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Abstract

Tonewood for musical instruments is quarter-sawn and fre-
quendy quality-graded based on visual appearance, mechan-
ical and acoustic properties. The assessment uses simple
human (subjective) observation. and two *‘experts’’ can rate
the same sample differently. This paper describes the appli-
cation of integral transforms (Fourier and Radon) for auto-
matic (objective) assessment of the visual appearance of 10
Sitka spruce (Picea sitchensis) sample images. This work
considers surface classification on the basis of grain orien-
tation. count. spacing, and evenness or uniformity.

Keywords: Fourier transform; grain texture analysis: image
processing: Radon transform; Sitka spruce.

Introduction

The term “'tonewood™ describes a wood with consistent
acoustic qualities. Tonewood for musical instruments is quar-
ter-sawn and frequently “‘quality-graded’’ based on the cri-
teria of visual appearance, mechanical and acoustic
propcerties (sound response). It is well established that elastic
and strength properties are higher in the grain direction than
perpendicular to the grain (Green 2001) and the elastic con-
stants (i.e.. elasuc and shear moduli and Poisson ratios) are
related to the resonant frequencies or eigen frequencies. The
spectrum of these resonant frequencies and their relative
strengths govern the resultant sound pitch and timbre of the
wood (Wegst 2008), whilst internal friction (related to sustain
or length of the sound) can be related to the width of the
resonant peaks (Wei and Kukureka 2000). The density is
related to the fibre length and diameter, lumen diameter, and
cell wall thickness, whilst ray dimensions influence sonic
velocity (Longui et al. 2010) and hence acoustic guality.
There is considerable research focus on physical measure-
ment of those woods used in musical instrument construction
(e.g.. Schimleck et al. 2009), but, in practice. visual appear-
ance seems (o be the main criterion for soundboard quality-
grading decisions, rather than mechanical and acoustic
properties (Buksnowitz et al. 2007). The visual appearance

is symptomatic (but not an assurance) of mechanical and
acoustic properties. The highest grades are usually aliocated
to samples with the most consistent colour and even grain
pattern. These woods are also the most accurately quarter-
sawn with less grain *‘run out”’. Assessment is based simply
on subjective human observation, and two ‘‘experts’ can
rate the same sample differently. Several assessors are there-
fore needed to produce statistically meaningful and repeat-
able results of surface texture evaluation.

Image processing has the potential to provide automatic,
objective, and cost-effective tonewood evaluations. Logs
have been evalualed using image processing methods by
Nilsson and Edlund (2005). whilst computer tomography has
been used by Wei et al. (2009) to create three-dimensional
reconstructions. Wood composites have been considered by
Walther and Thomen (2009) and Eberhardt et al. (2009).
Image analysis has also been used to quantify anatomical
details such as vessel characteristics (Chen and Evans 2010)
and vessel network (Hass et al. 2010). An evaluation of the
change in appearance of lumbcer surfaces (illuminated from
various directions) was described by Nakamura et al. (2010).
Khalid et al. (2008) describe an automatic wood recognition
system based on image processing, feature extraction. and
artificial neural networks, whilst Yu et al. (2005) have con-
sidered texture orientation for species classification.

This paper focuses on surface assessment of Sitka spruce
(Picea sitchensis) as a tonewood for piano, violin. and guitar
soundboards. Picea sitchensis is the ‘*most widely planted
commercial tree species in the United Kingdom and Ireland’’
(McLean et al. 2010). The work addresses the issue of auto-
matic visual assessment of tonewoods with a visible, regular
striated pattern. However, the method is not limited to tone-
wood evaluations and could be applied more broadly after
adaptation as a wood classification tool. Consideration is
given 1o the feasibility of an automatic grain texture evalu-
ation tool based on grain orientation. count, spacing, and
evenness (or uniformity) — rather than defects. Most existing
image-based characterisation systems for quality grading
purposes tend to consider surface defect identification (for
example. knots, cracks etc.) (Piuri and Scotti 2010). Image
processing is performed here using Fourier and Radon trans-
forms (Weeks 1996; Budd and Mitchell 2008). The work
focuses on the development of image processing methods to
improve automatic (objective) surface evaluation.

