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Revealing the determinants of shower water end use consumption: 26 
enabling better targeted urban water conservation strategies  27 

 28 

Abstract 29 

The purpose of this study was to explore the predominant determinants of shower end use 30 

consumption and to find an overarching research design for building a residential end use 31 

demand forecasting model using aligned socio-demographic and natural science data sets 32 

collected from 200 households fitted with smart meters in South-east Queensland, Australia. 33 

ANOVA as well as multiple regression analysis statistical techniques were utilised to reveal 34 

the determinants (e.g. household makeup, shower fixture efficiency, income, education, etc.) 35 

of household shower consumption. Results of a series of one-way independent ANOVA 36 

extended into linear multiple regression models revealed that females, children in general and 37 

teenagers in particular, and the showerhead efficiency level were statistically significant 38 

determinants of shower end use consumption. Eight-way independent factorial ANOVA 39 

extended into a three-tier hierarchical linear multiple regression model, was used to create a 40 

shower end use forecasting model, and indicated that  household size and makeup, as well as 41 

the showerhead efficiency rating, are the most significant predictors of shower usage. The 42 

generated multiple regression model was deemed reliable, explaining 90.2% of the variation 43 

in household shower end use consumption. The paper concludes with a discussion on the 44 

significant shower end use determinants and how this statistical approach will be followed to 45 

predict other residential end uses, and overall household consumption. Moreover, the 46 

implications of the research to urban water conservation strategies and policy design, is 47 

discussed, along with future research directions. 48 

Key Words: water end use; water micro-component; smart meters; shower; water demand 49 

forecasting; water demand management 50 



 51 

1. Introduction 52 

 53 

1.1. Urban water security 54 

Water is one of the most vital resources on earth. Due to climate change consequences 55 

such as the increasing frequency and severity of droughts and the unpredictable changing 56 

rainfall patterns, water availability is becoming more variable. Drought, together with 57 

growing populations which results in an escalating urban water demand are making water a 58 

scarce resource in many regional and urban centres (Dvarioniene and Stasiskiene, 2007; 59 

Giurco et al., 2010; Hubacek et al., 2009;  Willis et al., 2009a, 2010b). Scarcity of water is 60 

forcing many governments and public utilities to invest significantly in the development and 61 

the implementation of a range of water strategies (Correljé et al., 2007; Stewart et al., 2010), 62 

including dual supply schemes (Willis et al., 2011b), shower visual display monitors (Willis 63 

et al., 2010a) and the installation of rainwater tanks (Tam et al., 2010). These strategies aim 64 

at improving urban water security through a more sensible and sustainable water 65 

consumption to meet future demand (Mahgoub et al., 2010; Palme and Tillman, 2008). This 66 

scenario is common in Australia and to some extent the world (Commonwealth of Australia, 67 

2011a; Giurco et al., 2010; Inman and Jeffrey, 2006). 68 

  South East Queensland (SEQ), Australia has been suffering a long drought period, 69 

varying rainfall patterns, and a rapid increasing population. These factors together have lead 70 

to the enforcement of water demand management (WDM) strategies. Such strategies include 71 

water restrictions, rebate programmes for efficient fixtures, water efficiency labelling, and 72 

conservation awareness programs (Inman and Jeffrey, 2006; Mayer et al., 2004; 73 

Nieswaidomy, 1992). In spite of reductions in water consumption resulting from the 74 

implementation of such WDM strategies, government usually follows reactionary-based 75 



approaches rather than proactive-based approaches (Beal et al., 2011a). Additionally, their 76 

effectiveness is dependent on differences in location, community attitudes and behaviours 77 

(Corral-Verdugo et al., 2003; Turner et al., 2005; Stewart et al., 2011). Further, estimations of 78 

water savings yielded from the implementation of such strategies and programs are often 79 

calculated based on limited evidence and with many assumptions due to the lack of 80 

appropriate data at the end use level, thereby deriving understated or grossly inaccurate 81 

values for water savings associated with them (Willis et al., 2009d). Therefore, the 82 

development of effective urban water conservation strategies, policies and forecasting models 83 

is essential to better manage our urban water resources.  84 

 85 

1.2. Smart metering 86 

The development of effective strategies and policies requires more detailed 87 

information on how and where residential water in consumed (e.g. shower, washing machine, 88 

dish washing, tap, bathtub, etc.) (Mayer and DeOreo, 1999; Willis et al., 2009a). This 89 

detailed knowledge of water consumption can provide a greater understanding on the key 90 

determinants of each and every water end use, and in return, will allow for the development 91 

of improved long-term forecasting models (Blokker et al., 2010; Stewart et al., 2010). The 92 

formulation of such models is paramount, especially when there is a distinct lack of micro-93 

component level models that have been created from empirical water end use event data 94 

registries into forecasts for total urban residential connection demand as presented in the 95 

herein study. 96 

 The advent of advanced technology such as water smart metering, which 97 

encompasses high resolution data capturing, logging and wireless communication 98 

technologies has facilitated the collection, wireless transfer, storing and analysing of 99 

abundant detailed and useful water end use information (i.e. time and quantity of each and 100 



every end use) (Willis et al., 2009d). The alignment of such detailed and accurate water end 101 

use data with a range of socio-demographic, stock inventory, residential attitude and 102 

behavioural factors, will aid the development of models that are capable of revealing the 103 

determinants of each and every end use; thereby providing the foundations for more robust 104 

urban water demand forecasting models.  105 

     106 

1.3. Water end use studies 107 

Many residential water demand forecasting models have been developed based on 108 

historical billing data, existing statistical reports, or technical information from stock 109 

appliance manufacturers (Beal et al., 2011a). Such models are not able to provide an accurate 110 

disaggregation of consumption into water end use categories. Therefore, long-term actual 111 

measurement and disaggregation of water end use data (i.e. micro-component analysis) using 112 

smart metering technology and computer software is considered the most robust and accurate 113 

foundation for the development of urban water demand forecasting models.  114 

In general, there are few residential water end use studies that have been conducted 115 

using high resolution smart metering technologies. Internationally, a number of end use 116 

studies have been conducted in the United States of America (Mayer and DeOreo, 1999; 117 

Mayer et al., 2004) and more recently in New Zealand (Heinrich, 2007) and Sri-Lanka 118 

(Sivakumaran and Armaki, 2010). Additionally, in South Africa, a conceptual end-use model 119 

was developed by Jacobs (2004a). Moreover, a number of water end use studies (also called 120 

water micro-component studies) have been conducted in the United Kingdom (Barthelemy, 121 

2006; Creasey et al., 2007; Sim et al., 2007). In Australia, three major studies have been 122 

completed to date in Perth (Loh and Coghlan, 2003), Melbourne (Roberts, 2005) and most 123 

recently in Gold Coast City, Queensland (Willis et al., 2009a, 2009b, 2009c, 2009d, 2010a, 124 

2010b, 2011a, 2011b). Table 1 summarises established averages of total and indoor daily per 125 



capita water consumption volumes, as well as the indoor water end use breakdown 126 

percentages of previous studies conducted in Australia.  127 

 128 

Insert_Table_1 129 

 130 

In 2010, a South-east Queensland Residential End Use Study (SEQREUS) was 131 

commissioned with the objective to gain a greater understanding on water end use 132 

consumption in this large urbanised region. This study was funded by the Urban Water 133 

Security Research Alliance (UWSRA), which is a partnership between the Queensland 134 

Government, CSIRO’s Water for Healthy Country Flagship, Griffith University, and 135 

University of Queensland. The main aim of this alliance was to address SEQ’s emerging 136 

urban water issues to inform the implementation of enhanced water strategy (Beal et al., 137 

2011a). The primary objective of the greater study was to quantify and characterise mains 138 

water end uses of single detached dwellings across four main regions (i.e. Sunshine Coast 139 

Regional Council, Brisbane City Council, Ipswich City Council, and Gold Coast City 140 

Council)  in SEQ, Australia, as shown in Figure 1 (Beal et al., 2011b).   141 

 142 

Insert Figure 1 143 

 144 

This herein described study utilises information collected in the SEQREUS July 2010 145 

baseline data, where a Permanent Water Conservation Measures (PWCM) daily target of 200 146 

litres per person per day (L/p/d) was set by the State Government (Beal et al., 2011b). Both 147 

the reported SEQREUS and Queensland Water Commission (QWC) water use averages of 148 

145.3 L/p/d and 154 L/p/d, respectively, fell well below the government set target as shown 149 

in Figure 2 (Beal et al., 2011a; QWC, 2010). PWCM are not considered restrictions but 150 



mainly guidelines for the efficient use of potable water for irrigation purposes (e.g. irrigating 151 

lawns after 4pm when less heat, etc.). Moreover, PCWM guidelines only provide very broad 152 

guidance on efficient indoor consumption. Thus in summary, there was not any restriction 153 

regime in place at the time of data collection related to this study that could have directly 154 

influenced householders’ indoor consumption.  155 

This paper describes a component of this greater SEQREUS study. The herein 156 

described research study seeks to formulate a bottom-up residential end use demand 157 

forecasting model, which includes a comprehensive listing of predictor variables. 158 

