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Feedback control engineers have been interested in MIMO (multiple-input multiple-output) ex-
tensions of SISO (single-input single-output) results of various kinds due to its rich mathematical
structure and practical applications. An outstanding problem in quantum feedback control is the
extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett.
70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-
mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive
quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory
and whose additional mathematical structure is highlighted by the extensive use of vector-operator
algebra.

PACS numbers: 42.50.Dv, 42.50.Lc, 42.50.Pq

I. INTRODUCTION

Feedback control engineering [1] is ubiquitous in mod-
ern technology [2, 3]. As we further miniaturise tech-
nology, a quantum theory of feedback control can be ex-
pected to be essential [4, 5]. In fact the realisation that
quantum technology may benefit from modern control
theory is currently driving a research program in which
concepts from classical control systems [6, 7] are being
applied and extended to quantum systems [8–18]. This
facet of quantum feedback control makes it an interdis-
ciplinary field, attracting both engineers and physicists.

A control strategy that has been widely studied is
Markovian feedback [5] which has useful applications in
quantum information [20–25]. This is a continuous (in
time) process which can be briefly summarized by Fig. 1.
A general framework for such a process when the system
has only one measurement output, one feedback input
(Fig. 1(a), a case which we refer to as single-input single-
output, abbreviated to SISO), mediated by homodyne
detection was first put forth by Wiseman and Milburn
[26]. In that work they treated feedback as an instanta-
neous process. A more detailed treatment that showed
how to account for a feedback delay and how the limit
of zero delay should be appropriately taken, giving rise
to Markovian system evolution, was later given by Wise-
man [27]. This is the most complete theory of Markovian
feedback developed to date.

A theory of MIMO (multiple-input multiple-output,
Fig. 1(b)) quantum feedback would be necessary in any
situation where multiple degrees of freedom of a quan-
tum system are monitored and controlled. The system
could be a register of qubits, or the different canonical
momenta (or positions) of a system of quantum objects.
Indeed, investigations in this direction with a few inputs
and outputs have already begun [20, 28–32]. With the
drive to build realistic quantum computing devices where
quantum information would be encoded in many qubits
a general theory of MIMO control would be an valuable
tool to obtain.

The extension of Ref. [27] to multiple inputs and mul-
tiple outputs would seem to be the obvious follow-up so
it is natural to ask why this generalization was not made
until now. There are two reasons for this. The first is
related to the strategy underlying a master equation ap-
proach to open systems — Changes in our distinguished
system due to its interactions with other ancillary quan-
tum systems are taken into account by including, in the
master equation, parameters (numbers) which character-
ize these ancillary objects. The measurement step in the
feedback loop shown in Fig. 1 then defines a necessary
point of interaction between the system and the measur-
ing device. A mathematical representation of the mea-
surement is therefore necessary; without it a master equa-
tion for the controlled system cannot be derived. Finding
this mathematical representation is nontrivial and it was
not until 2001 that a representation of diffusive measure-
ments with unit detection efficiency was found [33]. The
end result is a parameterization called the unravelling
matrix, generalized in 2005 to include non-unit detection
efficiency [19]. In this paper we will use a different pa-
rameterization (which we have referred to as the M-rep
[34]) because our results are simpler when expressed in
terms of the M-representation of diffusive measurements.

The second reason for not extending the SISO work
of Ref. [27] to multiple inputs and multiple outputs ear-
lier was due to a lack of motivation. The aforementioned
research program of finding quantum-mechanical paral-
lels of classical control has only proliferated in recent
times [60]. The physics and engineering communities at
the time of Ref. [27] were more or less separated and
terms such as “MIMO” and “nonlinear systems” did not
mean much to physicists. Control engineers have long
been interested in generalizing various SISO results to
the MIMO case, due to both its mathematical structure,
and the prospects of practical applications that MIMO
systems can offer [38–43]. It remains to be an active line
of research today in the engineering community [44–47].
So a second motivation for constructing a MIMO theory
of feedback is to allow quantum control to benefit from
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FIG. 1: Markovian feedback in the case of (a) SISO, and (b)

MIMO. Note the number of b̂in fields is not part of the def-
inition of MIMO. For generality we will take there to be L

such inputs. We take the environment to be a collection of
(bosonic) harmonic oscillators. The system interacts with the

bath field b̂in and this process turns b̂in into b̂out which then
gets detected. Here we are defining an N-component vector-
operator (vop) â as â ≡ (â1, â2, . . . , âN)⊤ (see Appendix A
of Ref. [34]). The detection process produces a current, mod-
elled by ŷ1, which is then fed back into a feedback actuator.
The actuator uses the information in the measured current
to implement a control û on the system. The measurement
ouput ŷ1 is usually referred to as just the “output” and the
control vop û as the “input”. It is possible to allow the num-
ber of outputs be different to the number of inputs, but for
simplicity (and without loss of generality, see Appendix A) we
will let these be the same, equal to R. Markovian feedback
may then be defined by û = ŷ1.

the works of engineers, and more generally, aid in the
broader program of drawing analogies between classical
and quantum theories of feedback control.

The paper is organized as follows: In Sec. II we in-
troduce the theory of quantum measurements in the
Heisenberg picture and discuss how such a model can

be extended to include feedback. This theory is then
used immediately in Sec. III to describe the uncondi-
tional evolution of the system by deriving the Marko-
vian MIMO feedback master equation and the Markovian
quantum Langevin equation. There are two well-known
approaches to obtaining these results and they are both
discussed in Sec. III. In Sec. IV we consider time evolu-
tion with conditioning. The MIMO stochastic feedback
master equation and two-time correlation function of the
measured current are derived in this section. In Sec. V
we show how our theory of MIMO feedback correctly re-
produces previously known results in the limiting cases of
homodyne- and heterodyne-mediated feedback. We then
conclude with a discussion in Sec. VI.
At this point we would like to refer the reader to our

exposition of vector-operator (or vop) algebra in the ap-
pendix of Ref. [34] as this is used extensively in this pa-
per. We also mention that for convenience we will not
necessarily reflect the multi-component nature of vectors
or vops in our language when they are referred to, such
as in “the field â”, or, “the current ŷ”, as opposed to
using plurals as in “the fields â” or “the currents ŷ”.

II. REVIEW OF HEISENBERG-PICTURE
DYNAMICS

A. Open Quantum Systems

To set the premise of our theory we refer to Fig. 1 but
in the absence of the feedback actuator (i.e. û = 0). The
system and environment can be considered as one closed
system whose time evolution is described by

Ĥ = Ĥ0 + Ĥ1 + Ĥm , (1)

where Ĥ0 consists of the free Hamiltonians for the sys-
tem and bath. Evolution due to external driving, or, for
example, the extra Lamb shift that is often dropped in
quantum optics [48] are accounted for by Ĥ1. The en-
vironment is assumed to be a free bosonic field in one
dimension (i.e. specified by a space-time coordinate) in
the vacuum state and the system interacts with the en-
vironment by exchanging energy quanta with the bath
field. We model this by the coupling Hamiltonian

Ĥm = i(b̂†
in ĉ− ĉ† b̂in) . (2)

where ĉ and b̂in are each an L-component vop and the
Hermitian conjugate of an N -vop Â is defined by

Â† =
(

Â†
1, Â

†
2, . . . , Â

†
N

)

. (3)

Note that our measurement is performed on the bath, so
within the standard quantum theory of indirect measure-
ments [49] the environment acts as our measuring appa-
ratus and (2) effects a measurement interaction. The field

b̂in(t) represents quantum noise and dB̂in(t) ≡ b̂in(t) dt
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is a quantum Wiener increment [50]. That is it has zero
mean

〈

dB̂in(t)
〉

= 0 , (4)

and satisfies the (quantum) Itô rule

dB̂in(t) dB̂
†
in(t) = ~ ÎL dt , (5)

with all other second or higher moments negligible. We
are denoting an L×L identity mop (matrix-operator, see

Ref. [34]) by ÎL. The dynamics due to Ĥ0 is usually well
known and we can simplify matters by first transforming
to a frame rotating at a frequency set by Ĥ0 and sub-
sequently define all time evolution with respect to this
frame. Unless required we will generally omit the time-
dependence due to Ĥ0 and define our Schrödinger and
Heisenberg pictures with respect to the rotating frame
defined by Ĥ0 [5].

For simplicity we group Ĥ1 with Ĥm to define the
time-evolution operator due to “measurement” by the
Hudson–Parthasarathy equation [51]

~ dÛm(t, t0) =
(

− iĤ1 dt− 1
2 ĉ

†ĉ dt

+ dB̂†
in ĉ− ĉ†dB̂in

)

Ûm(t, t0) , (6)

where Ûm(t0, t0) = 1̂.

