                                     2 1 21
2 2 11ˆ /( )T T T

t t tws t t t ty y y T yρ −−
= = =−= +∑ ∑ ∑                                (3) 
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of ρ  in (1).  Based on the WS estimator, they suggested a modified DF test (DF-

WS):   

                                    ( )
1/ 21

1 2 1 2

2 1

ˆ 1
T T

WS ws ws t t
t t

y T yτ σ ρ
−

− −

= =

 = − + 
 
∑ ∑                             (4)  

where 2 1 2 21
1 21 1 1ˆ ˆ( 2) [ ( ) (1 )( ) ]T T

t tws t t ws t t t ws tT w y y w y yσ ρ ρ− −
= =− + += − − + − −∑ ∑     with 

tw ( 1) /t T= − .   Basically, the power gain of this test comes from the utilization of 

the reverse autoregressive (AR) representation in addition to the forward AR 

representation. 

         Power improvement may also be achieved using different mean-adjustment 

schemes other than OLS as in the standard DF test.  Elliot et al (1996) proposed a 

modified test using the application of local-to-unity demeaning via generalized 

least squares (GLS) estimation.  The locally demeaned series ty  is derived as 

ˆ
t ty y β= −  where β̂  is obtained by regressing 1 2 1 1( , ,..., )T Ty y y y y yα α α − ′= − −  on 

(1,1 ,...,1 )zα α α ′= − −  with 1 (7 / )Tα = − .  The resulting unit root test, denoted as 

DF-GLS, is the t-ratio of φ  from the regression: 1t ty yφ ε−∆ = +  .  On the other 

hand, Shin and So (2001) suggested the use of recursively adjusted mean 

1
1

t
it iy t y−
== ∑ .  The recursively mean-adjusted version of DF test (DF-REC) has 

the same format as (2), except that ρ̂  and ˆ( )se ρ  are obtained from the regression 

of 1( )t ty y −−  on 1 1( )t ty y− −− .   

        While the power advantage of the above mentioned modified DF tests has 

been confirmed in subsequent studies and become recognized in applied research 
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(see, for example, Leybourne et al. (2005)), their robustness in the presence of 

GARCH has been discussed only very recently in Cook (2006). 

 

[3] Monte Carlo Experiment and Results 

 

         The data-generating process to be considered is a driftless integrated process 

with GARCH innovations.  The process is  

                                         1t t ty y ε−= + ,    t=1,…,T+d,                                          (5) 

where tε  is assumed to be a GARCH process: t t thε η= , where tη  is i.i.d. N(0,1), 

                                              2
0 1 1 2 1t t th hφ φ ε φ− −= + + .                                              (6) 

GARCH parameters – typically, 1φ  is know as the volatility parameter and 2φ  the 

persistence parameter – are set to reflect the empirical findings.  Specifically, 1φ  is 

set between 0 and 0.349 and 2φ  between 0.65 and 0.95, but 1 2φ φ+  never goes 

larger than 0.999, and 0φ  is calibrated to make the unconditional variance equal 1 

in all cases: 0 1 21φ φ φ= − − .  The initial value of the unit-root process is set 0 0y =  

and the initial variance 0 1h = .  The pseudo random innovations 1{ }T d
t tε +

=  are drawn 

from (0, )tN h  and used to construct the unit-root process for T=100, 500, 1000, 

2000 and d=500.  Two sets of series are used for unit-root testing: series [1] 

contains observations from 1 to T, and series [2] from d+1 to T+d.  In the first 

series, the initial effect is left untreated while the second series, according to Lee 
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and Tse (1996), the initial effect is off-loaded.1  All simulations are based on 

10,000 replications and done by GAUSS.  All rejection frequencies are calculated 

at the nominal 5% significance level.2

        We summarize and comment here the results in Table 1. First, the simulation 

result shows that in some cases the difference of size distortion between the 

standard DF test and the modified tests can be substantially large.  In particular, as 

the sum of GARCH parameters becomes extremely close to the boundary of 

integration and the volatility parameter is relatively large (say, 

  The Monte Carlo results are reported in 

Table 1. 

1 2 0.99φ φ+ ≥  and  

1 0.24φ ≥ ), while the oversizing problem of the standard DF test deteriorates 

considerably, the modified tests only get slightly worse.  For example, when 

1 2( , )φ φ (0.349,0.65)=  and T=500, the rejection frequency of the standard DF test 

is 0.358, but 0.087, 0.146 and 0.109 for DF-GLS, DF-WS and DF-REC, 

respectively.  Also, the tests tend to show different patterns of size distortion 

corresponding to T.  DF test is less distorted when T is larger if 1 2 0.995φ φ+ ≤  and 

becomes irregular if 1 2 0.999φ φ+ = ; the DF-GLS test seems unaffected by T; the 

DF-WS and the DF-REC tests appear more and then less distorted as T gets larger.        