 159 

Insert_Figure_2 160 

 161 

1.4. Residential water demand influencing factors and forecasting models 162 

There are several factors influencing water consumption that have been reported 163 

previously. Such factors are socio-demographic and water stock efficiency related factors.  164 

Socio-demographic factors like household size and household income have been found to 165 

influence water consumption (Kim et al., 2007; Loh and Coghlan, 2003; Mayer and DeOreo, 166 

1999; Renwick and Archibald, 1998; Turner et al., 2009). Additionally, other previous 167 

studies (Athuraliya et al., 2008; Heinrich, 2007; Mayer et al., 2004; Willis et al., 2009d, 168 

2010a) have shown that the use of water efficient appliances and fixtures reduces water 169 

consumption. 170 

As argued, smart metering and comprehensive end use studies provide immense 171 

opportunities to significantly improve current understanding on the determinants of 172 

residential water consumption, as well as the accuracy of demand forecasting models. A 173 

discussion on the relationship between a range of household descriptive characteristics, socio-174 



demographic and stock efficiency characteristics and shower end use consumption is 175 

provided below. 176 

 177 

2. Determinants of shower end use consumption  178 

While the greater SEQREUS has a repository of all residential water end use events, this 179 

study has been focussed on the shower end use category. The reason for this is that shower 180 

end use consumption, is often the highest indoor demand in residential households. Greater 181 

understanding on the primary determinants of shower end use consumption, will aid the 182 

preparation of strategic plans (e.g. showerhead rebate/replacement programs, social 183 

behavioural marketing, etc.) to reduce consumption during insecure water periods, thereby 184 

reducing overall shower consumption. Moreover, given that a high proportion of shower end 185 

use consumption is hot water, any conservation of shower water, has a flow-on energy and 186 

GHG conservation benefit, so these must also be considered. 187 

There are a number of categories of determinants of shower end use consumption. Some 188 

are associated with the macro environment and cultural context of the region (e.g. governance 189 

of water, social marketing, restrictions, dam levels, etc.), individuals’ attitudes (e.g. 190 

conservation attitudes), household makeup (e.g. one male adult and two female teenagers), 191 

socio-demographic characteristics (e.g. income, education, etc.), right down to the stock 192 

efficiency rating of the showerhead (e.g. three star/AAA, etc.). This particular study scope, 193 

focuses on three key categories of predictor variables for shower end use, including: 194 

• Household size and characteristics (e.g. one male adult and two teenagers reside in 195 

household, etc.); 196 

• Showerhead stock efficiency rating (i.e. Water Efficiency Labelling Standard (WELS) 197 

rating); and 198 



• Socio-demographic characteristics of household (e.g. household income, education, 199 

etc.).  200 

Individual householder attitudes are obviously a key determinant category for shower end 201 

use consumption; however, it has not been covered in the scope of this study. Reasons 202 

include the difficulty in ascertaining attitude data reliably, privacy issues, feasibility of 203 

collection by water businesses for future residential forecasting, the likelihood that attitudes 204 

may be a latent variable of other household demographic characteristics, to name a few. 205 

Ideally, if predicting shower end use consumption for individual households, attitudes play a 206 

bigger part, than for regional predictions (i.e. region or suburb average household shower end 207 

use consumption).  208 

There are a number of extensive studies that have explored the topic of residential water 209 

consumption and conservation. However, there are limited studies to date that have been able 210 

to align a comprehensive repository of water end use data (i.e. shower end use in this case), 211 

with socio-demographic data and household water stock audits, in order to statistically reveal 212 

the determinants of that end use. Below represents a discussion on literature addressing the 213 

above three predictor categories relationship with the overall water consumption of 214 

households, and where available, shower end use.  215 

 216 

2.1. Household size and characteristics and shower end use consumption 217 

The household size is one of the most influential characteristics responsible of 218 

residential total water consumption. At the household level, the higher the occupancy rates, 219 

the higher the water consumption (Beal et al., 2011a, 2011b; Jacobs and Haarhoff, 2004b, 220 

2004c; Turner et al. 2009, Willis et al. 2009a). Therefore, any reliable urban water demand 221 

forecasting model includes household size as a forecasting parameter (Mayer and DeOreo, 222 

1999; Willis, 2010a; White and Turner, 2003; WSAA, 2008). Although previously reported 223 



shower end use forecasting models are rare, the household size or the occupancy rate is 224 

usually included as a forecasting parameter (Duncan and Mitchell, 2008; Gato, 2006).  225 

Additionally, household water consumption has been found to be influenced by the 226 

age profile of residents (Mayer and DeOreo, 1999). Therefore, in the herein study, the 227 

household makeup factor is represented into its size and age characteristics (Table 2). 228 

Furthermore, in this study, gender (Table 2) was also considered as an influential factor of 229 

shower end use consumption; the notation that females might have higher volume showers 230 

than males could be explored. This deeper approach allows for household size, age and 231 

gender combination influences on shower end use to be investigated.    232 

 233 

2.2. Showerhead stock efficiency rating and shower end use consumption 234 

Residential water consumption has been found to be influenced by the use of efficient 235 

water appliances (DeOreo et al., 2001; Inman and Jeffrey, 2006; Mayer et al., 2004; Willis, 236 

2009d). Previous studies indicated that the use of efficient showerhead fixtures can result in 237 

significant reductions in this shower end use consumption (Inman and Jeffrey, 2006; Loh and 238 

Coghlan, 2003; Roberts, 2005; Willis et al., 2009d). Therefore, in this study, the showerhead 239 

stock efficiency rating was considered as an important characteristic in describing shower end 240 

use consumption, and was categorised into five categories (Table 2) based on its flow rate 241 

(L/min) in accordance to the WELS rating standard (e.g. AAA, AA, A, etc.). Such clustering 242 

of showerhead efficiency categories enabled relationships between showerhead stock 243 

efficiency and household shower consumption to be explored in detail.    244 

  245 

2.3. Socio-demographic characteristics of household and shower end use consumption 246 

Socio-demographic characteristics such as income, occupation and education should 247 

be considered as indicators of residential water consumption (Inman and Jeffrey, 2006; 248 



Mayer and Deoreo, 1999; Nieswaidomy and Molina, 1989; Renwick and Archibald, 1998; 249 

Willis, 2009d, 2011a). Thus, income ranges, occupation type and educational level clusters 250 

were developed (Table 2) in order to explore their individual and combined influences on 251 

shower consumption. 252 

  Thus, these above discussed three categories of factors with their associated predictor 253 

variables are the focus of the investigation process described below. 254 

 255 
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 257 

3. Theoretical framework 258 

3.1. Research objectives 259 

As shown in Table 1, previous studies have revealed that showering is a major end use 260 

component representing around one third of the indoor consumption, and a significant 261 

contributor to both residential energy demand and resulting GHG emissions. Furthermore, the 262 

shower is one of the discretionary end uses from which residential households have the 263 

greatest potential to conserve water (Bonnet et al., 2002; Stewart et al., 2011; Willis et al., 264 

2010a, 2011a). Therefore, a greater understanding of the contributors to this major indoor end 265 

use consumption category, will allow the development of better targeted conservation 266 

strategies, and can be the foundation of a more robust forecasting model. Hence, the key 267 

objectives of this study are: 268 

• To explore the predominant determinants of shower end use consumption at the 269 

household level; 270 

• To build a forecasting model for shower end use that is capable of predicting average 271 

daily per household consumption.   272 



This study also served as a significant milestone, to developing the statistical method 273 

design for an overarching model for forecasting residential indoor demand. Such a model will 274 

be capable of building a bottom-up and evidence-based forecast of domestic demand through 275 

the summation of each end use category prediction. 276 

 277 

3.2. Research propositions 278 

To achieve these two stated study objectives listed above and based on the arguments 279 

on the shower end use influencing factors presented earlier (Section 2), a detailed list of 280 

household makeup, socio-demographic and stock inventory factors and their associated 281 

characteristics was developed (Table 2).  282 

Firstly, to achieve the first objective of this study, shower end use consumption 283 

determinants categories and variables listed in Table 2 were examined with the view to 284 

identify the strongest predictors of shower end use consumption. The following propositions 285 

were formed, relating to this objective of the study:   286 

 287 

Proposition 1a: A change in any of the household size and composition 288 

characteristics accounts for a significant change in the average daily household 289 

shower consumption.   290 

 291 

Proposition 1b: A change in the efficiency rating of the showerhead used in a 292 

household accounts for a significant change in the average daily household shower 293 

consumption. 294 

 295 

Proposition 1c: A change in the households’ socio-demographic characteristics 296 

accounts for a significant change in average daily household shower consumption. 297 