As a consequence of the singluar nature of b̂in, the
unitary evolution specified by (6) gives rise to an output
field in the Heisenberg picture

dB̂out(t) ≡ Û †
m(t+ dt, t) dB̂in(t) Ûm(t+ dt, t) ,

= ĉ(t)dt+ dB̂in(t) . (7)

Note that b̂in and b̂out are different parts of the same
quantum field, namely before and after interaction with
the system [52, 53]. As such the input and output fields
will only commute with an arbitrary system operator ŝ

at different times,
⌊

dB̂in(t), ŝ(t
′)
⌉

= 0 ∀ t′ ≤ t , (8)
⌊

dB̂out(t), ŝ(t
′)
⌉

= 0 ∀ t′ > t . (9)

Here
⌊

Â, B̂
⌉

is the mop-bracket for two vops Â and B̂,
defined as [34]

⌊

Â, B̂
⌉

= ÂB̂⊤ −
(

B̂Â⊤
)⊤

. (10)

An arbitrary vop ŝ will evolve, due to the measurement
interaction, according to the quantum Langevin equation
derived from (6)

~ [dŝ ]m =
(

i [Ĥ1, ŝ ] + J [ĉ‡] ŝ− 1
2 {ĉ

†ĉ, ŝ}
)

dt

+ [ ĉ†dB̂in − dB̂†
inĉ, ŝ ] , (11)

where Â‡ ≡
(

Â⊤
)†

and (see [34])

J [Â‡] B̂ =
(

Â‡B̂⊤
)⊤

Â . (12)

It is then easy to show that transforming this to the
Schrödinger picture gives the master equation due to
measurement

~ [dρ ]m ≡ Lm ρ dt = −i [Ĥ1, ρ]dt+D[ĉ]ρ dt , (13)

where

D[ĉ]ρ = ĉ⊤ρ ĉ‡ − 1
2

{

ĉ†ĉ, ρ
}

, (14)

and
{

Â, B̂
}

≡ ÂB̂ + B̂Â .

B. Quantum Measurements

The output field b̂out is then measured and the de-
tector produces a current y. In the Heisenberg picture
the current is represented by a vector-operator, which in

general will be some function of the output field b̂out

ŷ1 = g
(

b̂out, ξ̂
)

, (15)

where ξ̂ is measurement noise.
For the remainder of this paper we concentrate on the

class of diffusive measurements. It was shown previously
that the output of such a measurement can be repre-
sented by an R× 1 vop [5, 34]

~ ŷ1 dt = M
†dB̂out +M

⊤dB̂‡
out + ~ dυ̂in . (16)

The subscript for the current here does not mean that it
is related to Ĥ0 and Ĥ1 in (1), instead it is to remind
us that the current is defined in terms of output field
dB̂out. This will be useful when we consider feedback in
Sec. III B when the current will be defined in terms of the
input field. Note that corresponding to each component
of ĉ (or each dissipative channel) we need at most two
quadrature measurements so R ≤ 2L. The matrix M is
L×R defined by

MM
†/~ ∈ H , (17)

where H = {diag(η ) |∀ k, ηk ∈ [0, 1]} . The noise dυ̂in

in (16) is a R × 1 Hermitian vop with zero mean and
correlations given by

(~ dυ̂in) (~ dυ̂in)
⊤ = ~Z dt , (18)

where

Z = ~ IR −M
†
M . (19)

We can express dυ̂in in terms of independent quantum
Wiener increments

~ dυ̂in =
√
Z dÛin +

√
Z

∗ dÛ‡
in . (20)

The increments dÛin are completely uncorrelated with
the system so they satisfy

⌊

dÛin(t), ŝ(t
′)
⌉

= 0 ∀ t, t′ . (21)

We remind the reader that this is not what is usually
referred to as the measurement noise dv̂m.
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C. Adding Feedback

We can describe feedback on the system by adding
another Hamiltonian Ĥfb to (1):

Ĥ = Ĥ0 + Ĥ1 + Ĥm + Ĥfb . (22)

In general Ĥfb will describe the coupling of the input û,
which may be a functional of the current ŷ1, to the sys-
tem. Markovian feedback can be defined as the coupling
of the measured current ŷ1 (in which case û = ŷ1) to

a Hermitian system vop f̂ (see Appendix A). As a re-
sult of working in the idealized limit where ŷ1 contains

white noise it is only sensible to consider f̂ being coupled
linearly to ŷ1, i.e.

Ĥfb = ~ f̂⊤ ŷ1 , (23)

where f̂ and ŷ1 are at the same time. Coupling f̂ to any
nonlinear function of ŷ1 would generate time evolution
which is indescribable by (quantum) stochastic calculus.

The careful reader will notice a number of issues with
the Hamiltonian (23). First, ŷ1 does not commute with

f̂ at the same time, so Ĥfb as it stands is not even Hermi-
tian. Second, it does not strictly exist because although
ŷ1 dt exists as a stochastic increment, ŷ1 does not.

The first problem can be solved in two ways as was
recognized in Ref. [27]. The first is to realize that in
actuality there must be a finite time delay in the feedback
loop. Thus, strictly we have

Ĥfb = ~ f̂⊤ ŷ1(t− τ) , (24)

and ŷ1(t−τ) commutes with all system operators at times
later than t−τ and so acts as a complex number for τ 6= 0.
The limit τ → 0+ can be taken at the end of all calcu-
lations. We will derive a Markovian (τ → 0+) master
equation with feedback using this method in Sec. III A.
The second approach is to treat the feedback as an in-
stantaneous process at the outset by ensuring that the
measurement acts before the feedback. We follow this
approach in Sec. III B.

The second issue is more serious, and for general (not
necessarily linear) quantum systems care must be taken
in determining the evolution generated by Eq. (24).

Our definition of Markovian feedback is directly in
terms of the feedback Hamiltonian. Placing the definition
on the Hamiltonian is sensible and appeals to physicists
since the Hamiltonian is the generator of time evolution.
In Appendix A we define feedback in a manner that draws
upon the traditional control systems approach. In this
language one can differentiate between system dynamics
that is linear and nonlinear and the results of this pa-
per can be seen to apply to the more general (nonlinear)
regime.

III. UNCONDITIONAL DYNAMICS

A. Diffusion-mediated Feedback Starting with
Non-zero Feedback Delay

1. Feedback master equation

Since we have already introduced the most general
form of a master equation in the absence of feedback
(13), we will only derive Lfb in

~ ρ̇ =
(

Lm + Lfb

)

ρ . (25)

We will start in the Heisenberg picture in which case the
quantum Langevin equation corresponding to ρ̇ is

dŝ = [dŝ ]m + [dŝ ]fb , (26)

where [dŝ]m is given by Eq. (11). The feedback contribu-
tion [dŝ ]fb can be obtained from

[dŝ ]fb = Û †
fb(t+ dt, t) ŝ Ûfb(t+ dt, t)− ŝ . (27)

The unitary operator here is given by

Ûfb(t+ dt, t) = e−iĤfbdt/~ . (28)

It is perhaps not entirely obvious that deriving Lfb (from
either the Schrödinger or Heisenberg picture) and adding
it to Lm should result in the correct master equation since
[dŝ]m and [dŝ]fb are defined with different time-evolution
operators. This is justified in Appendix B. Expanding
(28) to order dt,

Ûfb(t+ dt, t) = 1̂− i f̂⊤ŷ1(t− τ)dt− 1
2 f̂

⊤f̂ dt . (29)

We have used the Itô rule to obtain the last term in
Eq. (29). Substituting Eq. (29) into (27), retaining only
terms of order dt, and multiplying by ~ we obtain

~ [dŝ ]fb = − i~ ŝ [ f̂⊤ŷ1(t− τ)dt ] + i~ [ f̂⊤ŷ1(t− τ)dt ] ŝ

+ ~D[f̂ ] ŝ dt . (30)

The bath is assumed to be in the vacuum state so the
initial joint system-bath state is

ρSB = ρ⊗ |0〉〈0| , (31)

where ρ is the system state and |0〉〈0| the bath state.
Remember that we are in the Heisenberg picture so ρSB

does not evolve. To derive a master equation for ρ we will
take the ensemble average of (30) with respect to ρSB and
this immediately eliminates the vacuum noise contained
in ŷ1 since the vacuum inputs are completely indepen-
dent of the system. This also suggests that we should
normally order the terms containing dB̂out (since then

dB̂in will annihilate the vacuum to give zero when aver-
aged). Considering the first term of (30) for the moment,
we obtain, upon substituting in (16)

−i~
〈

ŝ [ f̂⊤ŷ1(t− τ)dt ]
〉

= − i
〈

ŝ [ f̂⊤M†dB̂out(t− τ)]

+ ŝ [ f̂⊤M⊤dB̂‡
out(t− τ)]

〉

.

(32)
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The first term here is already in normal order while the
second term can be written as

ŝ [ f̂⊤M⊤dB̂‡
out(t− τ)] = [ŝ dB̂†

out(t− τ)]M f̂⊤

= [dB̂‡
out(t− τ) ŝ⊤]⊤M f̂ , (33)

where we have noted the mop-bracket (9) in (33). Using
these orderings and (7), the average of (32) is simply

−i~
〈

ŝ [ f̂⊤ŷ(t− τ)dt ]
〉

= − i
〈

ŝ [ f̂⊤M†ĉ(t− τ)]

+ [ ĉ‡(t− τ) ŝ⊤]⊤M f̂
〉

. (34)

Now taking the Markovian (τ → 0) limit and writing the
average as a trace we get

− i~
〈

ŝ [ f̂⊤ŷ1 dt ]
〉

= − iTr
{

ŝ f̂⊤M†ĉρSB +
(

ĉ‡ ŝ⊤
)⊤
M f̂ ρSB

}

dt

= − iTr
{

ŝ f̂⊤M†ĉρSB + ŝ
(

M f̂ ρSB

)⊤
ĉ‡
}

dt

= − iTr
{

ŝ f̂⊤
(

M
†ĉρSB + ρSBM

⊤ ĉ‡
)

}

dt . (35)

To obtain the Markovian limit of the average of the
second term in (30) we can perform a similar calculation
as above, or, alternatively note that

lim
τ→0+

i~
〈

[ ŷ⊤
1 (t− τ)dt f̂ ] ŝ

〉

=
{

lim
τ→0+

−i~
〈

ŝ† [ f̂⊤ŷ1(t− τ) dt ]
〉

}†

= iTr
{

ŝ
(

ρSB ĉ
†
M f̂ + ĉ⊤ M

∗ρSB

)

f̂
}

dt . (36)

The last line is obtained by letting ŝ → ŝ† in (35) and
using the cyclic property of trace to permute ŝ to the left.