         Second, the Monte Carlo result shows that the influence of initial conditions 

for the data generation process may contribute a significant proportion of the size 

distortion for the standard DF test.  Indeed, in some cases, the over-rejecting 

                                                 
1 The appropriateness of this elimination rule has also been confirmed by the author using 
simulation with a wide class of GARCH models.  The result is available upon request 
2 Critical values are obtained by simulation with 50,000 draws for each test at different sample 
sizes and available upon request. 
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problem due to GARCH might look much more serious than it actually is provided 

that such an influence has been eliminated.  For example, the rejection rate drops 

from 0.358 to 0.108 for 1 2( , ) (0.349,0.65)φ φ =  at T=500 when the effect is gone.  

Accordingly, failing to notice the initial effect, the severe over-rejection of the 

standard DF test with strong GARCH errors is likely to be overstated.  On the 

contrary, the initial effect does not inflate the size of the DF-GLS and the DF-REC 

tests and only causes a bit more size distortion for the DF-REC test.  Besides, 

without the initial effect all tests seem very stable over a wide range of sample 

size, implying that the tests converge to the asymptotic distribution rather fast. 

         Third, even if the initial effect is removed, the GARCH effect itself still 

brings about some size distortion for the DF-type tests.  Again, since the 

unconditional kurtosis increases as 1φ  increases when 1 2φ φ+  is fixed, given the 

value of 1 2φ φ+ , the size distortion is usually larger with a larger 1φ .3

         Finally, it is worth noting that the simulation result due to the initial effect 

can actually be related to the oversized problem for the same class of unit-root 

tests considered previously when there exists a variance break.  According to Kim 

et al. (2002), the standard DF test severely oversizes when applied to a unit-root 

  Size 

improvement of the modified DF tests (with the DF-REC test as an exception) 

over the standard DF test is obvious, but not very striking.  The DF-GLS test 

appears to be the most robust one.  In the presence of GARCH, the DF-GLS test 

tends to over-reject but the rejection frequency never goes larger than 0.088 and 

this happens only when the GARCH effect is extremely strong. 

                                                 
3 The unconditional kurtosis for an GARCH(1,1) is 2 2 1 2

1 2 1 1 23[1 ( ) 2 ] [1 ( ) ]φ φ φ φ φ−− + − − + . 
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process experiencing an abrupt decrease in innovation variance if the decrease is 

large and occurs in the early stage of the process.  In contrast, as shown in Cook 

(2003, 2004), the modified DF tests seem quite robust to such a break.  As for the 

case of GARCH, Lee and Tse (1996) noted that when a GARCH model is nearly 

degenerate and with a relative large volatility parameter the initial variance 0 1h =  

is too far in the right tail of its stationary distribution, so the simulated time-

varying variance th  tends to decline as t gets larger and this declining will last for 

a while.  In other words, if a simulated GARCH series is untrimmed it will behave 

like a path arisen from a setting where innovation variance undergoes a sequence 

of downward breaks soon after the start and the breaks become larger and last 

longer when the GARCH process is closer to degenerate and with a larger 

volatility parameter.  This should help to explain the puzzling size properties 

regarding the standard DF test and the modified tests in the presence of GARCH, 

with and without the initial effect.   

         Of course, Kim et al. (2002) and Cook (2003, 2004) obtain their results only 

concerning a sudden large drop in variance, but it is not unreasonable to expect 

that similar results should occur for a series of small but prolonging variance 

reduction arising in the early stage of the unit-root path.  As a matter of fact, 

according to the simulation result in Table 2 (please see Appendix I for details) 

early downward can cause significant size distortion for the standard DF test 

regardless of whether the breaks are one-shot or sequential.  In contrast, variance 

breaks of all sorts result in much less size distortion for the modified DF tests. 
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[4] Conclusion 

 
 
         In this paper, extensive Monte Carlo simulations are carried out to study the 

size performance of a class of Dickey-Fuller tests in the presence of GARCH 

errors, with and without the influence of initial values of the underlying process.  

In addition to the standard DF test, three modified DF tests are considered.  