  298 

Secondly, to build a forecasting model that is capable of predicting average daily per 299 

household shower consumption, a multi-tiered statistical analysis approach was applied. As 300 

discussed earlier, previous studies have revealed that household size and stock efficiency 301 

factors are the major predictors of household shower consumption.  302 

The multiplication of household size by average daily per capita shower consumption 303 

could be thought of as the simplest model available to obtain a prediction value for household 304 

average daily shower consumption. Also, from a physical and relational perspective, 305 

household size and stock efficiency factors have a strong direct relationship with shower 306 

consumption. Considering these known principles as the starting point for building the 307 

forecasting model, both factors should be considered as the foundation of any shower end use 308 

forecasting model. Nevertheless, household size and composition is still considered the 309 

primary predictor of shower consumption when compared to stock efficiency in terms of the 310 

amount of influenced change in shower consumption volumes. On the other hand, other more 311 

latent socio-demographic variables (e.g. income, education, occupation, etc.) may also play a 312 

secondary, but still important role, in shower end use prediction. Given that unguided 313 

multiple regression analysis often produces statistically optimum combinations of predictor 314 

variables that are not necessarily sensible or practical, a more structured approach guided by 315 

literature, common sense, and the above singular determinants, was followed for the purposes 316 

of this study. For these reasons, the forecasting model was built considering the following 317 

research propositions: 318 

   319 

Proposition 2a: Household size which was represented by its makeup characteristics 320 

composite is the primary predictor of average daily household shower consumption. 321 

Thus, the most appropriate composite representing household makeup should be 322 



entered as the foundation or the first tier of the regression model, when building the 323 

shower end use forecasting model.   324 

 325 

Proposition 2b: Showerhead stock efficiency was selected as the next most influential 326 

predictor of household average daily shower consumption. Thus, it should be used as 327 

the second tier to building the forecasting model. 328 

 329 

Proposition 2c: Socio-demographic characteristics such as income, education, and 330 

occupation should be used as the third tier input variable when building the 331 

forecasting model, after household size and stock efficiency characteristics. 332 

 333 

The subsequent sections detail the research design and method applied to achieve the 334 

stated research objectives and propositions.      335 

 336 

4. Research design 337 

To achieve such comprehensive study objectives, a mixed method research design has 338 

been applied using both quantitative and qualitative approaches to obtain and analyse water 339 

end use data. This complex design allows the use of multiple methods to address research 340 

objectives (Creswell and Plano Clark, 2007). This mixed approach is adopted in data 341 

collection through collecting quantitative natural science data in the form of end use water 342 

consumption data, quantitative stock inventory data, qualitative water behaviour data, and 343 

quantitative socio-demographic survey data. The data was collected from a sample of 200 344 

residential households across four main regions (i.e. Sunshine Coast Regional Council, 345 

Brisbane City Council, Ipswich City Council, and Gold Coast City Council) in SEQ, 346 

Australia (see Figure 1). As presented in Table 3, the data was collected from residential 347 



single detached dwellings, where owners (i.e. landlords) were occupiers of houses which also 348 

have no internally plumbed rainwater tank. Moreover, the average number of people per 349 

household was relatively consistent across all regions forming an average occupancy of 2.6 350 

people per household as presented in Table 4 with other general household characteristics of 351 

the utilised sample in this study. 352 

 353 
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 357 

  Houses were fitted with high resolution smart meters (i.e. 0.014 L/pulse). These 358 

smart meters were connected to wireless data loggers which log (i.e. 5 second record 359 

intervals) and store water flow data. Data loggers transfer water flow data to a central 360 

computer via e-mail. Water flow data was analysed and disaggregated into a registry of 361 

detailed end use events (e.g. shower, washing machine, tap, etc.) using Trace Wizard® 362 

software version 4.1 (Aquacraft, 2010) on a personal or laptop computer.  363 

Self-reported water use diaries of each household were developed to collect 364 

qualitative water behaviour data in the form of behavioural records of water usage over 2-365 

week sampling periods. In addition to the water diaries, quantitative data on appliance stock 366 

inventory (e.g. flow rate of fixtures, star ratings, etc.) was obtained using individual 367 

household audits. Both water use audits and diaries assisted and ensured the validity of the 368 

Trace Wizard analysis by developing a qualitative understanding of where and when people 369 

are undertaking a certain water consuming activity in their household.  370 

Furthermore, questionnaire surveys were developed and distributed to each smart 371 

metered household to collect quantitative socio-demographic data. The collected data was 372 



entered into SPSS© for Windows, Release Version 18.0 using desktop computer, to enable 373 

results analysis, particularly the determination and clustering of the household makeup, stock 374 

efficiency and socio-demographic groups (Table 2). The detailed process for this mixed 375 

method water end use study was reported by Beal et al. (2011a, 2011b) and is presented in 376 

Figure 3. 377 

 378 

Insert_Figure_3 379 

 380 

Water flow data utilised for the herein study was collected over a 2-week period in the 381 

winter season (i.e. July 2010) in the sub-tropical regional area of SEQ, Australia. The winter 382 

season is relatively mild in this region (i.e. 10-20 degrees Celsius range for winter and 17-32 383 

degrees Celsius for other seasons), and this mild temperature range will have minimal impact 384 

on indoor end use consumption. However, in order to verify the representativeness of the 385 

indoor end use data, a comparative study was conducted between the average daily per capita 386 

water end use consumption breakdown utilised in this study and averages reported by a range 387 

of other studies recently conducted across Australia and New Zealand (Figure 4). Shower, 388 

washing machine and tap usage consistently place the greatest demand on residential water 389 

supply. Indoor water use, with the exception of taps, is relatively homogenous across the 390 

regions; with the lowest per capita variance occurring in appliances with fixed water volumes 391 

(e.g. clothes washers, dishwashers and toilets). Data presented in Figure 4 show that indoor 392 

consumption figures measured in the SEQREUS were well within the range reported 393 

elsewhere in Australia and New Zealand ensuring the representativeness of the herein utilised 394 

data set for predictive purposes.  395 

 396 

Insert Figure 4 397 



 398 

5. Research Method 399 

For the purpose of this study, all factors presented in Table 2 were classified as 400 

categorical variables. In other words, each variable is composed of mutually exclusive 401 

categories. For instance, as shown in Table 2, the household size characteristic labelled 402 

number of adults (A) is composed of households with one adult (1A), two adults (2A) and 403 

three adults or more (3A+). To achieve the objectives of this study, a series of one-way 404 

independent ANOVA extended into a set of multiple regression models was applied for all 405 

categorical variables (Table 2), being the Independent Variables (IV’s), against daily average 406 

household shower end use consumption, being the Dependent Variable (DV). However, such 407 

categorical variables needed to be coded first prior to statistical power and significance 408 

testing (Pedhazur, 1997; Field, 2009; Hardy, 1993). As shown in Table 2, categorical 409 

variables are either dichotomous (e.g. occupation status: working and retired), or polytomous 410 

(e.g. number of adults: one adult, two adults, three adults or more) (Hardy, 1993). In this 411 

study, both types of variables with their associated categories are represented as dichotomous 412 

variables using dummy coding. 413 

 414 

5.1. Dummy coding 415 

Dummy coding, or sometimes called binary coding, is used to represent groups of 416 

categorical variables in (0,1) format (Pedhazur, 1997; Field, 2009; Hardy, 1993). For 417 

instance, households which are members of a particular categorical variable group that 418 

belongs to a socio-demographic characteristic are assigned a code of (1); and those which are 419 

not in this particular group receive a code of (0). The generated coded groups for a particular 420 

categorical variable are called dummy variables. In order to develop mutually exclusive and 421 

exhaustive dummy variables that represent a particular categorical variable with j groups, a 422 



set of j-1 dummy variables are needed (Pedhazur, 1997; Field, 2009; Hardy, 1993). For 423 

instance, the number of adults in households has three groups (e.g. 1A, 2A, 3A+). Therefore, 424 

it needs two (i.e. 3-1=2) dummy variables coded in (0,1) to be represented (see Table 5). It 425 

can be seen from Table 5 that the first dummy variable represents households with one adult 426 

by giving a code of (1) for a household that belongs to this group and a code of (0) for the 427 

rest. Similarly, the second dummy variable represents households with three adults or more 428 

and (0) for the rest. 429 

 430 
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 432 

This way, all groups of the categorical variable A are represented in a dichotomous format 433 

into two dummy variables, where the group 1A receive a code of (1,0), the group 2A received 434 

a code of (0,0), and the group 3A+ receive a code of (0,1). It should be noted that, the 435 

membership to the group of households with two adults was chosen to receive the code of 436 

(1), but rather it was coded by default with (0) while coding the other groups. Hence, it 437 

received the code of (0,0) to act as the control group or also called the reference group 438 

(Pedhazur, 1997; Field, 2009; Hardy, 1993). Although there is no rule for choosing control 439 

groups, they are usually determined based on either largest group sample size or based on a 440 

particular hypothesis of interest (Field, 2009).  The control group 2A was chosen because it 441 

has the largest sample size. In other words, it is the most representative group in the sample 442 

of this study. Therefore, its mean is used as the reference for comparison with the other two 443 

groups’ (i.e. 1A and 3A+) means in ANOVA and multiple regression analysis to ensure 444 

robustness of the results. Furthermore, the control groups of all categorical variables shown 445 

in Table 2 were assigned consistently to ensure a balanced design. For instance, the group 2A 446 

is the control group for the characteristic A, therefore, 2 Persons (2P) is the control group for 447 



the characteristic Household Size (HHS), and the group No Teenagers (0T) is the control 448 

group of the characteristic Number of Teenagers (T), and so on. Thus, when forming 449 

household makeup composites, there will not be overlapping control groups for each 450 

individual household makeup characteristic forming the composite.  451 

The above dummy coding technique was applied to all household makeup, socio-452 

demographic, and showerhead stock efficiency categorical variables shown in Table 2 to be 453 

represented in a dichotomous format and subsequently analysed using ANOVA and multiple 454 

regression statistical techniques. 455 

 456 

5.2. ANOVA extended into regression 457 

In order to test for the level of significance of differences between group means of a 458 

particular categorical variable in shower consumption, one-way independent ANOVA was 459 

used. In this case, the significance level of differences between the mean of a tested group 460 

and that of the control group was tested using the t-statistic (p<0.001, p<0 .01, and p< 0.05). 461 