The average of D[f̂ ]ŝ dt in (30) can simply be expressed
as

~
〈

D[f̂ ] ŝ
〉

dt = Tr
{

ŝ ~D[f̂ ]ρSB

}

dt . (37)

Adding (35), (36), and (37), we arrive at

~
〈

[dŝ]fb
〉

= Tr
{

ŝ
[

~D[f̂ ] ρSB − i f̂⊤
(

M
†ĉρSB + ρSBM

⊤ ĉ‡
)

+ i
(

ρSB ĉ
†
M+ ĉ⊤ M

∗ ρSB

)

f̂
]}

dt

= Tr
{

ŝ
(

−i
⌈

f̂ ,M†ĉρSB + ρSBM
⊤ĉ‡

⌋

+ ~D[f̂ ] ρSB

)}

dt . (38)

In the last equality we have made use of the sop-bracket,
defined by [34]

⌈

Â, B̂
⌋

= Â⊤B̂− B̂⊤Â . (39)

Remember that we are only working out the time evolu-
tion due to feedback so the feedback contribution to the
full master equation is defined by

~ 〈 [dŝ(t)]fb〉 = TrS

{

ŝ(0) ~ [dρ(t)]fb

}

(40)

where ρ(t) here is defined by the partial trace over
the bath ρ(t) = TrB{ρSB(t)}. We thus obtain, in the
Schrödinger picture, where operators are understood to
be time-independent and ρ time-dependent,

~ [dρ ]fb ≡ Lfb ρ dt

=
(

~D[f̂ ]ρ − i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

)

dt . (41)

Adding this to the measurement master equation defined
by (13) we obtain the diffusion-mediated Markovian feed-
back master equation

~ ρ̇ ≡ Lmfbρ = −i
[

Ĥ1, ρ
]

+D[ĉ]ρ+ ~D[f̂ ]ρ

− i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

. (42)

Note that (42) is valid for nonlinear systems (see Ap-

pendix A) as no assumptions about Ĥ1, ĉ, and f̂ were
made in our derivation. That Lm + Lfb is again of the
Lindblad form is a rather lengthy exercise so we have
proved it in Appendix C. The result may be written as

~ ρ̇ = − i
[

Ĥ1 +
1
2 ( f̂

⊤
M

†ĉ+ ĉ†M f̂ ), ρ
]

+D
[

ĉ− iM f̂
]

ρ+D
[

√

~ IR −M†M f̂
]

ρ , (43)

where
√

~ IR −M†M may be replaced by any matrix
square root of ~ IR − M

†
M [61]. We remark that while

the Lindblad form is an important part of the theory,
(43) is not necessarily more useful than (42).

2. Feedback quantum Langevin equation

Equation (42), or (43), describes feedback in the
Schrödinger picture but they are not the only equations
of motion capable of capturing the feedback process.
An alternative theory of feedback exists in the Heisen-
berg picture where feedback is described by a quantum
Langevin equation for an arbitrary system vop ŝ. Such
an equation follows unitary evolution and has the inter-
pretation that measurements (namely the collapse of ρ as
occurs by using a measurement operator) never happens.
Thus it also describes “feedback without measurement”
[27].

As before, the calculation can be simplified by first
deriving the change in ŝ due to feedback only and then
adding it to the measurement contribution. This can be
obtained from (30) by substituting in the expression for

ŷ1 and then normally ordering dB̂out. The final result,
including the measurement contribution is
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~ dŝ =
(

i [Ĥ1, ŝ ] + J [ĉ‡] ŝ− 1
2 {ĉ

†ĉ, ŝ} + ~D[f̂ ] ŝ
)

dt+ [ ĉ†dB̂in − dB̂†
inĉ, ŝ ]

− i
⌊

ŝ,M∗ f̂
⌉[

ĉ(t− τ)dt + dB̂in(t− τ)
]

+ i
{

[

ĉ†(t− τ)dt + dB̂†
in(t− τ)

]⌊

M f̂ , ŝ
⌉

}⊤

− i
⌊

ŝ,
√
Z
∗ f̂
⌉

dÛin(t− τ) + i
{

dÛ†
in(t− τ)

⌊
√
Z f̂ , ŝ

⌉

}⊤

. (44)

The matrix
√
Z is the positive square root of (19) and

dÛin is an independent Wiener increment (recall (20) and
(21)). One can check that (44) is a valid Itô equation,
i.e.

d(ŝ α̂) = (dŝ) α̂+ ŝ (dα̂) + (dŝ)(dα̂) , (45)

for any operator α̂. Note that we can take the Markovian

limit of (44) by setting τ = 0 in dB̂in(t− τ) since b̂in(t)
is continuous in time, although nowhere differentiable.
The resulting equation with τ = 0 in (44) is then the
Heisenbergpicure equivalent of (42) in the sense that

d 〈ŝ〉 = Tr
[

ρSB(0) dŝ(t)
]

= TrS
[

dρ(t) ŝ(0)
]

. (46)

B. Diffusion-mediated Feedback Starting with Zero
Feedback Delay

When we allow the feedback delay to be zero we are let-

ting the time at which f̂ interacts with the bath converge
to the same point in time as the interaction between ĉ

and the bath. This eliminates the concept of b̂out. Con-
sequently the feedback interaction should be defined by

Ĥfb = ~ f̂⊤ŷ0 , (47)

where ŷ0 is

~ ŷ0 dt = M
†dB̂in +M

⊤dB̂‡
in + ~ dυ̂in . (48)

By working in the limit of zero feedback delay we are
also allowing the measurement and feedback interactions
to occur in the same infinitesimal time interval [t, t+dt),

Ûmfb(t, t+ dt) = Ûfb(t, t+ dt) Ûm(t, t+ dt) . (49)

where

Ûfb(t, t+ dt) = exp
(

− iĤfbdt/~
)

= exp
(

− i f̂⊤ŷ0 dt
)

.

(50)

Since Ĥfb and Ĥm do not commute the order of Ûfb and
Ûm matters and the correct order is defined by the order
in which the two processes happen in reality. This order
should correspond to the order in which the unitaries act
on a state, as shown in (49). That is the Schrödinger
picture is what defines the order in which we compose
Ûm and Ûfb to give Ûmfb. When we evolve a vop ŝ in the
Heisenberg picture from t to t + dt under measurement
and feedback the order is then given by (with the unitary
operators understood to act over an infinitesimal interval
from t to t+ dt)

ŝ(t+ dt) = Û †
mfb ŝ Ûmfb = Û †

m Û †
fb ŝ Ûfb Ûm . (51)

There is of course nothing odd about letting Ûfb act on ŝ

first in (51), it is simply a consequence of the definition

of the Heisenberg picture. If one insists on having Ûm

act on ŝ first, even in the Heisenberg picture, then we
can rewrite (51) as

ŝ(t+ dt) = Û †
fb1Û

†
m ŝ ÛmÛfb1 , (52)

where we have defined

Ûfb1 = Û †
m Ûfb Ûm = exp

(

−i Ĥfb1 dt/~
)

. (53)

The Hamiltonian Ĥfb1 is given by

Ĥfb1 dt = ~ f̂⊤(t+ dt) ŷ1 dt , (54)

and ŷ1 is as before, given by (16). Note that (54) has
no ordering ambiguity (recall the discussion surrouding
(24)) on its RHS since the current ŷ1 appears at an (in-

finitesimally) earlier time than f̂(t+ dt). In what follows
we will take the former approach, i.e. with a vop in the
Heisenberg picture defined by (51) and a feedback Hamil-
tonian given by (47) and (48).

The Hudson–Parthasarathy equation for Ûmfb(t, t0) is

~ dÛmfb(t, t0) =
[

(

−iĤ1 − ĉ†ĉ/2− ~ f̂⊤f̂/2− i f̂⊤M†ĉ
)

dt+ dB̂†
in

(

ĉ− iM f̂
)

−
(

ĉ† + i f̂⊤M†
)

dB̂in

− i
(

f̂⊤
√
Z dÛin + dÛ†

in

√
Z f̂
)

]

Ûmfb(t, t0) , (55)
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with the initial condition Ûmfb(t0, t0) = 1̂. From this we can derive yet another quantum Langevin equation,

~ dŝ = i
[

Ĥ1, ŝ
]

dt+ ~D[f̂ ] ŝ dt−
⌊

ŝ, ĉ‡
⌉(

1
2 ĉdt+ dB̂in

)

−
{

(

1
2 ĉ

†dt+ dB̂†
in

)⌊

ĉ, ŝ
⌉

}⊤

+ i
{

(

ĉ†dt+ dB̂†
in

)⌊

M f̂ , ŝ
⌉

}⊤

− i
⌊

ŝ,M∗ f̂
⌉(

ĉdt+ dB̂in

)

− i
⌊

ŝ,
√
Z

∗ f̂
⌉

dÛin + i
{

dÛ†
in

⌊
√
Z f̂ , ŝ

⌉

}⊤

. (56)

This is again a valid Itô equation in the sense of (45)
and we have also placed the bath fields on the exterior so

that terms containing dB̂in or dB̂†
in vanish when averaged

against a vacuum bath state.
Here we have to be careful that (56) is not quite the

same as the equation which results from setting τ = 0 in
(44). Their difference lies in the last term (a commutator)
in the first line of (44) and the last two terms in the
first line of (56). Let us illustrate the difference by first

simplifying (44) and (56) by letting Ĥ1 = 0 and f̂ = 0 in
both equations. In this case (44) simplifies to,