Basically, simulation results show that the compound effect from GARCH and 

initial conditions can cause significant upward size distortion for the standard DF 

test but the problem is much less severe if the effect is solely from GARCH.  In 

contrast, the modified tests seem insensitive to the initial effect.  Even if the initial 

effect has been suitably controlled, all tests suffer size distortion caused by 

GARCH to some degree.  Among the tests, the DF-GLS test seems to have the 

least size distortion.   
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Appendix I 

 

         To study the empirical size of the DF-type tests with breaks in innovation 

variance, a unit-root process is generated according to equation (5) with t t tε η σ= , 

where tη  is an i.i.d. N(0,1) and tσ  is the scale of variance at t:  for an abrupt break  

1 1

2 1

,
,t

for t T
for T t

σ
σ

σ
≤

=  <
 

 and for a series of smooth breaks between T1 and T2, 

( )

1 1

2 1
1 1 1 2

2 1

2 2

,

,

.

t

for t T

t T for T t T
T T

for T t

σ

σ σσ σ

σ

≤


 −= + − < ≤  − 
 <

  

Denoting the break ratio 2 1( / )σ σ  as δ , the values {0.25,0.4,0.6}δ ∈  are 

considered.  Four cases of breaks are examined: CASE I assumes a single big 

break arising right after T1; CASE II~CASE IV witness a sequence of small breaks 

of same size ( 2 1 2 1( ) /( )T Tσ σ− − ) between T1 and T2.   Breaks start at either T1=1 

or T1=0.1*T+1, and for CASE II~CASE IV they end at T2= T1+0.1*T-1 (CASE 

II), T2= T1+0.2*T-1 (CASE III), or T2= T1+0.3*T-1 (CASE IV), where T is either 

100 or 500.  Since the initial effect is not a concern, d=0 in (5).  The simulation 

result of rejection frequency for the DF-type tests at the 5% significance level is 

given in Table 2. 

         From Table 2 it is clear that early downward breaks cause significant size 

distortion for the standard DF test regardless of whether the breaks are one-shot or 

sequential.  Actually, sequential small breaks can cause more size distortion than 
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an abrupt large break if the breaks begin at T1=1 while the opposite is true if the 

breaks occur later.  On the other hand, variance breaks of all sorts bring about 

much less serious size problems for the modified DF tests.  
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Table 1: Rejection frequency at 5% level in the presence of GARCH 
 

[a] T=100 
 

           Initial effect untreated             Initial effect off-loaded     

(φ1,φ2) φ1+φ2 DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

(0.300,0.650) 0.950 0.092 0.067 0.065 0.069 0.080 0.070 0.067 0.075 
(0.200,0.750) 0.950 0.077 0.063 0.061 0.066 0.071 0.066 0.064 0.067 
(0.100,0.850) 0.950 0.059 0.058 0.052 0.055 0.062 0.055 0.053 0.055 
(0.000,0.950) 0.950 0.053 0.049 0.048 0.051 0.048 0.050 0.047 0.050 

(0.340,0.650) 0.990 0.173 0.079 0.088 0.081 0.095 0.080 0.078 0.086 
(0.240,0.750) 0.990 0.127 0.067 0.070 0.065 0.087 0.074 0.071 0.076 
(0.140,0.850) 0.990 0.087 0.057 0.058 0.057 0.072 0.064 0.062 0.067 
(0.040,0.950) 0.990 0.055 0.053 0.049 0.054 0.055 0.050 0.049 0.053 

(0.345,0.650) 0.995 0.223 0.077 0.091 0.071 0.099 0.080 0.083 0.090 
(0.245,0.750) 0.995 0.168 0.068 0.075 0.060 0.093 0.072 0.068 0.075 
(0.145,0.850) 0.995 0.101 0.059 0.059 0.056 0.076 0.063 0.063 0.067 
(0.045,0.950) 0.995 0.056 0.049 0.050 0.052 0.053 0.051 0.045 0.049 

(0.349,0.650) 0.999 0.361 0.097 0.128 0.084 0.100 0.079 0.079 0.084 
(0.249,0.750) 0.999 0.250 0.082 0.097 0.070 0.094 0.074 0.074 0.079 
(0.149,0.850) 0.999 0.135 0.064 0.065 0.053 0.080 0.058 0.055 0.060 
(0.049,0.950) 0.999 0.063 0.058 0.054 0.056 0.056 0.055 0.052 0.053 
 
 