This analysis provided the significant difference between each of the categorical variable 462 

groups and their associated control group, when related to shower consumption (DV).  463 

Commonly, regression analysis is used between one continuous DV versus one or 464 

more continuous IV’s in order to measure the relationship between both types of variables 465 

and predict the DV from these IV’s by fitting a statistical model in the form of a straight line 466 

represented by Equation 1 (Schroeder et al., 1986). 467 

 468 

Yi = b0 + b1Xi1 + εi     (1) 469 

 470 



Where, Yi is the outcome variable or DV for the ith case, b0 is the intercept of the line, and b1 471 

is the rate of change that the IV Xi1 makes in Yi and it is the gradient of the line, and εi is the 472 

residual term that represents the difference between observed and predicted values.  473 

However, in the case of this study, the DV is continuous (i.e. shower volume), 474 

whereas, the IV’s or predictors are discrete (e.g. number of adults, etc.). Therefore, the use of 475 

dummy coding to represent such groups of categorical variables, and the use of ANOVA to 476 

test for significant differences between their means could be extended to a regression model 477 

(Cohen, 1968; Field, 2009; Hardy, 1993; Pedhazur, 1997) as shown in Equation 2. 478 

 479 

Yi = β0 + β1Xi1+ ... + βnXin + εi     (2) 480 

 481 

Where, Yi is the outcome variable or the DV, β0 is the mean of the control group, and β1 482 

represents the significant difference between the mean of the first group of the ith categorical 483 

IV and the mean of the control group (i.e. β1 = mean of the 1st group - β0) and so on, until the 484 

nth dummy variable. As such, all significant differences of the means between groups of a 485 

particular categorical variable and its associated control group are included in the model. 486 

Similar to Equation 1, εi is the residual term that represents the difference between observed 487 

and predicted values. 488 

 The importance of IV’s was assessed by the F-statistic significance level (p<0.001) 489 

generated for each model, and by checking the goodness of fit using parameters generated 490 

from each of the developed multiple regression models. Such parameters are the Coefficient 491 

of Determination (R2), the Adjusted Coefficient of Determination (AdjR2), the Standard Error 492 

(SE), and the Coefficient of Variation in the regression model (CVReg.). 493 

 Assumptions for ANOVA, such as normality and homogeneity of variance, were 494 

tested and met by ensuring sufficient groups sample size when clustering groups of each 495 



characteristic (i.e. all groups consisted of 30 or more cases unless there were not enough 496 

cases to represent mutually exclusive categories). Moreover, internal consistency was also 497 

achieved by removing outliers of shower consumption at the household level that may bias 498 

the statistical analysis due to extremely high or low consumptions (i.e. box plot with outliers 499 

outside ±2σ). In the case of testing the significance level of group mean differences for each 500 

of the factors presented in Table 2 using one-way independent ANOVA, outliers of each of 501 

the groups of a particular factor were not removed permanently from the study. This is 502 

because those households that appeared as outliers when testing a particular factor and its 503 

associated groups are not necessarily outliers for the other factors due to the fact that they 504 

also represent actual observed consumption patterns that are predominantly influenced by 505 

other factors. Thus, when testing each of the factors individual effect on shower consumption, 506 

the 200 households were considered each time and outliers of each of the groups which 507 

represent a particular factor were studied individually before their removal using appropriate 508 

statistical parameters (e.g. average leverage, Mahalanobis distance, DFBeta absolute values, 509 

and upper and lower limits of covariance ratio) that measure their effect size on the 510 

developed models (Field, 2009). This was deemed to be the most appropriate approach to 511 

reveal the genuine average difference in shower consumption between the bulk of households 512 

that belongs to a particular household makeup, stock efficiency, or socio-demographic group 513 

and the bulk of other households that belong to another group describing their characteristics 514 

for the same factor. Generally, outliers that appeared in the sample as a whole (i.e. N=200) 515 

were often caused by one to two persons in a household that had extremely short or long 516 

showers (e.g. range of <5 L or >150 L per shower event). Given this study scope (i.e. 517 

studying shower consumption at the household level and not the personal level) did not 518 

include a factor to explain all householders’ attitudes to water consumption, these outliers 519 

often distorted results. Further, the criterion used for dealing with missing data points when 520 



building all regression models in this study was to exclude any household that had at least 521 

one missing data point for one of the factors or its associated groups to ensure reliability of 522 

the generated R2 values. 523 

Moreover, a total of nine regression analysis assumptions of models generalisation 524 

(Berry, 1993) were met in order to be able to generalise the formulated findings beyond the 525 

sample of the study (i.e. N=200). As reported by Field (2009), these assumptions are: type of 526 

DV and IV’s included in the model being quantitative variables continuous or categorical 527 

with two groups and for the DV to be continuous and not bounded; having non-zero variance 528 

of predictors; having no perfect multicollinearity between IV’s by checking the Average 529 

Variance Inflation Factor (VIF) being very close to the value of 1 indicating no 530 

multicollinearity (Bowerman and O’Connell, 1990; Myers, 1990); the assumption of no 531 

correlation between IV’s and external variables which are not included in the model; 532 

homoscedasticity; having independent errors by checking the Durbin-Watson statistic being 533 

very close to a value of 2 indicating no dependency (Durbin and Watson, 1951);  normally 534 

distributed errors; independence of DV values; and linearity of the relationship between DV 535 

and IV’s. 536 

To achieve the first objective of this study (i.e. to explore the predominant 537 

determinants of shower end use consumption), research propositions 1a, 1b, and 1c presented 538 

in section 3.2 were tested by applying the above described method to all of the household 539 

makeup, stock inventory, and socio-demographic factors shown in Table 2. Using SPSS, all 540 

independent variables were clustered into appropriate groups; dummy coded and represented 541 

as dummy variables. Subsequently, they were analysed using one-way independent ANOVA 542 

extended into multiple regression models to test for differences between their group means, 543 

which in turn, resulted in an extraction of the significant determinants of household shower 544 

end use consumption.  545 



To achieve the second objective of this study (i.e. to build a forecasting model for 546 

shower end use that is capable of predicting average daily per household consumption), 547 

research propositions 2a, 2b, and 2c presented in section 3.2 were applied to develop a multi-548 

tier shower end use forecasting model based on the factorial independent ANOVA and 549 

extended into a multiple regression model following the method presented above. 550 

Hierarchical regression, which is often described as the Block-wise Entry regression (Field, 551 

2009) method, was applied to build the multi-tier forecasting model. This method of 552 

regression allows the experimenter to build the model in an additive way; this in turn 553 

provides the flexibility of selecting which predictors to enter the model first according to their 554 

established priorities in the theory or by other previous researches (Field, 2009). In this way, 555 

a multiple regression model is developed in three blocks by entering the household makeup 556 

characteristics composite in the first block, the stock efficiency characteristic in the second 557 

block applying the Forced Entry Regression method (Field, 2009), and the socio-558 

demographic factors in the third block. To explore the prediction priorities of factors in the 559 

third block, the Stepwise regression method was used in this block. As explained by Field 560 

(2009), Stepwise Regression will allow the computer to search and select the predictor that 561 

has the highest simple correlation with the outcome variable (i.e. shower consumption). In 562 

this study, the selection criterion of a predictor is based on the significance level of the F-563 

Statistic generated for the model after the inclusion of the predictor with the highest simple 564 

correlation with shower end use consumption volumes. In this study, if the probability value 565 

is less than or equal to 0.05 the predictor will be added to the model; whereas, if the 566 

probability value is greater than 0.10 the predictor will be removed from the model.   567 

Shower determinants and the generated forecasting model resulting from this 568 

described research method are presented in the subsequent sections. 569 

 570 



6. Data analysis and results 571 

Flow trace end use event disaggregation for the SEQREUS resulted in an average 572 

total indoor water consumption of 335.9 litres per household per day (L/hh/d) for the sampled 573 

200 houses over a 2-week data collection period and average occupancy of 2.6 persons per 574 

household. This represents an average per capita indoor consumption of 129.2 L/p/d. Figure 5 575 

illustrates that the shower end use category is the largest portion of indoor consumption with 576 

an average of 111 L/hh/d or 42.7 L/p/d representing 33% of the total indoor consumption 577 