~ dŝ =
(

J [ĉ‡] ŝ− 1
2 {ĉ

†ĉ, ŝ}
)

dt+ [ ĉ†dB̂in − dB̂†
inĉ, ŝ ] ,

(57)

while (56) simplifies to

~ dŝ = −
⌊

ŝ, ĉ‡
⌉(

1
2 ĉdt+ dB̂in

)

−
{

(

1
2 ĉ

†dt+ dB̂†
in

)⌊

ĉ, ŝ
⌉

}⊤

. (58)

To arrive at (58) we have used the fact that dB̂in will
commute with an arbitrary system vop ŝ at the same
time. This means that in (58) (and also (56)) ŝ is strictly
a system vop; setting ŝ to a bath vop in (56) would violate

this assumption. Setting ŝ = b̂in in (56) (or (56)) yields

the nonsensical result b̂out = b̂in. On the other hand
(44), and therefore (57), uses only the commutability of

dB̂out(t−τ) with ŝ(t) for τ > 0. This is actually preserved
even when we let ŝ be a bath field. Indeed, when we set

ŝ = b̂in in (57) (or (44)) the correct output relation of
the bath field is obtained.
To derive a master equation we may move into the

Schrödinger picture from (55) or simply take the average
of (56). Since (56) is normally ordered in the bath vops,
its average with respect to (31) is simply

~
〈

dŝ
〉

=
〈

i
[

Ĥ1, ŝ
]

− 1
2

⌊

ŝ, ĉ‡
⌉

ĉ− 1
2

(

ĉ†
⌊

ĉ, ŝ
⌉)⊤

+ ~D[f̂ ] ŝ+ i
(

ĉ†
⌊

M f̂ , ŝ
⌉)⊤ − i

⌊

ŝ,M∗ f̂
⌉〉

dt .

(59)

It is easy to show that

− 1
2

⌊

ŝ, ĉ‡
⌉

ĉ− 1
2

(

ĉ†
⌊

ĉ, ŝ
⌉)⊤

=
(

ĉ‡ŝ⊤
)⊤
ĉ− 1

2

{

ĉ†ĉ, ŝ
}

= J [ĉ‡] ŝ− 1
2

{

ĉ†ĉ, ŝ
}

. (60)

So the first line of (59) is just the average (11) for which
the contribution to ρ̇ is well-known, given by (13). The

first term on the second line is given by (37) while

〈

ĉ†
⌊

M f̂ , ŝ
⌉〉⊤

= Tr
{

ŝ
(

ρSB ĉ
†
M f̂ − f̂⊤ρSBM

⊤ĉ‡
)

}

,

(61)
〈⌊

ŝ,M∗ f̂
⌉

ĉ
〉

= Tr
{

ŝ
(

f̂⊤M†ĉρSB − ĉ⊤M∗ρSB f̂
)

}

. (62)

Therefore the second line of (59) is in fact (38). From
these it should be clear that a master equation exactly
of the form given by (42) results, as expected. If we were
not interested in the quantum Langevin equation then
one would, and is in fact quicker, to derive the master
equation directly from (55).

IV. CONDITIONAL DYNAMICS

To better understand applications of feedback one
would like to know the controlled system dynamics as
the monitoring and feedback occurs in real-time. It is
well-known that continuously measured systems can be
described by a nonlinear stochastic differential equation
for the system state [54, 55]. Here we will derive the
a general diffusion-mediated stochastic feedback master
equation in the Heisenberg picture. This is an exten-
sion of the diffusive stochastic master equation found in
Refs. [19, 33] to include feedback but using a different
parameterization of the measurement. We illustrate the
two cases (with and without feedback) in Fig. 2.

A. Diffusion-mediated Feedback Stochastic Master
Equation

Previously we found the most general diffusive stochas-
tic master equation with measurments alone to be given
by,

dρc = Lm ρc dt+H[dw⊤
M

†ĉ]ρc , (63)

where Lm is given by (13) and dw is an R × 1 (vector)
Wiener increment defined by E[dw(t)] = 0 and

dw(t) dw⊤(t) = IR dt , (64)

dw(t) dw⊤(t′) = 0 ∀ t 6= t′ . (65)

The superoperator H[Â], for any Â, is defined to be

H[Â]ρ = Âρ+ ρÂ† − Tr
[

Âρ+ ρÂ†
]

ρ . (66)
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FIG. 2: For simplicity we have shown only the SISO case
with L = 1. (a) The situation described by the works of
Refs. [19, 33], in which the observer uses his/her knowledge
of the measurement record y (treated as a number in the
Schrödinger picture) to infer the state of the system but in
the absence of feedback. (b) The situation described by the
stochastic master equation (80): The observer infers the state
of the system from the measurement record in the presence
of feedback. The inclusion of feedback (i.e. f̂) changes the

interaction between b̂in and the system. That is, b̂in now
“sees” both ĉ and f̂ , which is why we have written them
as a pair in the figure. The result of this is to produce an
output field b̂outt which evolves according to (55), which is

different to b̂out (hence the extra “t” in the subscript). The
actual system-bath input-output relation with respect to (55)
is worked out in Sec. IVB.

To generalize (63) to account for feedback we first note
that our foregoing derivation of the master equation pre-
scribes us with the rule

Lm −→ Lmfb = Lm + Lfb (67)

for the unconditioned evolution. But how does the con-
ditional dynamics change? That is how can the nonlinear
term in (63) be altered to include feedback?

A derivation of the stochastic master equation in the
Heisenberg picture would be possible if we can establish
a relation about the time evolution in the Schrödinger
and Heisenberg pictures that involves the conditioning.
For unconditional evolution such a relation is given by
(46), which made the derivation of the master equation
possible in the Heisenberg picture. We can in fact find an
analogous relation that incorporates the conditioning of
ρ on the measured current. By considering the evolution
over an infinitesimal time interval such an equation is

given by

~
2
〈

(

ŷ1 − 〈ŷ1〉
)

ŝ⊤(t+ dt)
〉

dt

= ~
2 E
{

dwTrS
[

ŝ⊤ρyt
(t+ dt)

]

}

, (68)

where we have multiplied each side by ~
2 for convenience.

This identity can be derived using quantum measurement
theory. For simplicity we are assuming the state to be
given at time t (i.e. deterministic). The state on the
RHS of (68) is conditioned on the vector-valued current

~y dt =
〈

M
†ĉ+M

†ĉ‡
〉

dt+ ~ dw , (69)

at only one time, t, where dw is a vector Wiener incre-
ment. To use (68) we note from quantum measurement
theory that any diffusive unravelling will be of the form

dρc = Lρc dt+H[dw⊤α̂ ]ρc , (70)

for some α̂ and L. We therefore make this ansatz in (68)
with α̂ to be determined by the LHS, which is in the
Heisenberg picture.
Using (70) and the fact that ρc(t) ≡ ρ(t) is known, the

RHS of (68) simply reduces to

~
2 E
{

dwTrS
[

ŝ⊤ρyt
(t+ dt)

]

}

= ~Tr
{

dw ŝ⊤H[dw⊤α̂ ]ρ
}

= ~Tr
{

[

ŝ
(

α̂⊤ρ+ ρα̂† −
〈

α̂+ α̂†
〉

ρ
)]⊤

}

dt . (71)

The LHS of (68) is

~
2
〈

(ŷ1 − 〈ŷ1〉) ~ ŝ⊤(t+ dt)
〉

dt

=
〈

(~ ŷ1dt) ~ ŝ
⊤(t+ dt)

〉

−
〈

~ ŷ1dt
〉〈

~ ŝ⊤(t+ dt)
〉

.

(72)

On substituting in (16), the first term in (72) is

〈

(~ ŷ1dt) ~ ŝ
⊤(t+ dt)

〉

=
〈

M
†dB̂⊤

out ~ ŝ
⊤(t+ dt)

〉

+
〈

M
⊤dB̂‡

out ~ ŝ
⊤(t+ dt)

〉

+
〈

(~ dυ̂in) ~ ŝ
⊤(t+ dt)

〉

.

(73)

By examining (56) it is not difficult to see that

〈

M
†dB̂⊤

out ~ ŝ
⊤(t+ dt)

〉

= ~
〈

[ ŝ (M†ĉ)⊤]⊤
〉

dt+ i~
〈⌊

M
†
M f̂ , ŝ

⌉〉

dt , (74)

〈

M
⊤dB̂‡

out ~ ŝ
⊤(t+ dt)

〉

= ~
〈

M
⊤ĉ‡ŝ⊤

〉

dt , (75)

〈

(~ dυ̂in) ~ ŝ
⊤(t+ dt)

〉

= i~2
〈⌊

f̂ , ŝ
⌉〉

dt− i~
〈⌊

M
†
M f̂ , ŝ

⌉〉

dt , (76)

〈

~ ŷ1dt
〉〈

~ ŝ⊤(t+ dt)
〉

= ~
〈

M
†ĉ
〉 〈

ŝ⊤
〉

dt+ ~
〈

M
⊤ĉ‡

〉 〈

ŝ⊤
〉

dt . (77)
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Writing (74)–(77) as a trace we get

~
2
〈(

ŷ1 − 〈ŷ1〉
)

[~ ŝ⊤(t+ dt)]
〉

dt

= ~Tr
{

[

ŝ{(M†ĉ− i~ f̂)⊤ρ+ ρ(M†ĉ− i~ f̂)†

−
〈

(M†ĉ)⊤ + (M†ĉ)†
〉

ρ}
]⊤
}

dt . (78)

Equating (78) to (71) and solving for α̂ gives

α̂ = M
†ĉ− i~ f̂ . (79)