[b] T=500 
 

        Initial effect untreated              Initial effect off-loaded     

(φ1,φ2) φ1+φ2 DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

(0.300,0.650) 0.950 0.077 0.065 0.072 0.075 0.075 0.063 0.070 0.074 
(0.200,0.750) 0.950 0.071 0.059 0.068 0.068 0.069 0.059 0.066 0.067 
(0.100,0.850) 0.950 0.055 0.054 0.053 0.054 0.056 0.052 0.051 0.052 
(0.000,0.950) 0.950 0.048 0.045 0.049 0.047 0.050 0.050 0.050 0.049 

(0.340,0.650) 0.990 0.142 0.073 0.093 0.088 0.101 0.080 0.094 0.101 
(0.240,0.750) 0.990 0.123 0.065 0.081 0.081 0.092 0.079 0.086 0.088 
(0.140,0.850) 0.990 0.090 0.065 0.075 0.074 0.084 0.069 0.075 0.077 
(0.040,0.950) 0.990 0.054 0.053 0.053 0.052 0.055 0.056 0.056 0.056 

(0.345,0.650) 0.995 0.188 0.077 0.102 0.098 0.104 0.082 0.093 0.098 
(0.245,0.750) 0.995 0.174 0.077 0.104 0.093 0.104 0.078 0.091 0.097 
(0.145,0.850) 0.995 0.133 0.069 0.080 0.073 0.090 0.069 0.076 0.078 
(0.045,0.950) 0.995 0.060 0.053 0.054 0.051 0.065 0.058 0.056 0.057 

(0.349,0.650) 0.999 0.358 0.087 0.146 0.109 0.108 0.082 0.099 0.102 
(0.249,0.750) 0.999 0.336 0.082 0.130 0.094 0.105 0.084 0.098 0.102 
(0.149,0.850) 0.999 0.239 0.075 0.101 0.075 0.096 0.068 0.080 0.081 
(0.049,0.950) 0.999 0.089 0.055 0.061 0.057 0.069 0.053 0.057 0.057 
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[c] T=1000 

 
          Initial effect untreated          Initial effect off-loaded     

(φ1,φ2) φ1+φ2 DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

(0.300,0.650) 0.950 0.076 0.062 0.074 0.083 0.077 0.070 0.074 0.082 
(0.200,0.750) 0.950 0.064 0.063 0.067 0.073 0.068 0.062 0.065 0.073 
(0.100,0.850) 0.950 0.057 0.054 0.055 0.060 0.058 0.054 0.057 0.064 
(0.000,0.950) 0.950 0.049 0.055 0.050 0.053 0.054 0.054 0.051 0.055 

(0.340,0.650) 0.990 0.127 0.077 0.094 0.100 0.104 0.084 0.099 0.109 
(0.240,0.750) 0.990 0.115 0.074 0.089 0.094 0.096 0.083 0.089 0.101 
(0.140,0.850) 0.990 0.081 0.065 0.073 0.079 0.080 0.067 0.076 0.081 
(0.040,0.950) 0.990 0.058 0.054 0.056 0.061 0.062 0.053 0.057 0.060 

(0.345,0.650) 0.995 0.160 0.083 0.108 0.109 0.103 0.088 0.098 0.110 
(0.245,0.750) 0.995 0.153 0.080 0.102 0.105 0.107 0.084 0.096 0.107 
(0.145,0.850) 0.995 0.120 0.070 0.087 0.092 0.094 0.074 0.085 0.093 
(0.045,0.950) 0.995 0.066 0.057 0.059 0.066 0.062 0.059 0.058 0.064 

(0.349,0.650) 0.999 0.302 0.083 0.130 0.115 0.115 0.084 0.101 0.116 
(0.249,0.750) 0.999 0.304 0.092 0.131 0.113 0.108 0.083 0.097 0.109 
(0.149,0.850) 0.999 0.243 0.079 0.109 0.097 0.106 0.081 0.090 0.099 
(0.049,0.950) 0.999 0.106 0.060 0.068 0.068 0.081 0.063 0.064 0.068 

 
 

[d] T=2000 
 

         Initial effect untreated          Initial effect off-loaded     

(φ1,φ2) φ1+φ2 DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

(0.300,0.650) 0.950 0.065 0.058 0.064 0.068 0.069 0.057 0.065 0.070 
(0.200,0.750) 0.950 0.060 0.056 0.057 0.057 0.058 0.058 0.058 0.060 
(0.100,0.850) 0.950 0.055 0.056 0.057 0.057 0.056 0.050 0.052 0.053 
(0.000,0.950) 0.950 0.046 0.051 0.049 0.049 0.050 0.050 0.051 0.050 