(Beal et al., 2011b).  This per capita end use breakdown is similar to those reported in other 578 

recent end use studies in Australia (see Table 1).  579 

 580 
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 582 

6.1. Determinants of shower end use 583 

To achieve the first objective of this study, all household makeup, stock inventory and 584 

socio-demographic factors and their associated variables were examined according to the 585 

three research propositions 1a, 1b and 1c.  To achieve this objective, a series of one-way 586 

independent ANOVA extended into multiple regression models was developed by linking 587 

each of the IV’s in Table 2 against the DV being average daily shower consumption volumes 588 

(Figure 6 and Figure 7). Dummy variables and controls (shown in black in Figure 6 and 589 

Figure 7) were created for all groups using dummy coding in order to represent the 590 

membership of households. 591 

  592 
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 596 

6.1.1. Household makeup characteristics 597 

As per Table 6, for the household makeup characteristic number of Children (C), the 598 

average daily shower consumption per household, for those households with one or more 599 

child at any age represented by the group (1C+) was determined as 120.6 L/hh/d. This value is 600 

71.8 L/hh/d more than the average consumption (i.e. 48.8 L/hh/d) of households with no 601 

children, which is represented by the control group (0C). Mean differences are statistically 602 

significant (p<0 .001). The generated multiple regression model presented in Table 6, shows 603 

that the IV, represented by the household makeup characteristic C, explained 58.6% of 604 

shower end use consumption. 605 

Similarly, all of the household makeup characteristics variables (Figure 6) were 606 

examined individually. The statistical significance level of all group means and their 607 

differences from their associated control groups were tested and results are presented with 608 

their associated regression models in Table 6. Determinants shown in Table 6 have been 609 

ordered based on their power in explaining shower consumption (L/hh/d) with respect to the 610 

normal regression model parameters (i.e. R2, AdjR2 and SE). Results show that the household 611 

makeup characteristic C, is the most important determinant of shower consumption among all 612 

household makeup characteristics, followed by the number of Females in the household (F), 613 

which is capable of explaining 49.1% of shower consumption. Although F is a determinant of 614 

shower consumption, the difference between average shower consumption of households 615 

with no females (0F) and with those with one female (1F) is not statistically significant as 616 

shown in Table 6. This might be attributed to the small sample size of this 0F group (n=19) as 617 

shown in Figure 6, and to the fact that average shower consumption of households where 618 

their members were all males which were usually adult males to the average consumption of 619 

households where their members were predominantly males with one female that was usually 620 



an adult female, where her solo consumption did cause a significant difference in shower 621 

consumption at the household level. This insignificance does not imply that the factor F is not 622 

a significant determinant of shower consumption. It is worth mentioning that if the selected 623 

Control Group was not 1F as in this study but replaced with the group of households that had 624 

two females (2F), a significant difference between the group 0F and the new control group 625 

will be detected. However, besides that 1F was selected as the control group because it has 626 

the largest sample size (n=95) being the most representative group of the sample for the 627 

factor F, it was also selected to achieve a balanced design by having compatible Control 628 

Groups for all factor categories in the study (Table 2), thereby allowing the combination of 629 

any of the factors together to form household makeup composites to be studied as discussed 630 

in section 2.6.   631 

The number of Teenagers (T), Males (M), Children aged 3 years or less (CAge≤3y), 632 

Adults (A), and Children aged between 4 and 12 years (C4≤Age≤12y ) were capable of explaining 633 

shower end use consumption by 41.7%, 40%, 36.6%, 26.1%, and 18.1%, respectively.  634 

 On one hand, it is evident when looking at the household size makeup composite from 635 

an age perspective and ignoring gender (i.e. A+C), that the number of children is more 636 

capable of explaining shower consumption than the number of adults. Furthermore, the 637 

household makeup characteristic addressing number of teenagers in the household is the most 638 

powerful variable of the three for explaining children (i.e. C=T+ C4≤Age≤12y + CAge≤3y). Although 639 

the household makeup characteristic C4≤Age≤12y is a determinant of shower consumption, it was 640 

not determined as a strong predictor of shower consumption, probably because children 641 

within this age range may also be likely to use a bathtub than the shower. However, the 642 

household makeup characteristic variable CAge≤3y was determined as being more capable of 643 

explaining the shower consumption of a household than C4≤Age≤12y which was not expected. 644 



This result might be attributed to a latent reason that needs to be studied further, such as the 645 

parents of babies and toddlers taking more and longer showers for relaxation and hygiene.  646 

      On the other hand, looking at the household size makeup composite from the 647 

gender perspective and regardless of age (i.e. M+F), it can be seen that the number of females 648 

in households can explain shower consumption better than the number of males. 649 

 All household makeup characteristics are considered as shower determinants, as their 650 

generated models showed a statistically significant goodness of fit (assessed using F-statistic, 651 

p<0.001) (Table 6). Additionally, generalisations of the developed models were also assessed 652 

by ensuring that the nine regression model assumptions discussed earlier (Section 5.2) are 653 

met. As shown in Table 6, the developed models showed acceptable values (Field, 2009) for 654 

the Durbin-Watson statistic and average VIF indicating relatively good levels of errors 655 

independency and lack of multicollinearity between predictors, especially when considering 656 

that all of the models are based on only one categorical IV.  Hence, the above findings reveal 657 

that all household makeup characteristics are significant determinants of average daily 658 

shower consumption. Additionally, the findings provide empirical support for research 659 

proposition 1a demonstrating that a change in each household makeup characteristic accounts 660 

for a significant change in shower consumption, with the exception of the non-significant 661 

difference in average shower consumption between households with no females and those 662 

with one female.  663 

 664 
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 666 

6.1.2. Stock efficiency 667 

As shown in Figure 7(d), showerhead efficiency rating groups were clustered in 668 

accordance with the Water Efficiency Labelling standard (WELS) (Commonwealth of 669 



Australia, 2011b) (Table 2). Efficiency cluster group mean differences from the control 670 

group, which was represented by households using non-efficient or old showerhead (Sold) 671 

were tested. The results presented in Table 7, revealed that households using the most 672 

efficient shower appliance type, namely AAA rated (SAAA) (i.e. flow rate < 9 L/min), are on 673 

average consuming 77.0 L/hh/d less than households not using efficient fixtures with an 674 

average of 102.4 L/hh/d. The results also showed that households using the next efficient 675 

shower appliance types, namely, AA (SAA) (i.e. 9 < flow rate <12 L/min) and A (SA) (i.e. 12 < 676 

flow rate < 15 L/min), are consuming 62.0 and 36.1 L/hh/d less than those not using efficient 677 

fixtures, respectively. Further, households using a standard shower appliance (SStandard) (i.e. 678 

15 < flow rate < 21 L/min) are consuming 25.6 L/hh/d less than those using old showerheads 679 

(Sold).  680 

All group mean differences are statistically significant (p<0.001) and the generated 681 

regression model shows that the stock efficiency factor (S) is capable of explaining 51.9% of 682 

the variation in average daily household shower end use consumption with a statistically 683 

significant (p<0.001) goodness of fit assessed using the F-statistic, as well as, relatively 684 

acceptable errors independency and low multicollinearity levels between predictors (Table 7). 685 

Hence, the above findings confirm that S is a significant determinant of average daily 686 

household shower end use consumption. Additionally, the findings provide empirical support 687 

for research proposition 1b, that a change in showerhead efficiency accounts for a significant 688 

change in shower consumption. 689 

 690 
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 692 

6.1.3. Income, occupation, and education 693 



As shown in Figure 7 (a, b and c), annual income (I), predominant occupational status 694 

(O) and predominant educational level (E) groups were clustered and studied against shower 695 

end use consumption (L/hh/d). Table 8 shows that households with an annual income of less 696 

than $30,000 are on average consuming 29.3L/hh/d less than households with an annual 697 

income between $30,000 and $59,999 (i.e. 65.2 L/hh/d) which served  as the control group. 698 

Furthermore, the results show that households with an annual income between $60,000 and 699 

$89,999, and those with an annual income greater than $90,000 are on average consuming 700 

16.7 and 39.2 L/hh/d more than households that belong to the control group, respectively. 701 

 The results also showed that, households that were classified as being of ‘retired’ 702 

occupational status (OR) are on average consuming 40.8 L/hh/d less than households with a 703 

classified with a ‘working’ occupational status (OW) (i.e. 81.5 L/hh/d). 704 

 Additionally, the results reveal that households with  tertiary undergraduate (EU) and 705 

postgraduate  (EP) educational levels are consuming 25.0 and 23.8 L/hh/d more than 706 

households with a trade/TAFE or lower predominant educational level (ET
- ), respectively.  707 

All group mean differences are statistically significant (p<0.001, p<0.01, and p<0.05); 708 

and the generated regression models show that I, O and E are capable of explaining 36.2%, 709 