Invoking (67) and (79), we arrive at the diffusion-
mediated stochastic feedback master equation

~ dρc = −i
[

Ĥ1, ρc
]

+D[ĉ]ρc + ~D[f̂ ]ρc

− i
⌈

f̂ ,M†ĉρc + ρcM
⊤ĉ‡

⌋

+H
[

dw⊤(M†ĉ− i~ f̂ )
]

ρc . (80)

Comparing (80) to (63) we can summarize the changes
necessary to include feedback in the stochastic master
equation (63) by the two transformations

Lm −→ Lmfb , (81)

M
†ĉ −→ M

†ĉ− i~ f̂ . (82)

We can understand why f̂ must appear in the nonlinear
term by considering the case when M = 0. In this case
the feedback master equation is simply

~ ρ̇ = −i [Ĥ1, ρ ] +D[ĉ]ρ+ ~D[f̂ ]ρ , (83)

and the current fed back is pure noise

y dt = dw . (84)

Equation (83) is the unconditional evolution for the mea-
surement defined by (84). If we now condition the state
on the pure-noise output then the stochastic master equa-
tion which unravels (83) is

~ dρc = − i [Ĥ1, ρc] +D[ĉ]ρc + ~D[f̂ ]ρc

+ ~H[−idw⊤f̂ ]ρc (85)

This can be seen by noting that (84) can also be written
as

y dt =
〈

−i f̂ + (−i f̂)‡
〉

+ dw , (86)

which gives rise to the nonlinear term in (85). When
M 6= 0 we get the general case of (80).

B. Output Correlation Function

When we include feedback in our theory the controlled
dynamics can be accounted for by transforming the in-
put fields according to Ûmfb as opposed to Ûm. That is,
instead of (7) we now have the new output field

dB̂outt(t) ≡ Û †
mfb(t+ dt, t) dB̂in(t) Ûmfb(t+ dt, t)

=
[

ĉ(t)− iM f̂(t)
]

dt+ dB̂in , (87)

which can be derived from (55). The use of the subscript
“outt” is deliberate, to be read as “out twice”. This is
to remind us that dB̂outt is the output field obtained
from using Ûmfb, which is a composition of two unitaries
[62]. The input field dB̂in would still have the same mop-
bracket with an arbitrary system vop ŝ as given by (8),

but dB̂out in (9) should be replaced by dB̂outt. Thus we
now have

⌊

dB̂in(t), ŝ(t
′)
⌉

= 0 ∀ t′ ≤ t , (88)
⌊

dB̂outt(t), ŝ(t
′)
⌉

= 0 ∀ t′ > t . (89)

We should not forget to change the input field dÛin as
well since it will now evolve under the dynamics of feed-
back. Recall that dÛin was introduced in (20), where it
appeared as a vacuum noise in the current that did not
interact with the system. When we add feedback this
noise is redirected onto the system so it is no longer cor-
rect to assume that it is independent of the system as
was the case in (20). We thus have an additional input-
output relation, which can also be derived from (55),

dÛoutt(t) ≡ Û †
mfb(t+ dt, t) dÛin(t) Ûmfb(t+ dt, t)

= dÛin(t)− i
√
Z f̂(t) dt . (90)

Similarly to (88) and (89),

⌊

dÛin(t), ŝ(t
′)
⌉

= 0 ∀ t′ ≤ t , (91)
⌊

dÛoutt(t), ŝ(t
′)
⌉

= 0 ∀ t′ > t . (92)

Relations (87) and (90) in turn define a new vop-valued
current

~ ŷ2 dt = M
†dB̂outt +M

⊤dB̂‡
outt + ~ dυ̂outt , (93)

where the subscript on the current should remind us that
it is defined in terms of dB̂outt, or the number of times
the letter “t” appears on the RHS.

~ dυ̂outt ≡
√
Z dÛoutt +

√
Z

∗ dÛ‡
outt

= ~ dυ̂in − iZ f̂ dt+ iZ∗ f̂ dt . (94)

From (87), (93), and (94), we can see that

ŷ2 = ŷ1 . (95)

That is the current evolved over an infinitesimal interval
from t to t+dt under both measurement and feedback is
in fact the same as the current evolved in the same time
interval but with measurement alone. Equation (95) can
also be seen from the form of the Hamiltonian (47), which
gives

[

Ĥfb, ŷ0

]

= 0 . (96)

Substituting Ûmfb into the definition of ŷ2 we obtain

ŷ2(t) = Û †
mfb(t+ dt, t) ŷ0(t) Ûmfb(t+ dt, t)

= Û †
m(t+ dt, t) ŷ0(t) Ûm(t+ dt, t) = ŷ1(t) . (97)
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Using (93) we can calculate how the current at time t is
correlated to the current at a later time t+τ during which

feedback is applied. The time separation τ is assumed to
be non-negative. We then obtain

~
2
〈

ŷ2(t) ŷ
⊤
2 (t+ τ)

〉

=
〈

M
† b̂outt(t) b̂

⊤
outt(t+ τ)M∗

〉

+
〈

M
† b̂outt(t) b̂

†
outt(t+ τ)M

〉

+
〈

M
† b̂outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

+
〈

M
⊤ b̂

‡
outt(t) b̂

⊤
outt(t+ τ)M∗

〉

+
〈

M
⊤ b̂

‡
outt(t) b̂

†
outt(t+ τ)M

〉

+
〈

M
⊤ b̂

‡
outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

+
〈

~ ζ̂outt(t) b̂
⊤
outt(t+ τ)M∗

〉

+
〈

~ ζ̂outt(t) b̂
†
outt(t+ τ)M

〉

+
〈

~ ζ̂outt(t) ~ ζ̂
⊤
outt(t+ τ)

〉

. (98)

Note that here we have introduced quantum stochastic

processes ζ̂outt and µ̂outt, defined in terms of the incre-
ments by

dυ̂outt = ζ̂outt dt =
(
√
Z µ̂outt +

√
Z

∗µ̂
‡
outt

)

dt , (99)

where

dÛoutt = µ̂outt dt =
(

µ̂in − i
√
Z f̂
)

dt . (100)

As with earlier calculations, the assumption of a vacuum
bath state suggests that we should substitute (99) into
(98) and then normal and time order each term before
the average is taken. The output field vops satisfy the
familiar free-field mop-brackets

⌊

b̂outt(t), b̂
‡
outt(t

′)
⌉

= ~ IL δ(t− t′) ∀ t, t′ , (101)

and also

⌊

b̂outt(t), b̂outt(t
′)
⌉

=
⌊

b̂
‡
outt(t), b̂

‡
outt(t

′)
⌉

= 0 ∀ t, t′ .

(102)

The same is true for µ̂outt since it is also a free field, but
remember that µ̂outt is R× 1 so

⌊

µ̂outt(t), µ̂
‡
outt(t

′)
⌉

= ~ IR δ(t− t′) . (103)

We also have, and it is not difficult to see, that

⌊

b̂outt(t), µ̂outt(t
′)
⌉

=
⌊

b̂outt(t), µ̂
‡
outt(t

′)
⌉

= 0 ∀ t, t′ .

(104)

We summarize the result of each term in Appendix D. Using the results therein we arrive at

~
2
〈

ŷ2(t) ŷ
⊤
2 (t+ τ)

〉

=
〈

[M†ĉ(t+ τ) +M
⊤ĉ‡(t+ τ)][ ĉ⊤(t)M∗ − i~ f̂⊤(t)]

〉⊤

+
〈

[M⊤ĉ‡(t) + i~ f̂(t)][ ĉ⊤(t+ τ)M∗ + ĉ†(t+ τ)M]
〉

+ ~
2 IR δ(τ) . (105)

Applying vop quantum regression formulas to (105) the final result is

~
2
〈

ŷ2(t) ŷ
⊤
2 (t+ τ)

〉

=

(

Tr
{

(

M
†ĉ+M

⊤ĉ‡
)

eLmfb

[

(

ĉ⊤M∗ − i~ f̂⊤
)

ρ(t) + ρ(t)
(

ĉ†M+ i~ f̂⊤
)

]}

)⊤

+ ~
2 IR δ(τ) , (106)

where the time-dependence has been placed in the system
state and the vops are time-independent. Note that (106)
could have obtained by using the transformations (81)
and (82) in the measurement-only correlation function

~
2
〈

ŷ1(t) ŷ
⊤
1 (t+ τ)

〉

=
(

Tr
{

(

M
†ĉ+M

⊤ĉ‡
)

eLmτ
[

ĉ⊤M∗ ρ(t) + ρ(t) ĉ†M
]

})⊤

+ ~
2 IR δ(τ) . (107)

as one might have guessed.

V. SIMPLE CASES

Here we illustrate how the above theory can be used by
considering Markovian feedback mediated by homodyne
and heterodyne detection. For simplicity we take L =
1. In the case of homodyne-mediated feedback we then
obtain a SISO theory whereas for heterodyne-mediated
feedback we get a one-input two-output theory. In the
case of homodyne-mediated feedback we recover results
previously derived in Refs. [27] and [56]. We will allow
for non-unit detection efficiency in both cases and write
η in place of H.
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A. Consistency with Previous Results —
Homodyne-mediated feedback

Consider the SISO limit defined by a quadrature mea-
surement of the form

~
〈

ŷ1
〉

dt ∝
〈

dB̂out + dB̂†
out

〉

. (108)

The condition thatM, now a scalar, must satisfy is simply

|M|2 = ~ η . (109)

The measurement defined by (108) can be achieved by
choosing M =

√
~ η . This gives Z = ~ η̄, where we have

defined η̄ = 1− η for convenience. We find

~ ŷ1dt =
√

~ η
(

ĉ+ ĉ†
)

dt+ ~ dv̂m , (110)

where the measurement noise is

~ dv̂m = 2
√

~ η ℜ[dB̂in] + 2
√

~ η̄ ℜ[dÛin] . (111)

It is clear that

(

~ dv̂m
)2

= 4~η
(

ℜ[dB̂in]
)2

+ 4~ η̄
(

ℜ[dÛin]
)2

= ~
2dt .