(0.340,0.650) 0.990 0.108 0.078 0.091 0.095 0.094 0.074 0.092 0.098 
(0.240,0.750) 0.990 0.102 0.073 0.089 0.091 0.091 0.076 0.087 0.093 
(0.140,0.850) 0.990 0.083 0.064 0.073 0.077 0.081 0.068 0.074 0.080 
(0.040,0.950) 0.990 0.054 0.050 0.052 0.053 0.054 0.053 0.054 0.053 

(0.345,0.650) 0.995 0.128 0.076 0.094 0.097 0.105 0.083 0.094 0.103 
(0.245,0.750) 0.995 0.128 0.080 0.098 0.101 0.103 0.080 0.093 0.099 
(0.145,0.850) 0.995 0.106 0.075 0.087 0.089 0.083 0.070 0.080 0.085 
(0.045,0.950) 0.995 0.065 0.057 0.057 0.059 0.059 0.058 0.059 0.059 

(0.349,0.650) 0.999 0.229 0.080 0.112 0.101 0.106 0.082 0.099 0.110 
(0.249,0.750) 0.999 0.231 0.079 0.111 0.101 0.107 0.088 0.103 0.112 
(0.149,0.850) 0.999 0.214 0.082 0.103 0.095 0.109 0.087 0.098 0.104 
(0.049,0.950) 0.999 0.104 0.061 0.071 0.067 0.086 0.065 0.069 0.069 
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Table 2: Rejection frequency at the 5% level with variance breaks 
 

 
[a] Variance breaks starting at T1=1 
 

 
           T=100             T=500     
    DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

δ=0.25 CASE I 0.149 0.041 0.046 0.039 0.073 0.043 0.048 0.046 
  CASE II 0.366 0.076 0.093 0.048 0.367 0.064 0.095 0.051 
  CASE III 0.379 0.086 0.107 0.064 0.373 0.080 0.113 0.064 
  CASE IV 0.323 0.089 0.108 0.066 0.315 0.083 0.113 0.064 

δ=0.4 CASE I 0.088 0.046 0.048 0.048 0.057 0.047 0.049 0.046 
  CASE II 0.184 0.051 0.057 0.041 0.180 0.048 0.059 0.040 
  CASE III 0.215 0.055 0.063 0.042 0.209 0.055 0.065 0.045 
  CASE IV 0.208 0.061 0.066 0.047 0.203 0.059 0.068 0.046 

δ=0.6 CASE I 0.069 0.050 0.048 0.051 0.049 0.044 0.045 0.045 
  CASE II 0.087 0.046 0.047 0.047 0.074 0.040 0.045 0.042 
  CASE III 0.107 0.045 0.049 0.047 0.094 0.041 0.046 0.041 
  CASE IV 0.117 0.046 0.050 0.046 0.102 0.040 0.048 0.040 

 
 
[b] Variance breaks starting at T1=0.1*T+1 

 
          T=100             T=500     
    DF DFGLS DFWS DFREC DF DFGLS DFWS DFREC 

δ=0.25 CASE I 0.400 0.079 0.102 0.055 0.406 0.080 0.120 0.061 
  CASE II 0.398 0.095 0.116 0.066 0.399 0.084 0.124 0.073 
  CASE III 0.336 0.095 0.114 0.070 0.331 0.083 0.117 0.071 
  CASE IV 0.267 0.083 0.099 0.069 0.260 0.077 0.108 0.068 

δ=0.4 CASE I 0.228 0.057 0.066 0.045 0.225 0.053 0.067 0.045 
  CASE II 0.239 0.066 0.072 0.048 0.230 0.057 0.072 0.046 
  CASE III 0.223 0.066 0.073 0.051 0.213 0.060 0.073 0.045 
  CASE IV 0.199 0.069 0.075 0.053 0.190 0.058 0.072 0.047 

δ=0.6 CASE I 0.122 0.050 0.049 0.043 0.116 0.051 0.055 0.044 
  CASE II 0.126 0.050 0.050 0.043 0.120 0.050 0.058 0.044 
  CASE III 0.128 0.050 0.052 0.043 0.122 0.053 0.058 0.045 
  CASE IV 0.131 0.051 0.054 0.044 0.120 0.053 0.059 0.044 

 
 
Note. CASE I: a one-shot variance break at T1; CASE II: sequential breaks starting 
at T1 and ending at T2=T1+0.1*T-1; CASE III: sequential breaks starting at T1 and 
ending at T2=T1+0.2*T-1; CASE IV: sequential breaks starting at T1 and ending at 
T2=T1+0.3*T-1. 
 