30.3% and 11% of the variation in shower consumption, respectively (Table 8). Therefore, 710 

when considered separately, all three examined socio-demographic factors are considered as 711 

shower determinants as their generated models provided a statistically significant (p<0.001) 712 

goodness of fit assessed using the F-statistic, as well as, relatively acceptable errors, 713 

independency and low multicollinearity levels between predictors (Table 8). Although all 714 

these socio-demographic variables are determinants of shower consumption when considered 715 

individually, their power in explaining shower consumption is limited, especially the 716 

education level variable, when compared to the prior examined household makeup and 717 

showerhead efficiency factors. This finding provides some indications, that these socio-718 



demographic variables may not be significant predictors of shower consumption in the later 719 

developed shower end use forecasting model. 720 

Hence, the above findings underpin that I, O and E are significant determinants of 721 

shower consumption. Additionally, findings provide empirical support for research 722 

proposition 1c, demonstrating that a change in the income, occupational status or the 723 

educational level characteristics in households accounts for a significant change in shower 724 

consumption. 725 
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 Accordingly, all the household makeup, socio-demographic and stock inventory 729 

factors with their associated characteristics presented in Table 2, are significant determinants 730 

of residential shower end use consumption. However, each of these variables is not capable 731 

of providing an accurate prediction on their own. Prediction models applying such individual 732 

variables can only generate shower consumption predictions with a wide confidence interval 733 

as measured by the CVReg. (see Tables 6, 7 and 8). Therefore, in order to go beyond 734 

understanding individual determinants of shower consumption towards an accurate and 735 

statistically robust forecasting model, the above findings have been applied in an independent 736 

factorial ANOVA extended into a three tier hierarchical linear multiple regression model, as 737 

presented in the subsequent section. 738 

     739 

6.2. Shower forecasting model 740 

A domestic average daily per household shower end use forecasting model was built 741 

using eight -way independent factorial ANOVA and extended into a multiple regression 742 

model based on research propositions 2a, 2b, and 2c presented earlier in section 3.2. As 743 



discussed in section 5.2, a hierarchical regression method is used to build the model in three 744 

blocks.  745 

As discussed in section 3.2 and based on research proposition 2a, the household 746 

makeup characteristics composite should be used as the base or the first tier in building the 747 

forecasting model. However, based on household shower determinants presented into 748 

characteristics (Table 2), there are four possible household makeup composites that can be 749 

formed. The first composite considered to explain household makeup was represented by the 750 

number of people in a household (HHS) and its groups: one person (1P), two persons (2P) 751 

and three persons or more (3P+) (see Figure 6h). The second composite considered to explain 752 

household makeup was represented by age characteristics along with their associated groups 753 

in a household and ignoring gender (i.e. A+C).  The third composite considered was a more 754 

detailed version of the second composite, and it was represented by age characteristics along 755 

with their associated groups with more detailed children characteristics (i.e. A+T+ C4≤Age≤12y + 756 

CAge≤3y). The last composite considered was based on gender only and did not include age 757 

categories (i.e. M+F). Readers should note that considering both gender and detailed age 758 

characteristics diluted the clustered sample size too much for this composite to be possible. 759 

The ability of the four household size makeup composites in explaining variation in 760 

the DV shower consumption was explored using ANOVA and extended into multiple 761 

regression models in order to select the best predictor of shower end use consumption (i.e. 762 

highest R2 and lowest SE). Results presented in Table 9 show that the household makeup 763 

composite A+T+ C4≤Age≤12y + CAge≤3y with its associated groups can explain 74% of the variation 764 

in shower consumption with the relatively smallest SE of 23.5 L/hh/d and the narrowest 765 

prediction interval (i.e. CVReg. = 0.329) when compared to other composites. The examined 766 

composite possibilities A+C and HHS both explained 66.3% of variation in the DV, with 767 

24.5 and 26.5 L/hh/d standard errors, respectively. Lastly, the gender based composite M+F 768 



can explain 57.7% of shower consumption, with the largest SE of 29.3 L/hh/d, and the widest 769 

prediction interval (i.e. CVReg. = 0.393). 770 
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 773 

Thus, based on this combinations assessment, the household makeup composite 774 

represented by four variables A+T+ C4≤Age≤12y + CAge≤3y and their associated groups, was 775 

selected for representing the household size makeup when building the forecasting model. 776 

Therefore, it was entered in the first block of the model using the Forced Entry regression 777 

method as shown in Table 10. Subsequently, the S shower determinant represented by its 778 

associated groups was entered into the second block of the model as the fifth variable, also 779 

using the Forced Entry method. Finally, in the third block, the three socio-demographic 780 

shower determinants I, O and E are entered using the Stepwise Regression method to explore 781 

their priorities as discussed earlier in section 5.2.  782 

Results presented in Table 10 shown in the first block, reveals that all group mean 783 

differences from the control group (i.e. 2A+0T+0C4≤Age≤12y+0C+
Age≤3y), are significant (p<0.05, 784 

p<0.01, and p<0.001). Further, the generated model using the household makeup composite 785 

alone is statistically significant (p<0.001), and it accounts for 71.4% of the variation in 786 

shower L/hh/d consumption with a SE of 28.0 L/hh/d and a CVReg. of 0.342.  787 

The results presented in the second block of the model show that the addition of the 788 

stock efficiency factor with household size has increased the ability of explaining variation in 789 

shower consumption by 18.8% , and that this change is statistically significant (i.e. 790 

FChange(4,114) = 54.940, p<0.001). The generated model using both determinants is capable 791 

of explaining 90.2% of the variation in shower L/hh/d consumption with a relatively small SE 792 

of 16.68 L/hh/d and a narrow prediction interval (i.e. CVReg. = 0.203). The model has also a 793 



significant fit (F(4,114) = 117.131, p<0.001) to the data, and if generalised beyond the 794 

sample of this study, it can explain 89.5% of the variation in shower consumption (i.e. AdjR2 795 

= 0.895).   796 

The model shows that households with two adults that are not using efficient 797 

showerhead (i.e. control group) are consuming an average of 99.1 L/hh/d. Whereas, 798 

households with one adult are on average consuming 10.4 L/hh/d less than the control group. 799 

Further, households with three or more adults, one or more teenagers, one or more children 800 

aged between 4 and 12 years, and one or more children aged 3 years or less are consuming 801 

76.2, 68.0, 16.3, and 42.0 L/hh/d more in shower end use consumption than the control group 802 

respectively. The model also shows that households using showerheads fixtures of the types 803 

AAA, AA, A, and Standard are on average consuming 67.3, 67.0, 44.1, and 27.8 L/hh/d less 804 

in the shower than the control group (i.e. Old), respectively.   805 

 In the third block of the model, income, occupation and education variables could not 806 

be entered into the model as they failed to meet the criteria of having an F statistic probability 807 

value of less than or equal 0.05. This indicates that they could not make a further significant 808 

contribution to the predictive power of the model in the second block (Field, 2009).   809 

 Hence, the generated model in the second block shows that household makeup (i.e. 810 

A+T+ C4≤Age≤12y + CAge≤3y) and stock efficiency (i.e. S) are the most significant predictors of 811 

average daily shower end use consumption. Additionally, findings provide empirical support 812 

for research propositions 2a, 2b and 2c demonstrating that shower end use forecasting models 813 

are better built when considering household makeup characteristics as the most important 814 

predictor of shower consumption, and then showerhead efficiency rating as the second 815 

predictor, and then other socio-demographic factors.   816 

Thus, the generated model in the second block which combines household makeup 817 

characteristic and showerhead efficiency rating predictors was considered the final 818 



forecasting model for Average Daily Household Shower Consumption (ADHSC) as 819 

presented in Equation 3. 820 

 821 

              ADHSC L/hh/d = 99.1 822 

– 10.4 (1A) + 76.2(3A+) + 68.0(1T+) + 16.3 (1C+
4≤Age≤12y) + 42.0(1C+

Age≤3y) 823 

 – 67.3 (SAAA) – 67.0(SAA) – 44.1 (SA) – 27.8 (SStandard) 824 

 ± 16.7                                                                                                                        (3) 825 
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 828 

In order to obtain a prediction of ADHSC (L/hh/d) using the model presented in 829 

Equation 3, household makeup and showerhead stock efficiency characteristics should be 830 

determined by indicating the membership of the household using both factors groups (i.e. 0 or 831 

1). In this way, values can be assigned to each variable, where a value of 1 refers to that 832 

household belonging to a particular characteristic group, and a value of 0 infers no belonging. 833 

To exemplify the calculation and possible variation in ADHSC, three household typology 834 

scenarios were developed and are presented in Figure 8. The first scenario ‘House 1’ 835 

represents the lowest prediction figure that can be generated by the model. This house has 836 

only one adult resident who is using the most efficient showerhead fixture of the type AAA. 837 

By substituting a value of 1 in 1A and SAAA and by a value of 0 in all other groups in 838 

Equation 3 (see Figure 8), the predicted shower consumption was calculated to be 21.4 ± 16.7 839 

L/hh/d (± 16.7 represents the confidence interval of the developed regression model).  840 

The second scenario represents the case of ‘House 2’ which has two adults that are 841 

using an old showerhead fixture (i.e. flow rate ≥ 21 L/min). This group is effectively the 842 

control group of the sample. As shown in Figure 8, substituting a value of 0 in all groups 843 

yielded a predicted shower consumption volume that is equal to the constant, which is the 844 



average shower consumption of the control group. Therefore, the daily average shower 845 

consumption for House 2 was determined as 99.1 ± 16.7 L/hh/d.  846 

The third scenario represents the highest prediction figure generated by the model. 847 