(112)

From (80) the stochastic feedback master equation is then

~dρc =
(

− i [Ĥ1, ρc] +D[ĉ]ρc + ~D[f̂ ]ρc − i
√

~η [f̂ , ĉρc + ρc ĉ
† ]
)

dt+ dwH[
√

~η ĉ− i~f̂ ]ρc . (113)

This is consistent with the stochastic master equation found in Ref. [56] for ~ = 1 and when the current is suitably
rescaled. It also reproduces the master equation in Ref. [27] when ~ = η = 1. The Lindblad form of the unconditioned
evolution can be found directly from (43),

~ ρ̇ ≡ Lhom ρ = −i [Ĥ1 +
1
2

√

~η (f̂ ĉ+ ĉ†f̂), ρ] +D[ĉ− i
√

~η f̂ ]ρ+ ~ η̄D[f̂ ]ρ . (114)

Again, this is consistent with the Lindblad form obtained in Ref. [56] (for ~ = 1) and Ref. [27] (for ~ = η = 1), but in
these works the Lindblad form was obtained by algebraic manipulation of (113). The two-time correlation function
of (110) is, from (106),

~
2
〈

ŷ2(t) ŷ2(t+ τ)
〉

=
√

~η Tr
{

(

ĉ+ ĉ†
)

eLhom τ
[

(
√

~η ĉ− i~f̂)ρ+Hc
]

}

+ ~
2 δ(τ) . (115)

and reproduces (4.10) of Ref. [27] when ~ = η = 1.
We can also find a Markovian quantum Langevin equa-

tion from either (44) or (56). There is no restriction on
the number of components that ŝ is allowed. For sim-
plicity we take it to be a scalar-operator. Taking the
Markovian limit of (44) the homodyne feedback quan-
tum Langevin equation is

~ dŝ =
(

i [Ĥ1, ŝ ] + J [ĉ†] ŝ− 1
2 {ĉ†ĉ, ŝ} + ~D[f̂ ] ŝ

)

dt

+
[

ĉ†dB̂in − dB̂†
inĉ, ŝ

]

− i
√

~η
[

ŝ, f̂
](

ĉ dt+ dB̂in

)

+ i
√

~η
(

ĉ† dt+ dB̂†
in

)[

f̂ , ŝ
]

− i
√

~ η̄
[

ŝ, f̂
]

dÛin + i
√

~ η̄ dÛ †
in

[

f̂ , ŝ
]

. (116)

As before, when ~ = η = 1 this correctly reproduces
(4.16) of Ref. [27]. Note the extra noise terms dÛin and

dÛ †
in in (116) which do not appear in (4.16) of Ref. [27],

since there, the quantum Langevin equation was derived

in the limit of η = 1.
B. Heterodyne-mediated feedback

A heterodyne detection is equivalent to two homodyne
measurements of orthogonal quadratures each with half
the detection efficiency so this requires R = 2. Consider
the heterodyne current defined by

~
〈

ŷ1

〉

dt ∝
√

η

2

(

〈

dB̂out + dB̂†
out

〉

−i
〈

dB̂out − dB̂†
out

〉

)

. (117)

This can be effected by

M =

√

~η

2

(

1, i
)

, (118)

which satisfies (17). The stochastic master equation from
(80) is thus
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~ dρc =
(

− i
[

Ĥ1, ρc
]

+D[ĉ]ρc + ~D[f̂1]ρc + ~D[f̂2]ρc − i

√

~η

2

[

f̂1, ĉρc + ρcĉ
†
]

− i

√

~η

2

[

f̂2,−i(ĉρc − ρcĉ
†)
]

)

dt

+ dw1 H[
√

~η/2 ĉ− i~f̂1 ]ρc + dw2 H[−i
√

~η/2 ĉ− i~f̂2 ]ρc . (119)

Setting ~ = η = 1 this is consistent with a special case of
the heterodyne feedback master equation Ref. [57] (see
(5.19)–(5.24) with N = M = 0). The Lindblad form of
the master equation unravelled by (119) can be obtained
by noting that (118) leads to

Z = ~

(

1− η/2 −iη/2

iη/2 1− η/2

)

, (120)

which has the positive square root

√
Z =

√
~

2

(

1 +
√
η̄ −i(1−√

η̄ )

i(1−√
η̄ ) 1 +

√
η̄

)

. (121)

By introducing

F̂ = f̂1 + if̂2 , (122)

the unconditioned evolution unravelled by (119) has a
Lindblad form which can be written compactly as

~ ρ̇ ≡ Lhet ρ = − i
[

Ĥ1, ρ
]

− i

√

~η

8

[

F̂ †ĉ+ ĉ†F̂ , ρ
]

+
~

4
D
[

F̂ † +
√
η̄ F̂
]

ρ+
~

4
D
[

F̂ † −√
η̄ F̂
]

ρ

+D
[

ĉ− i

√

~η

2
F̂
]

ρ . (123)

We find the heterodyne current has correlations given by

~
2
〈

ŷ2(t) ŷ
⊤
2 (t+ τ)

〉

=

√

~η

2





Tr
{

(

ĉ+ ĉ†
)

eLhet τ
[(
√

~η
2 ĉ− i~f̂1

)

ρ+Hc
]}

Tr
{

− i
(

ĉ− ĉ†
)

eLhet τ
[(
√

~η
2 ĉ− i~f̂1

)

ρ+Hc
]}

Tr
{

(

ĉ+ ĉ†
)

eLhet τ
[(

− i
√

~η
2 ĉ− i~f̂2

)

ρ+ Hc
]}

Tr
{

− i
(

ĉ− ĉ†
)

eLhet τ
[(

− i
√

~η
2 ĉ− i~f̂2

)

ρ+ Hc
]}





+ ~
2 I2 δ(τ) . (124)

As with the homodyne case we can derive a heterodyne quantum Langevin equation assuming ŝ to be a scalar-operator
by taking the Markovian limit from (44). The result is

~ dŝ =
(

i [Ĥ1, ŝ ] + J [ĉ†] ŝ− 1
2 {ĉ

†ĉ, ŝ}+ ~D[f̂ ] ŝ
)

dt

+
[

ĉ†dB̂in − dB̂†
inĉ, ŝ

]

− i

√

~η

2

[

ŝ, F̂ †
](

ĉ dt+ dB̂in

)

+ i

√

~η

2

(

ĉ† dt+ dB̂†
in

)[

F̂ , ŝ
]

− i
[

ŝ, F̂ +
√
η̄ F †

]

dÛin1 − i
[

ŝ,−i(F̂ +
√
η̄ F †)

]

dÛin2 + idÛ †
in1

[√
η̄ F̂ + F̂ †, ŝ

]

+ idÛ †
in2

[

− i(
√
η̄ F̂ − F̂ †), ŝ

]

.

(125)

VI. DISCUSSION

We have constructed a theory of Markovian quantum
feedback control for nonlinear systems with an arbitrary
number of decay channels, inputs, outputs, and mediated
by arbitrary diffusive measurements. We have derived
the time evolution of the system state both with and
without conditioning, for a vacuum bath input. When
the evolution is unconditioned one may find an equivalent

formulation in terms of quantum Langevin equations and
we have derived these equations too. We also derived the
two-time correlation function for the measured current
including feedback.

We have performed our derivations using the Heisen-
berg picture, where the entire feedback loop is described
by unitary evolution. Most notably we established rela-
tion (68), which can be viewed as the analogue of (46) but
for conditional evolution. This is what allowed us to de-
rive the stochastic master equation from the Heisenberg-
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picture quantum Langevin equations.
It is interesting to note that the two-time correlation

function of the measured current is an expression about
measurements at two separated times. It therefore lends
itself as a different way of deriving the stochastic master
equation. In this approach one would calculate the corre-
lation function in the Schrödinger picture by making the
ansatz (70) and equating the end result to (106). Solving
for α̂ should result in (79). If one was only interested in
the stochastic master equation then this second method
is however much less direct than the first approach, as the
calculation of the correlation function in the Heisenberg
picture is a very lengthy process. Alternatively, one could
derive a stochastic master equation first and then use it
to derive the autocorrelation of the current on which the
state is conditioned in the Schrödinger picture. However,
our approach to obtaining the autocorrelation of the cur-
rent and the stochastic master equation, has not been to
derive one result from the other, but rather each result
independently.
The interpretation of the Heisenberg picture approach

was recognized in Ref. [27] and also discussed in detail
in Ref. [5]. In essence this is a no-measurement (or more
precisely no-collapse) model where the observer is never
aware of the measurement record from the monitoring.
Consequently we have refrained from using terms such
as “unravellings” or “conditional” unless in explicit ref-
erence to results in the Schrödinger picture.
Finally we note that it would be possible to generalize

the results of this paper even further by allowing the bath
to be non-vacuum. In such a theory we would have to
allow dB̂in to have a non-zero mean and correlated more
generally as opposed just (5).
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Appendix A: CONNECTION TO CONTROL
SYSTEMS ENGINEERING