Materials and methods

Ten Sitka spruce (Picea sitchensis) panels (~60 mm X ~60 mm)
were created from a B-grade quarter-sawn soundboard blank sup-
plied by Guitar Woods, Australia (www.guitarwoods.com.au). Sitka
spruce exhibits a straight grain. with annual rings of wider, lighter-
coloured earlywood blending into a narrower band of dark-coloured
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latewood (Harris 1984). B-grade blanks have obvious colour vari-
ation across their surface, and an irregular grain pattern and spacing.
A reasonable degree of sample variation was deemed important in
this feasibility study. To ensure a representative sample. no attempt
was made Lo smooth the surface of the blank; it was investigated
in its “‘as supplied’” condition.

Panels were cut from selected regions. spanning the width of the
blank. The 10 panels are referred to with their identification num-
bers (SIOI-S110). The panel selections were made at locations
where human visual assessment of grain texture was possible. The
panels were scanned as colour images at 600 pixels/inch
(~236 pixels per cm) with a Hewlett-Packard HP Colour LaserJet
CMI1312MFP. The colour images were then cropped to 1200 pixels/
rows (50.8 mm) X 1200 pixels/columns (50.8 mm) to cnsure square
sample images of consistent dimensions. The cropped colour images
were assessed visually by the authors. Two of the samples (5104
and STO7) were considered to be at. or near, the limit of what the
authors could c¢valuate under normal (office) lighting. After scan-
ning, the authors agreed on all images to within an error of 1
grain, except in the case S104. The results for sample lmage SI104
are therefore not reported. The retained cropped images were then
converted to greyscale to yield high resolution 8-bit (256 greyscale)
images. The grain orientations of seven (out of the 10) panels were
aligned approximately vertically (i.e., 8= ~0°), with three panels
orientated at about 10° (clockwise) intervals from the vertical.
Assuming positive angles are anticlockwise rotations, negative
angles are anticlockwise (ie. #=~-10° #=~-20° and 6=
~-30°). The rctained sample images were analysed by Fourier and
Radon transforms. All numerical analyses were performed using
Matlab (a widely available commercial mathematical package from
The Math Works Inc.. Natick, MA, USA).

Fourier transform (FT)

The FT is a mathematical method that provides a description of a
signal or waveform or image in terms of a set of sinusoidal (i.e..
sine and cosine) components of different frequency (1/wavelength).
phase (relative position) and amplitude (height). The FT is a com-
mon technique for image (spatial) filtering to reduce image noise
and/or to sharpen blurred features in images (Weeks 1996). Here,
the FT is also applied in the latter mentioned context to emphasise
the wood texture.

For a square (digital) image f(x.y) with NXN pixels, the FT
F(u,v) and its inverse can be implemented with the 2D discrete FT
(DFT) pair, viz.:

Flu,v)= —I: ¥ Nif‘-\l ¥) P-ﬂ"("“‘ ) (la)
N‘ =0 v=0 ’

fx.y)= l E EF(M.I-) em(’:“; “5) (1b)
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where « and ¢ are the spatial frequencies of the sinusoidal compo-
nents in the x- and y-directions measured in units of pcaks(maxima)-
per-inch (PPI) or peaks-per-centimetre.

An image and its transform both contain N XN values - no infor-
mation is lost or destroyed. Moreover, a transform followed by
the inverse (without filtering) recovers the original image exactly.
The trequency component F(0,0) represents the average value of the
image. This is commonly referred 10 as the Direct Current (DC)
component: a terminology that comes from electrical engineering.

Herein. the sample images were 1200X 1200 pixels (2 inches
square. digitised at 600 dpi). At this resolution, the FT produces

Table 1 Band-pass filters.

Sample Band-edge (pixels per sample)
image Lower Upper
S101 19.5 60.5
S102 145 45.5
Sio3 24.5 60.5
S104 Discarded

S105 14.5 60.5
S106 245 50.5
S107 245 60.5
Si08 245 55.5
$109 245 55.5
SHo 29.5 60.5

frequency components up to 300 peaks(maxima)-per-inch. corre-
sponding to 600 peaks(maxima)-per-sample PPS, i.e.. the maximum
frequency component in the x- and v-directions are obtained when
u=NI2 and ¢ =Ni2, respectively. All the sample images were fil-
tered with a band-pass filter. All frequency components were
retained that lie between a lower and an upper band edge. whilst
discarding all components outside. The band-pass filter for each
sample image was selected from maximum and minimum grain
spacing estimates (based on a manual count of pixels) — this band-
filter information, for each sample image, is presented in Table 1.
The greyscale sample image and corresponding filtered image of a
“typical”” sample (SI01) is presented in Figure la and b. Figure Ic
and d show for comparison greyscale sample images for S102 and
S103. In the following discussion, the mathematical procedure and
results are illustrated based on STIO1: sample-specific details are
demionstrated based on other samples (including SI02 and S103).