‘House 3’; is a large family that consisted of more than three adults, more than one teenager, 848 

more than one child aged between 4 and 12 years, and more than one child aged 3 years or 849 

less; who are all not using efficient showerhead fixtures. As shown in Figure 8, when 850 

substituting all characteristics groups that this household belongs to by a value of 1and a 851 

value of 0 everywhere else, the predicted daily average shower consumption of House 3 is 852 

301.6 ± 16.7 L/hh/d. 853 

 854 

Insert_Figure_8 855 

 856 

 To validate the developed shower end use forecasting model, data collected from 30 857 

households using the same sampling criteria followed in this study (see Table 3) were 858 

randomly retained before statistical model development. This independent data set was 859 

utilised to validate the developed model through comparing observed shower consumption 860 

(L/hh/d) to predicted average shower consumption (L/hh/d) calculated by Equation (3) as 861 

presented in Figure 9. The comparison analysis showed that the average error of the 862 

developed model in predicting shower consumption of the 30 households was ±10.3 L/hh/d 863 

which is relatively lower than the standard error of the developed model of ±16.7 L/hh/d (see 864 

Table 10). Thus, the developed model was deemed a valid shower end use forecasting model.  865 

 866 

Insert Figure 9 867 

 868 

 Conclusion 869 



A mix method research design was applied to collect both quantitative and qualitative 870 

data from over 200 households in SEQ, Australia. This design required the implementation of 871 

a range of collection approaches, including smart metering technology, questionnaire 872 

surveys, diaries, and household water stock inventory audits. All such data collection 873 

requirements were essential in order to accurately disaggregate residential meter flow data 874 

into each and every water end use event. The disaggregation process revealed that shower 875 

end use was a major component of indoor consumption. Therefore, exploring the 876 

predominant determinants of its consumption and the development of a forecasting model 877 

that is capable of predicting this consumption were the key objectives of this study. This was 878 

achieved by aligning household makeup, socio-demographic and stock efficiency factors 879 

against the natural science data set being shower end use consumption. Dummy coding and 880 

ANOVA extended into multiple-regression was firstly used to reveal significant determinants 881 

of shower consumption, followed by the development of a comprehensive forecasting model. 882 

Results of the study revealed that all examined variables, such as household makeup, income, 883 

education, occupation status, and showerhead efficiency level, are all significant determinants 884 

of shower consumption, when examined individually. Results also suggested that household 885 

makeup characteristics and the showerhead stock efficiency were the most important 886 

determinants of shower consumption, when compared to the other determinants. With respect 887 

to the household makeup characteristics, from an age perspective, results also revealed that 888 

the number of children and more specifically, the number of teenagers in a household are the 889 

most important household makeup characteristics in terms of influencing shower 890 

consumption. Moreover, from a gender perspective, results revealed that the number of 891 

females in a household is an important determinant of shower consumption.  892 

Eight-way independent factorial ANOVA extended into three tiers of hierarchical 893 

linear multiple regression was applied to build a forecasting model for shower end use 894 



consumption, based on the significant determinants identified. The generated forecasting 895 

model shows that a household size makeup composite factor (i.e. A + T + C4≤Age≤12y + CAge≤3y) 896 

and a showerhead stock efficiency factor are the significant predictors of average daily 897 

shower consumption, explaining a healthy 90.2% of the variation in the DV. A shower end 898 

use forecasting model of this complexity and statistical significance has not been reported in 899 

the literature to date, thereby making it a worthwhile research contribution. 900 

 901 

 902 

8. Study implications 903 

Given that showering is often reported as the highest indoor consumption category, 904 

and that shower end use event volumes and frequency, are generally much higher than is 905 

required for sanitary purposes (i.e. showering is often considered as a leisure activity), this 906 

water end use category has the potential to be substantially reduced in drought periods. In 907 

such periods, or as a core long-term water conservation measure of the community, the herein 908 

described study findings can assist water businesses and government policy officers 909 

responsible with designing better targeted water conservation strategies and policies 910 

addressing shower end use. For instance, shower conservation awareness campaigns could be 911 

specifically designed to have greater appeal to females and teenagers, as these household 912 

groups were shown to have a greater influence on shower consumption. Additionally, this 913 

study has provided further empirical support to a growing existing body of knowledge 914 

highlighting that the replacement of low efficiency showerheads with higher ones, will result 915 

in a considerable reduction in average daily shower consumption in the household. 916 

Showerhead retrofit programs are confirmed herein as a least cost potable water savings 917 

measure that can be easily implemented by the water business or government. Finally, the 918 

formulated shower end use forecasting model will be invaluable for demand forecasting 919 



professionals based in urban water businesses when completing water balance or 920 

infrastructure planning exercises. However, as a note of caution to readers, the presented 921 

models should be considered in relation to the situational context of the research investigation 922 

(i.e. SEQ, Australia) and need to be adapted for use elsewhere. Nonetheless, it is believed that 923 

the herein identified determinants of shower consumption and their relative level of 924 

predictive power will hold true in other regions, both nationally (i.e. Australia) and in other 925 

developed nations. 926 

 927 

9. Future work 928 

The next stage of this investigation is to follow a similar research method to that 929 

described herein to reveal the significant determinants of all other indoor end use categories 930 

(e.g. toilet, tap, bathtub, clothes washing and dishwashing). Moreover, a modularised micro-931 

component forecasting model will be built for each of these end uses combining significant 932 

predictors of that particular end use category. The summation of all end use predictions from 933 

such complex models can provide an evidence-based forecast of domestic household demand. 934 

Modules will also be developed for outdoor (i.e. irrigation) and leakage end uses by applying 935 

a range of complex prediction techniques, given their greater variability and uncertainty, 936 

when compared to indoor end uses. A web-based water end use demand forecasting tool will 937 

be developed. This model and associated software tool has a number of purposes, including 938 

water demand forecasting, water infrastructure network planning, demand management 939 

scheme evaluation, social behavioural marketing scenario analysis, to name a few. 940 

 941 

10. Limitations and future research directions 942 

Water end use studies using high resolution smart metering technology is costly and 943 

time consuming, thereby prohibiting large and widespread sample sizes. Nonetheless, the cost 944 



of this technology will reduce over time and enable larger samples to be examined over 945 

longer time periods; thereby enhancing the statistical power of the forecasting model. For 946 

instance, sample size constricted the number of dummy coded determinant categories and 947 

limited the level of detail that could be explored (i.e. female teenagers, male teenagers, 948 

female adults, male adults, etc.). Moreover, macro factors (i.e. government policy of region, 949 

environmental context, etc.), householder attitudinal data, and a range of other socio-950 

demographic factors could be explored in future studies. Finally, the current model is static 951 

based on a snapshot of collected end use data. Over time, end use water consumption will 952 

change. Ideally, data is collected remotely and stored over longer time periods and 953 

automatically disaggregated into water end use events; aligned household data is also updated 954 

over time. Such a dynamic micro-component model will be an ideal tool for just-in-time 955 

residential demand forecasting in the urban water context.  956 
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Tables 

 

 

 

 

Table 1 Previous residential water end use studies conducted in Australia (Beal et al. 2011a) 
Authors Loh and Coghlan (2003) Roberts (2005) Willis et al. (2009a) 
Study title Domestic Water  

Use Study 
REUMS Gold Coast  Watersaver 

End Use Study 
Region Perth Melbourne Gold Coast 

Reporting year 1998-2001 2004 2009 

Sample size (No. homes) 120 100 151 

Average indoor consumption (L/p/d) 155 169 139 

Average total consumption (L/p/d) 335 226 157 

Bath/shower (%) 33 31 42 

Washing machine (%) 28 26 22 

Toilet (%) 22 18 15 

Tap (%) 15 17 20 

Leaks (%) 2 8 1 
 

 

 

 

 
 



Table 2 Shower end use determinant categories, characteristics and groups 

Factor Type Unit Characteristic (IV’s) Symbol Groups Symbol 
Household 
composition 

Household  size, 
age, gender and 
makeup 

Number of people  Household size HHS One Person 
Two Persons† 
Three Persons or more 

1P 
2P 

3P+ 
   Adults  A One Adult 

Two Adults† 
Three Adults or more 

1A  
2A 

3A+ 
   Children  C No Children† 

One Child or more 
0C 

1C+ 
   Males M No Males 

One Male† 
Two Males or more 

0M 
1M 

2M+ 
   Females  F No Females 

One Female† 
Two Females or more 

0F 
1F 

2F+ 
   Teenagers  T 

 
No Teenagers† 
One Teenager or more 

0T 
1T+ 

   Children aged between 4 to 12 years 
 

C4≤Age≤12y No Children aged between 4 to 12 years† 
One Child aged between 4 to 12 years or more 

0C4≤Age≤12y 
1C+

4≤Age≤12y 
   Children aged 3 years or less CAge≤3y No Children aged 3 years or less† 

One or more Children aged 3 years or less 
0CAge≤3y 

1C+
Age≤3y 

Socio-
demographic 

Household 
income 
 

AUD Annual income range I Annual Income is less than $30,000 
Annual Income is between $30,000 and $59,999† 
Annual Income is between $60,000 and $89,999 
Annual Income is more than $90,000 

I <$30,000 
$30,000≤ I≤$59,999 

$60,000 ≤ I≤ $89,999 
I≥$90,000 

 Occupation Status  Predominant occupational  status O Working† 
Retired 

OW 
OR 

 Education Level Predominant educational level  E Trade/TAFE or Lower† 
Tertiary Undergraduate 
Tertiary Postgraduate 

ET
- 

EU 
EP 

Water stock 
inventory 
 
 
 

Stock efficiency Water flow rates 
intervals (L/min) 

WELS showerheads efficiency rating 
(Commonwealth of Australia, 2011b) 

S AAA (Flow Rate < 9 L/min) 
AA (9 < Flow Rate <12 L/min) 
A (12 < Flow Rate < 15 L/min) 
Standard (15 < Flow Rate < 21 L/min) 
Old (Flow Rate > 21 L/min) † 

SAAA 
SAA 
 SA 

SStandard 
 SOld 

Note: †Control Group



Table 3 Criteria for sample selection of SEQREUS households 

Criteria Comment / Justification for Criteria 
Residential single detached dwelling  Required to have a single residential water meter specific 

only to the property being metered in order to capture 
single household data.  