The standard engineering approach to feedback con-
trol is to start with a stochastic differential equation of
a vector x. A model of the system in the time domain is
known as a state-space model and the vector x a state.
The state contains variables such that if these variables
are known at time t then all other system variables at
time t may be calculated from it [58].
The state-space model can be translated to quantum

dynamics most easily via the Heisenberg picture. In the
Heisenberg picture we define a Hermitian vop x̂, from
which an arbitrary system operator ŝ can be defined. We
will be considering continuous Markov processes in which

case,

dx̂ = α(x̂, û, t) dt+ β(x̂, t) dv̂p , (A1)

where û is the input (potentially arising from feedback),
and dv̂p is a quantum Wiener increment defined by

〈dv̂p(t)〉 = 0 , (A2)

and the Itô rules

dv̂p(t) dv̂
⊤
p (t

′) = 0 ∀ t 6= t′ , (A3)

dv̂p(t) dv̂
⊤
p (t) = I dt . (A4)

Note that α is a vop-valued function while β maps to a
matrix (which in general may mop-valued).
We will assume the system to be monitored via R chan-

nels and that the measurement noise to be diffusive. Let
us denote the measurement results by ŷ1 , which can be
written in the general form

ŷ1 dt = g(x̂, û, t) dt+ dv̂m . (A5)

The noise term dv̂m is another Wiener increment and is
what defines the measurement to be diffusive. It is often
assumed that dv̂p is uncorrelated with dv̂m. One could
of course drop this assumption and allow the two noises
to be correlated if necessary [5]. It is conventional (and
we will follow this convention) to call ŷ1 the output.
Equation (A1) is generated by a Hamiltonian which

one often writes in the general form

Ĥ = Ĥ1 + Ĥm + Ĥfb . (A6)

Here Ĥm is still defined by (2) but the feedback Hamil-
tonian is kept general, of the form,

Ĥfb = f̂⊤û , (A7)

where û and f̂ are Hermitian and ⌈f̂ , û⌋ = 0 to ensure the

Hermiticity of Ĥfb. The input is then used to influence

some system observable f̂ . Note that when û is a feedback
input it will be a functional of the output ŷ1, which is a

bath vop so the condition ⌈f̂ , û⌋ = 0 will be guaranteed.
When the input is chosen to be linear in the output

û(t) = L ŷ1(t− τ) , (A8)

where τ is the feedback delay, the feedback is said to be
proportional, or, Markovian (provided τ → 0+). Note
that to obtain Markovian system evolution the matrix L
needs to be independent of time. We will absorb L into

the definition of f̂ and just define Markovian feedback by

û(t) = ŷ1(t− τ) , (A9)

and f̂ a R×1 vector-operator. This will keep our calcula-
tion simpler, without the need to write out L explicitly.
Taking the input and output to be of the same dimension
is no less general than if they were of different dimensions
as we can always pad zeros in û (or ŷ1, since û is just
the time-delayed version of ŷ1) if there is no feedback in
some of the input channels. It is also not sensible to allow
û (and therefore ŷ1) to have more than R components

since then the inner-product f̂⊤û is undefined.
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Appendix B: Derivation of Eq. (26)

It would be most natural to derive the inifinitesimal
evolution given by (26) with the full unitary operator

Ûmfb(t+ dt, t) = exp
[

−i
(

Ĥ1 + Ĥm + Ĥfb

)

dt/ ~
]

,

(B1)

where Ĥm and Ĥfb are given by (2) and (24) respectively.
Expanding this to order dt,

Ûmfb(t+ dt, t) = 1̂− i
dt

~

(

Ĥ1 + Ĥm + Ĥfb

)

− 1

2~2
(

Ĥm dt+ Ĥfb dt
)2

. (B2)

The important step here is to note that cross terms be-
tween Ĥm and Ĥfb do not contribute for a nonzero feed-
back delay τ :

(Ĥm dt)(Ĥfb dt) =
(

dB̂†
in ĉ− ĉ†dB̂in

)[

~ f̂⊤ŷ1(t− τ) dt
]

(B3)

= ~ ĉ⊤
[

dB̂‡
in ŷ

⊤
1 (t− τ)dt

]

f̂

− ~ ĉ†
[

dB̂in ŷ
⊤
1 (t− τ)dt

]

f̂ . (B4)

Recall that ŷ1(t−τ)dt is defined in terms of dB̂out(t−τ)

and dB̂‡
out(t− τ), which for τ > 0,

⌊

dB̂out(t− τ), dB̂in(t)
⌉

=
⌊

dB̂out(t− τ), dB̂‡
in(t)

⌉

= 0 ,

(B5)

and similarly with dB̂out replaced by dB̂‡
out. Therefore

the products dB̂‡
in ŷ

⊤
1 (t − τ) dt and dB̂in ŷ

⊤
1 (t − τ) can

always be written as normally ordered functions in the
input fields which average to zero for a vacuum bath.
Similarly, (Ĥfb dt)(Ĥm dt) is also negligible. Letting ~ ≡
1 for simplicity, we thus obtain

Û †
mfb(t+ dt, t) ŝ Ûmfb(t+ dt, t)

= ŝ− i ŝ
(

Ĥ1 + Ĥm + Ĥfb

)

dt

− 1
2 ŝ
(

Ĥm dt+ Ĥfb dt
)2

+ i
(

Ĥ1 + Ĥm + Ĥfb

)

dt ŝ

+
(

Ĥm dt+ Ĥfb dt
)

ŝ
(

Ĥm dt+ Ĥfb dt
)

− 1
2

(

Ĥm dt+ Ĥfb dt
)2

ŝ . (B6)

Expanding and collecting terms proportional to Ĥ1+Ĥm

as one group and terms proportional to Ĥfb as another
group we get

Û †
mfb(t+ dt, t) ŝ Ûmfb(t+ dt, t)

= ŝ+
[

ei(Ĥ1+Ĥm)dt ŝ e−i(Ĥ1+Ĥm)dt − ŝ
]

+
[

eiĤfbdt ŝ e−iĤfbdt − ŝ
]

. (B7)

We have noted that adding Ĥ1 to Ĥm on the exponent of
the exponential only has an effect to order dt. Subtract-
ing ŝ from each side this is simply

dŝ = [dŝ]m + [dŝ]fb . (B8)

It should be apparent from the above that the validity
of (B8) relies on the procedure of first allowing τ 6= 0
and then letting τ → 0+ in the end.

Appendix C: DERIVATION OF Eq. (43)

We wish to derive (43) from (42). For convenience we
restate (42) here

Lρ = − i
[

Ĥ1, ρ
]

+D[ĉ]ρ+ ~D[f̂ ]ρ

− i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

. (C1)

Consider first the two terms D[ĉ]ρ and
⌈

f̂ ,M⊤ĉρ +

ρM†ĉ‡
⌋

. Expanding the sop-bracket,

D[ĉ]ρ− i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

= ĉ⊤ρ ĉ‡ − 1
2 ρ ĉ

†ĉ− 1
2 ĉ

†ĉρ

+ i ĉ⊤ρM∗ f̂ − i f̂⊤M⊤ρ ĉ‡ + iρ ĉ†M f̂ − i f̂⊤M†ĉ ρ .
(C2)

We can regroup terms as follows

D[ĉ]ρ− i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

= 1
2 ĉ

⊤ρ
(

ĉ‡ + iM∗ f̂
)

+ 1
2

(

ĉ⊤ − i f̂⊤M⊤
)

ρ ĉ‡

− 1
2 ρ ĉ

†
(

ĉ− iM f̂
)

− 1
2

(

ĉ† + i f̂⊤M†
)

ĉρ

+ i
2 ĉ

⊤ρM∗ f̂ − i
2 f̂

⊤
M

⊤ρ ĉ‡ + i
2 ρ ĉ

†
M f̂ − i

2 f̂
⊤
M

†ĉρ .
(C3)

Guided by the terms with parentheses in (C3) we add

and subtract D[M f̂ ]ρ to the last line in (C3). Using the
identity

i
2 ρ ĉ

†
M f̂ − i

2 f̂
⊤
M

† ĉρ = i
2 ĉ

†
M f̂ρ− i

2 ρ f̂
⊤
M

†ĉ

− i
2

[

f̂⊤M†ĉ+ ĉ†M f̂ , ρ
]

,

(C4)

the last line of (C3) can be written as

i
2 ĉ

⊤ρM∗ f̂ − i
2 f̂

⊤
M

⊤ρ ĉ‡ + i
2 ρ ĉ

†
M f̂ − i

2 f̂
⊤
M

†ĉρ

= − i
2

[

f̂⊤M†ĉ+ ĉ†M f̂ , ρ
]

+D[M f̂ ]ρ−D[M f̂ ]ρ

+ i
2 ĉ

⊤ ρM∗ f̂ − i
2 f̂

⊤
M

⊤ρ ĉ‡ + i
2 ĉ

†
M f̂ρ− i

2 ρ f̂
⊤
M

†ĉ

= − i
2

[

f̂⊤M†ĉ+ ĉ†M f̂ , ρ
]

−D[M f̂ ]ρ

+ i
2

(

ĉ⊤ − i f̂⊤M⊤
)

ρM∗ f̂ − i
2 f̂

⊤
M

⊤ρ
(

ĉ‡ + iM∗ f̂
)

+ i
2

(

ĉ† + i f̂⊤M†
)

M f̂ρ− i
2 ρ f̂

⊤
M

†
(

ĉ− iM f̂
)

. (C5)

Substituting this back into (C3) and collecting like terms
we get

D[ĉ]ρ− i
⌈

f̂ ,M†ĉρ+ ρM⊤ĉ‡
⌋

= − i
2

[

f̂⊤M†ĉ+ ĉ†M f̂ , ρ
]

+D[ĉ − iM f̂ ]ρ

−D[M f̂ ]ρ . (C6)
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Substituting this back into Lρ we arrive at

Lρ = − i
[

Ĥ1 +
1
2 ( f̂

⊤
M

†ĉ+ ĉ†M f̂ ), ρ
]

+D[ĉ− iM f̂ ]ρ+ ~D[f̂ ]ρ−D[M f̂ ]ρ . (C7)

The final two terms can be written as

~D[ f̂ ]ρ−D[M f̂ ]ρ = ~ f̂⊤ ρ f̂ − 1
2 f̂

⊤
M

⊤ρM∗ f̂

− ~

2 f̂
⊤f̂ρ+ 1

2 f̂
⊤
M

†
M f̂ρ

− ~

2 ρ f̂
⊤f̂ + 1

2 ρ f̂
⊤
M

†
M f̂

= f̂⊤ρZ∗ f̂ − 1
2 f̂

⊤
Z f̂ ρ− 1

2 ρ f̂
⊤
Z f̂ .
(C8)

Recall that Z = ~ IR − M
†
M , which was defined under

(18). Since Z ≥ 0 , there exists a B such that Z = B
†
B.