Radon transform (RT)

The RT represents an image as the projections (or line integrals of
all lines on the image matrix) along specific directions. It is useful

Figure 1 Typical images: (a) sample image SI01 (greyscale):
(b) filtered image SIO1: (c) sample image SI02 (greyscale) and
(d) sample image SI03 (greyscale). :
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in line detection applications, tncluding image processing, computer
vision, and scismic applications (Zhang and Couloigner 2007). Its
propensity for line detection makes it an ideal image analysis tool
for studying wood grain texture (Yu et al. 2005). In this referenced
work. consideration was given 10 grain texture orientation only. The
feasibility of a full quantitative grain texture evaluation (as proposed
here) is significantly morc complex, cspecially on *‘as supplied™
wood. The full texture evaluation considered in the present paper
focuses on grain orientation, count. spacing, and uniformity.
The line integral for each line in a specific direction is:

R(L)= fﬂ,\: AN )
I8

where f(x, v) is the image and dv' is a small distance increment along
the line length, L.

The straight lines pass through a series of points on the image.
The lines are paralle]l to each other and are spaced at a constant
increment, dx’. apart. The points on each of the straight lines are at
the constant increment, di'. along each of the line lengths. Their
position can be defined relative to the x- and y-axes (located at the
image centroid). or converted to the x’- and v'-coordinate system
via:

(x,y)=(a"cos B-¥'sin 8. x'sin@ + y'cos 0 3

The Radon transform of the image is obtained by substitution of
Eq. (3) into Eq. (2). viz.:

Results and discussion

Grain orientation

Radon transform projections were. computed for a 90° range
of angles (-45° <6 <44°) with a 0.1° interval. For each sam-
ple image. at each angle, the root sum square (RSS) of the
line integrals was calculated. The grain orientation for each
sample image was identified as the angle where the RSS
value was maximum. The RSS plots for sample images S101.
SI08, S109 and SI10 are shown in Figure 2. The RSS maxima
on the plots correlate to the grain orientations as expected or
measured (i.e., SIOI~0° SI08 ~ 10° clockwise. SI09 ~20°
clockwise. and SI10~ 30° clockwise).

Grain count, spacing, and uniformity

The image projections at the grain orientation angles for
sample images S101-SI07 were calculated by RT. These are
all orientated at approximately 0°; sample images SI08-S110
were not assessed for grain count. Figure 3a shows the image
projection of the sample image SI01 (presented in Figure la)
at an angle of -0.6°. The modified image projection data for
identifying the grain count are given in Figure 3b and ¢. The
horizontal axis corresponds to the distance dx’ from the cen-
tre of the sample image. The magnitude of the line integral
(the sum of the intensities along dy') is plotied on the vertical
axis.

The earlywood (EW) tends to yield positive values, whilst

R(.\-’,0)=j/‘(.\-’cose»)-’si11H,.\-’sinﬁf\”cosﬂ]d)” 4 the negative values relate to the darker latewood (LW)
7 (Figure 3a). These positive and ncgative values arise from
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Figure 2 Grain orientation RSS plots: (a) SI101: (b) S108; (c) SI09 and (d) SI10.
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Figure 3 Grain count plots: (a) image projection: (b) modified projection and (c) after grain selection.

the filtering procedure, specifically the removal of the DC
component. The grain count is identified from the number
of LW occurrencés and. hence. only the negative data are
retained; the positive data are sct to zero — Figure 3b. The
peaks. evident in Figure 3b. include all visually identified
LW occurrences (numbers 1-17 of 33 are shown), but further
include some spurious occurrences (letters A—C). These arise
from surface features that have not been removed during the

" Fourier filtering procedure. They are evident for most sample
images after image processing has been completed and tend
to have significantly lower amplitudes than the “‘true’’ LW
signals. Based on the characteristics of the signal, an auto-
maltic grain selection process attempts to remove these spu-
rious occurrences (Figure 3¢).