No internally plumbed rainwater 
tank. Rainwater tank for external use 
permitted.  

Toilet and/or laundry end uses would be sourced from the 
rain tank and thus could not be measured by mains water 
meter.  

All internal end uses needed to be measured in this study.  

Rainwater tanks used predominately for external use only 
(i.e. not plumbed in to household) were accepted. 

Owner-occupied household  Due to consent reasons and that water bills are payed for 
by the home owner (i.e. landlord); only home owners have 
been included in the study.  

Rental households are typically transient and can move 
every 6-12 months, thus not providing a good sample for 
seasonal comparisons.  

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 General characteristics of monitored households in SEQREUS 
 

Household Characteristics of Sample Gold Coast † Brisbane Ipswich Sunshine Coast Average 
Household occupancy 2.6 2.6 2.7 2.5 2.6 
% Households with ≤ 2 people 58% 41% 51% 69% 55% 
% Households pensioners/retired 36% 16% 32% 45% 32% 
Households with children (aged ≤ 17  years) 34% 30% 21% 25% 28% 
Average age of children (years) 8.8 2.7 4.4 10 6.5 

Note: † data presented are averages 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 Example of dummy coding 
Groups Dummy Variable 1 Dummy Variable 2 
1A 1 0 
2A 0 0 
3A+ 0 1 



 
Table 6 Household makeup characteristics’ group mean differences and regression models  

Note: n.s.p >0.05, **p<0.01, ***p<0.001 
 
 
 
 
 
 
 
 
 

IV Model Coefficient SE df1 df2 F Durbin-Watson Ave. VIF CV Reg. (%) Adj. R2 (%) R2 (%) 
            
C Constant 48.8*** 28.7 1 159 224.613*** 1.887 1.000 39.4 58.3 58.6 
 1C+ 71.8***          
            
F Constant 56.7*** 32.0 2 155 74.779*** 1.902 1.056 43.1 48.4 49.1 
 0F – 10.2 n.s.          
 2F+ 67.4***          
            
T Constant 58.6*** 32.7 1 161 114.960*** 1.857 1.000 46.6 41.3 41.7 
 1T+ 76.3***          
            
M Constant 59.3*** 32.9 2 159 52.895*** 2.020 1.072 46.5 39.2 40.0 
 0M – 21.4**          
 2M+ 52.7***          
            
CAge≤3y Constant 57.4*** 31.9 1 160 92.509*** 1.677 1.000 59.9 36.2 36.6 
 1C+

Age≤3y 71.8***          
            
A Constant 70.1*** 34.2 2 163 28.795*** 1.935 1.035 50.4 25.2 26.1 
 1A – 25.1***          
 3A+ 53.2***          
            
C4≤Age≤12y Constant 62.9*** 37.8 1 169 37.319*** 1.889 1.000 53.8 17.6  18.1 
 1C+

4≤Age≤12y 49.9***          
            



 
Table 7 Stock efficiency characteristics’ group mean differences and regression models 

Note: ***p<0.001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV Model Coefficient SE df1 df2 F Durbin-Watson Ave. VIF CV Reg. (%) Adj. R2 (%) R2 (%) 
            
S Constant 102.4*** 23.1 4 116 31.290*** 1.875 1.760 34.8 50.2 51.9 
 SAAA – 77.0***          
 SAA – 62.0***          
 SA – 36.1***          
 SStandard – 25.6***          
            



 
 
Table 8 Income, occupation and education characteristics’ group mean differences and regression models 

Note: *p<0.05, **p<0.01, ***p<0.001 
 
 
 
 
 
 
 
 
 

 
IV Model Coefficient SE df1 df2 F Durbin-Watson Ave. VIF CV Reg. (%) Adj. R2 (%) R2 (%) 

            
I Constant 65.2*** 33.6 3 141 26.630*** 1.803 1.483 46.8 34.8 36.2 
 I <$30,000 – 29.3***          
 $60,000 ≤ I≤ $89,999 16.7*          
 I≥$90,000 39.2***          
            
O Constant 81.5*** 30.3 1 152 66.096*** 1.759 1.000 45.9 29.8 30.3 
 OR – 40.8***          
            
E Constant 54.6*** 34.7 2 157 9.724*** 1.773 1.078 53.4 9.9 11.0 
 EU 25.0***          
 EP 23.8**          
            



Table 9 Household makeup composites’ group mean differences and regression models 

Note: ***p<0.001 
 
 
 
 
 
 
 
 
 
 

Composite Model Coefficient SE df1 df2 F Durbin-
Watson Ave. VIF CV Reg. (%) Adj. R2 (%) R2 (%) 

            
A+T+ C4≤Age≤12y + CAge≤3y Constant 50.0*** 23.5 5 146 82.893*** 1.819 1.067 32.9 73.1 74.0 
 1A – 15.8***          
 3A+ 48.8***          
 1T+ 89.7***          
 1C+

4≤Age≤12y 34.6***          
 1C+

Age≤3y 61.8***          
            
A+C Constant 50.4*** 24.5 3 150 98.276*** 1.706 1.046 35.0 65.5 66.3 
 1A – 17.0***          
 3A+ 49.0***          
 1C+ 62.1***          
            
HHS Constant 53.6*** 26.5 2 157 154.113*** 1.733 1.168 35.8 65.8 66.3 
 1P – 20.2***          
 3P+ 68.6***          
            
M+F Constant 61.7*** 29.3 4 155 52.762*** 1.820 1.077 39.3 56.6 57.7 
 0M – 36.9***          
 2M+ 40.1***          
 0F – 27.0***          
 2F+ 43.3***          
            



 
Table 10 Average daily per household shower end use forecasting model 
 

Block Description IV’s Model Coefficient SE df1 df2 F F Change Durbin-Watson Ave. VIF CV Reg. (%) Adj. R2 (%) R2 (%) 
               

B
lo

ck
 1

 
(F

or
ce

d 
En

try
) Household 

makeup 
composite 

A+T+ 
C4≤Age≤12y + 
CAge≤3y 

Constant 60.1*** 28.0 5 118 59.001*** 59.001*** ---- 1.089 34.2 70.2 71.4 
1A -19.9** 
3A+ 78.7*** 

  1T+ 79.0***           
  1C+

4≤Age≤12y 18.3*           
  1C+

Age≤3y 48.9***           
              

               

B
lo

ck
 2

 
(F

or
ce

d 
En

try
) 

Household 
makeup 
composite + 
Stock  

A+T+ 
C4≤Age≤12y + 
CAge≤3y+S 

Constant 99.1*** 16.7 4 114 117.131*** 54.940*** 1.839 1.425 20.3 89.5 90.2 
1A – 10.4** 
3A+ 76.2*** 
1T+ 68.0*** 

Efficiency  1C+
4≤Age≤12y 16.3***           

  1C+
Age≤3y 42.0***           

  SAAA – 67.3***           
  SAA – 67.0***           
  SA – 44.1***           
  SStandard – 27.8***           
              

               

B
lo

ck
 3

 
(S

te
pw

is
e)

 

Household 
makeup 
composite + 
Stock 
Efficiency + 
Socio-
demographic 
factors  

 

Socio-demographic (i.e. I, O, and E) variables could not enter the model 

               
Note: *p<0.05, **p<0.01, ***p<0.001 



Figures: 

 

 

Figure 1. Regions covered by SEQREUS (Beal et al. 2011a) 



 

Figure 2. Comparison between government and SEQREUS reported per capita consumption 

(Beal et al. 2011a) 



 

Figure 3. Schematic illustrating water end use analysis process (Beal et al. 2011a, 2011b) 

 

 



 

Figure 4. Average daily per capita end uses consumption of SEQREUS versus previous end 

use studies 



 

Figure 5. Average indoor water end use breakdown for SEQREUS (adapted from Beal et al. 

2011b) 



Figure 6.  Household makeup characteristic groups and average shower consumption 



 

Figure 7.  Income, occupational status, education and stock efficiency groupings relationship 

with average daily household shower consumption 



 

Figure 8.  Illustrative examples of shower consumption prediction 

 



 

Figure 9. Observed versus predicted average daily per household shower consumption 
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