Therefore we are free to write

~D[ f̂ ]ρ−D[M f̂ ]ρ

= f̂⊤B⊤ρB∗ f̂ − 1
2 f̂

⊤
(

B
†
B
)

f̂ρ− 1
2 ρ f̂

⊤
(

B
†
B
)

f̂

= D[B f̂ ]ρ . (C9)

The final master equation in Lindblad form is therefore
(leaving B as a general matrix square root)

~ ρ̇ = − i
[

Ĥ1 +
1
2 ( f̂

⊤
M

†ĉ+ ĉ†M f̂ ), ρ
]

+D[ĉ − iM f̂ ]ρ+D[B f̂ ]ρ . (C10)

Appendix D: DERIVATION OF Eq. (105)

For clarity we will label each term in (98):

~
2
〈

ŷ2(t) ŷ
⊤
2 (t+ τ)

〉

=
〈

M
† b̂outt(t) b̂

⊤
outt(t+ τ)M∗

〉

term A

+
〈

M
† b̂outt(t) b̂

†
outt(t+ τ)M

〉

term B

+
〈

M
† b̂outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

term E

+
〈

M
⊤ b̂

‡
outt(t) b̂

⊤
outt(t+ τ)M∗

〉

term C

+
〈

M
⊤ b̂

‡
outt(t) b̂

†
outt(t+ τ)M

〉

term D

+
〈

M
⊤ b̂

‡
outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

term F

+
〈

~ ζ̂outt(t) b̂
⊤
outt(t+ τ)M∗

〉

term G

+
〈

~ ζ̂outt(t) b̂
†
outt(t+ τ)M

〉

term H

+
〈

~ ζ̂outt(t) ~ ζ̂
⊤
outt(t+ τ)

〉

term I

. (D1)

For convenience we use “cw” to abbreviate “cancels with”. Normal and time ordering of each term leads to
Term A:

〈

M
† b̂outt(t) b̂

⊤
outt(t+ τ)M∗

〉

=
〈

M
†ĉ(t+ τ) ĉ⊤(t)M∗

〉⊤

A1

−
〈

iM†ĉ(t+ τ) f̂⊤(t)(M†
M)∗

〉⊤

A2 (cw G2)

−
〈

iM†
M f̂(t+ τ) ĉ⊤(t)M∗

〉⊤

A3 (cw E1)

−
〈

M
†
M f̂(t+ τ) f̂⊤(t)(M†

M)∗
〉⊤

A4 (cw G4)

. (D2)

Term B:
〈

M
† b̂outt(t) b̂

†
outt(t+ τ)M

〉

=
〈

M
⊤ĉ‡(t+ τ) ĉ⊤(t)M∗

〉⊤

B1

−
〈

iM⊤ĉ‡(t+ τ) f̂⊤(t) (M†
M)∗

〉⊤

B2 (cw H2)

+ ~
2
M

†
M δ(τ)

B5 (cw I1)

+
〈

i (M†
M)∗ f̂(t+ τ) ĉ⊤(t)M∗

〉⊤

B3 (cw E3)

+
〈

(M†
M)∗ f̂(t+ τ) f̂ (t) (M†

M)∗
〉⊤

B4 (cw E4)

. (D3)

Term C:
〈

M
⊤ b̂

‡
outt(t) b̂

⊤
outt(t+ τ)M∗

〉

=
〈

M
⊤ĉ‡(t) ĉ⊤(t+ τ)M∗

〉

C1

−
〈

iM⊤ĉ‡(t) f̂⊤(t+ τ) (M†
M)∗

〉

C2 (cw F1)

+
〈

i (M†
M)∗ f̂(t) ĉ⊤(t+ τ)M∗

〉

C3 (cw G6)

+
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ) (M†

M)∗
〉

C4 (cw F2)

. (D4)

Term D:
〈

M
⊤ b̂

‡
outt(t) b̂

†
outt(t+ τ)M

〉

=
〈

M
⊤ĉ‡(t) ĉ†(t+ τ)M

〉

D1

+
〈

iM⊤ĉ‡(t) f̂⊤(t+ τ)M†
M
〉

D2 (cw F3)

+
〈

i (M†
M)∗ f̂(t) ĉ†(t+ τ)M

〉

D3 (cw H6)

−
〈

(M†
M)∗ f̂ (t) f̂⊤(t+ τ)M†

M
〉

D4 (cw F4)

. (D5)



16

Term E:
〈

M
† b̂outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

=
〈

iM†
M f̂(t+ τ) ĉ⊤(t)M∗

〉⊤

E1 (cw A3)

+
〈

M
†
M f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

E2 (cw I3)

−
〈

i (M†
M)∗ f̂(t+ τ) ĉ⊤(t)M∗

〉⊤

E3 (cw B3)

−
〈

(M†
M)∗ f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

E4 (cw B4)

. (D6)

Term F:
〈

M
⊤ b̂

‡
outt(t) ~ ζ̂

⊤
outt(t+ τ)

〉

=
〈

iM⊤ĉ‡(t) f̂⊤(t+ τ) (M†
M)∗

〉

F1 (cw C2)

−
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ) (M†

M)∗
〉

F2 (cw C4)

−
〈

iM⊤ĉ‡(t) f̂⊤(t+ τ)M†
M
〉

F3 (cw D2)

+
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ)M†

M
〉

F4 (cw D4)

. (D7)

Term G:
〈

~ ζ̂outt(t) b̂
⊤
outt(t+ τ)M∗

〉

=
〈

−i~M†ĉ(t+ τ) f̂⊤(t)
〉⊤

G1

+
〈

iM†ĉ(t+ τ) f̂⊤(t) (M†
M)∗

〉⊤

G2 (cw A2)

−
〈

~M
†
M f̂(t+ τ) f̂⊤(t)

〉⊤

G3 (cw I2)

+
〈

M
†
M f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

G4 (cw A4)

+
〈

i~ f̂(t) ĉ⊤(t+ τ)M∗
〉

G5

−
〈

i (M†
M)∗ f̂(t) ĉ⊤(t+ τ)M∗

〉

G6 (cw C3)

+
〈

~ f̂(t) f̂⊤(t+ τ) (M†
M)∗

〉

G7 (cw I6)

−
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ)(M†

M)∗
〉

G8 (cw I7)

. (D8)

Term H:
〈

~ ζ̂outt(t) b̂
†
outt(t+ τ)M

〉

=
〈

−i~M⊤ĉ‡(t+ τ) f̂⊤(t)
〉⊤

H1

+
〈

iM⊤ĉ‡(t+ τ) f̂⊤(t+ τ) (M†
M)∗

〉⊤

H2 (cw B2)

+
〈

~ (M†
M)∗ f̂(t+ τ) f̂⊤(t)

〉⊤

H3 (cw I4)

−
〈

(M†
M)∗ f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

H4 (cw I5)

+
〈

i~ f̂(t) ĉ†(t+ τ)M
〉

H5

−
〈

i (M†
M)∗ f̂ (t) ĉ†(t+ τ)M

〉

H6 (cw D3)

−
〈

~ f̂(t) f̂⊤(t+ τ)M†
M
〉

H7 (cw I8)

+
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ)M†

M
〉

H8 (cw I9)

. (D9)

Term I:
〈

~ ζ̂outt(t) ~ ζ̂
⊤
outt(t+ τ)

〉

= ~
2 IR δ(τ) − ~M

†
M δ(τ)

I1 (cw B5)

+
〈

~M
†
M f̂(t+ τ) f̂⊤(t)

〉⊤

I2 (cw G3)

−
〈

M
†
M f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

I3 (cw E2)

−
〈

~(M†
M)∗ f̂ (t+ τ) f̂⊤(t)

〉⊤

I4 (cw H3)

+
〈

(M†
M)∗f̂(t+ τ) f̂⊤(t) (M†

M)∗
〉⊤

I5 (cw H4)

−
〈

~ f̂(t) f̂⊤(t+ τ) (M†
M)∗

〉

I6 (cw G7)

+
〈

(M†
M)∗ f̂ (t) f̂⊤(t+ τ) (M†

M)∗
〉

I7 (cw G8)

+
〈

~ f̂(t) f̂⊤(t+ τ)M†
M
〉

I8 (cw H7)

+
〈

(M†
M)∗ f̂(t) f̂⊤(t+ τ)M†

M
〉

I9 (cw H8)

. (D10)

The remaining terms are A1, B1, C1, D1, G1, G5, H1,
H5, and the ~

2 IR δ(τ) in term I. Adding these and col-
lecting like terms we arrive at (105).
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b̂inÛmfb 6= Û
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