The automatic grain selection process identifies all peaks
in the negative data, both true and spurious. Peaks are then
removed (considered to be anomalous) if they have a low
magnitude by setting two noise thresholds. A low threshold
is set at 10% of the magnitude of adjacent peak/s. a high
threshold at 25%. Those with magnitudes lower than the
10% threshold are assumed to be inconsistent and instantly
removed. The peaks with magnitudes between 10% and 25%

are only removed if the distance between them and previous
peaks is deemed to be ‘‘atypical’’. Atypical means: if the
distance (period) between the current peak and the previous
one is more than 1.5-times of that of the previous two
periods. i.c.. at variance to normal growth patterns. To ensure
that no anomalous data are retained, the automatic selection
process is repeated several times, Figure 3¢ demonstrates the
outcome of the procedure. Spurious peaks have been iden-
tified and removed.

For comparison. the visual evaluation and automatic grain
counts are listed in Table 2. Sample images with author
agreement of ] grain are compared. The visual and auto-
matic evaluations for SIO1, SI02, S103, and SI107 are in
agreement. All LW occurrences are correctly identified on
sample images SIOS and S106. Furthermore, the spurious
peaks surrounded by true LW occurrences are all correctly
removed. Some ambiguity remains at the edges of the sam-
ple. where both spurious and/or true LW occurrences can
lead to small (but significant) peaks, if the grain boundaries
are not perfectly aligned with the sample edges. This will
vary from sample to sample. but it is the case for SI05 and
SI06. Grain orientations for these two samples were -1.1°
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Table 2 Comparison of visual and automatic grain count.
Sample Sample evaluation

image Visual Automatic Comment
S101 32 0r 33 33 Correct
S102 30 30 Correct
S103 37 37 Correct
S104 Discarded -

S105 32 33 All LW correct™
S106 37 38 All LW correct*
SI107 37 or 38 37 Correct

*All latewood occurrence correctly identified.

and -0.8°. respectively. Such ambiguity is likely to be elim-
inated with proper alignment of the sample, or by visual and
automatic asscssment of a modified sample image. For
example. a parallelogram (rather than a square or rectangu-
lar) image with two sides of the original sample image
cropped at the computed grain orientation could be helpful
in ensuring proper alignment.

For cach sample image. pixel distances between LW
occurrences (identified from the minimum peak values above
— see Figure 3c) are easily determined. The mean, x, and
standard deviation, s. of these pixel distances can then be
used as objective indicators of typical grain spacing (or to
calculate grains per inch or cm etc.) and evenness (unifor-
mity). respectively. Sample images SI02 and SI03 have sig-
nificant differences in their grain spacing and uniformity and
were taken here for illustration — see Figure ¢ and d. S102
has fewer grains than S103. and they are spaced more widely
apart on the left-hand side of the image with tighter grains
prescnted on the right-hand side. The cause of this " ‘spacing
drif’’ is not addressed here, but could result from non-
alignment through the thickness (i.e.. the sample could have
been incorrectly guartersawn). Confirmation would require
evaluation of the tonewood’s cross-section. In contrast, the
grains for SI03 are much more evenly spaced, but show a
degree of waviness (the grain is kinked). The mean and stan-
dard deviations quantify the significant differences in grain
spacing for these two sample images, but can also be used
to characterise similar samples that are more difficult 1o
assess visually. The mean and standard deviations (in paren-
theses) are 40.2 (£7.8) pixels and 32.6 (+4.4) pixels for
SI02 and STO03. respectively. Grain waviness is not part of
this study. but it is postulated here that it could manifest itself
as a distinct feature in the grain orientation (RSS) plots.

Conclusions

This paper describes the application of integral transforms
(Fourier and Radon) for automatic wood surface classifica-
tion. Grain orientation. count. spacing, and evenness
(uniformity) were assessed from 600 dpi colour scanned
images. The grain oricntation was characterised for
1200 X 1200 pixel sample images by means of the root sum
squarc (RSS) of the line integrals (aficr band-pass filtering).

If the grain count can be visually identified from a colour
scanned image, the integral transforms method can success-
fully identify the number of grains. Here. the grain count
was identified from the number of latewood (LW) occur-
rences. It is proposed that mean and standard deviations of
the pixel distances between these LW occurrences can be
used as objective indicators of grain spacing and uniformity.
These initial results demonstrate that Fourier and Radon
transforms can be a practical tool for wood surface evalua-
tion. Future work will consider automatic classification of
soundboard blanks into relative grades of quality.
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