General optimality of the Heisenberg limit for quantum metrology
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It has long been known that quantum metrology promises ingat@ensitivity in parameter estimation over
classical procedures. However, there is an extensive eehatr the question how the sensitivity scales with
the resources (such as the average photon number) and nafiifese gates that are used in estimation pro-
cedures. Here, we reconcile the physical definition of theveat resources used in parameter estimation with
the information-theoretical scaling in terms of the queoynplexity of a quantum network. This leads to a
completely general optimality proof of the Heisenberg tifor quantum metrology. We give an example how
our proof resolves paradoxes that suggest sensitivitipsroethe Heisenberg limit, and we clarify the precise
relationship between the Heisenberg limit and Heisenbengtertainty principle.

PACS numbers: 03.67.-a, 03.65.Ta, 42.50.Lc

Parameter estimation is a fundamental pillar of science anthere are cases where the error in a parameter can scale much
technology, and improved measurement techniques for panore favourably with respect to the average photon number.
rameter estimation have often led to scientific breakthihnsug For example, Boix@t al. [7] devised a parameter estimation
and technological advancement. The field of quantum metrolprocedure that sees the error scale With?, and Roy and
ogy started with the work of Helstrom[2], who derived the  Braunstein §] construct a procedure that achieves an error
minimum value for the mean square error in a parameter ithat scales with 2V. In the case of continuous variables, Bel-
terms of the density matrix of the quantum system and a medran and Luis 9] showed that the use of classical optical non-
surement procedure. This was a generalisation of a known rdinearities can lead to an error with average photon number
sult in classical parameter estimation, called the CraRe®-  scalingN~%/2. It is tempting to conclude that these protocols
bound. Braunstein and Caved fhowed how this bound can beat the Heisenberg limit, but this is not the case. To sa&e thi
be formulated for the most general state preparation and meave first need to establish the exact nature of the resourad cou
surement procedures. While it is generally a hard problem tohat is to be used. We will see that in some cases thi®is
show that the Cramér-Rao bound can be attained in a givetihe photon number or average energy used in the procedure.
setup, at least it gives an upper limit to the precision ofrgua
tum parameter estimation. Cavey fhowed that quantum ) ) _ _ _
mechanical systems can in principle produce greater sensi- 1NiS paper is organized as follows: First, we will argue that
tivity over classical methods. A second, related problem igh€ Proper resource countis given by the expectation vélue o
to find an expression for the mean square error in terms df€ generator of translations in the parameteiSecond, we
the resources used in the parameter estimation procedure. Prove that the mean error fnis bounded by the inverse of this
other words, is there a general optimal scaling of the quant@Source count. This will shed light on the precise relafien
tum Cramér-Rao bound? We usually consider two scalingeen the Heisenberg limit and Heisenberg's uncertainty pr
regimes: (i) thestandard quantum limisQL) [5] or shot- qple. Fmglly, we show how the proposal by Beltran and Luis
noise limit which is typically given by the inverse square root IS réconciled with our proof.
of the number of time§ we make a measurement, and (ii)
carly Iversely wih the rosource coumt. Often the siandarg 16 MOStgeneral parameter esimaion procedure s shown
S . oo .Ih Fig. 1a). Consider a probe system prepared in an ini-

guantum limit and the Heisenberg limit can be compared di-. .

: tial quantum state(0) that is evolved to a statp(¢) by
rectly in terms of e.g., the average photon number. Howeve

. : J(¢)=exp—i¢s7). Thisis a unitary evolution when we in-
2§tv;i;vrllltlit?§§ shortly, they refer to two fundamentally diffe clude the relevant environment into our description, aratit

cludes feed-forward procedures. The Hermitian operador
The question is now twofold: First, what is the appropriateis the generator of translations @n the parameter we wish

resource count for the Cramér-Rao bound? And second, is the estimate. The system is subjected to a generalized mea-

Heisenberg limit (i.e., linear scaling) also the ultimatait surementM, described by a Positive Operator Valued Mea-

of the quantum Cramér-Rao bound? For many common casasire fovM) that consists of elements,, wherex denotes

the first question is easily answered: when in an optical pathe measurement outcome. These can be discrete or con-

rameter estimation procedure each photon probes the systdmuous (or a mixture of both). The probability distributio

of interest once, the appropriate resource count is the phdhat describes the measurement data is given by the Born rule

ton number. In most cases the Heisenberg limit is then givem(x|¢) = Tr[Exp(¢)], and the maximum amount of informa-

by the inverse photon numb&l—*, as expected. However, tion about¢ that can be extracted from this measurement is



a) guantum parameter estimation protocol can be written as a
P L Ule) p(®) M| pale) guantum network acting on a set of quantum systems, with
repeated couplings of the network to the system we wish to

probe for the parametaf. The couplings that introducg

b) 0) into the network can be considergderies and the scaling of
] the error ing is then determined by thguery complexityf
— the network. The number of queri€sis not always identical
L ’l‘ E_L_r} to the number of physical systersin the network.
N ] [ _ A_s an example, consider the quantum networks prese_nted
— s in Fig. 1. The quantum network in b) was analysed by Gio-
L L vannetti, Lloyd, and Maccon€él()]. Suppose that each grey

0=N=4 0= INN-1=6 box in Fig.1 is a unitary gatej(¢) = exp(—i¢Hj), where

j =1,...,N denotes the system, aift] is a positive Hermi-

d) tian operator. It is convenient to define the generator of the
joint queries as#G v = ¥ ;Hj. The number of querie®

is then equal to the number of terms.i#g v, or Q = N.
Next, the quantum network corresponding to the procedure
of Boixo, Flammia, Caves, and Geremia is shown in E©),
where each query consists of a joint interaction on two modes
In other words, the queries are given by the unitary gates

L1
L1

0=2V-1=15 Oij = exp(—i¢H; ® Hj) wherei # j. Since allH; commute
with each other, the generator of the joint queries can be wri
ten as
FIG. 1: a) General parameter estimation procedure invglgiate
preparatiorP, e\_/olutionU (¢) and generg_lized_ mt_aasqrememwith Hrce = Z Hi @ Hj. (3)
outcomesx, which produces a probability distributiop(x|¢). In i

terms of quantum networks, the evolution can be written aswaer
of queries of the parametgr. b) Example forN = 4 of the usual The number of terms i#grcg, and therefore the query com-

situation described byZg| v, where each system performs a single plexity with respect to the number of systems, is given by
query, and the number of queries equals the number of sygtems Q= %N(N —1) = O(Nz). Finally, the network correspond-
grey box representS; (¢)); c) for #grcg the number of querieQ 0 y'the protocol of Roy and Braunstein is given in Fid).

does not always equal the number of systems: any two systems ¢, : . .
jointly perform a single query, and the number of queries teales Itis easy to see that the number of terms in the corresponding

quadratically with the number of systems; d) feftzg all possible ~ 9enerator#gg is given by 2 — 1, and the number of queries
subsets of systems perform a single query. The number ofeguer is thereforeQ = 2N — 1. Since we have a systematic method
scales exponentially with the number of systems. for increasingN (and Q) given the gateD;j, this defines an
asymptotic query complexity of the network. Since bdth
andQ count the number of queries, this allows us to meaning-
fully compare thesQL with the Heisenberg limit.

1 ap(X¢) 2 From our arguments about the query complexity of quan-
F(9)= /dxp(x|¢) < T ) (1) tum networks, it is clear that the resource count must be re-

lated to the generator of the joint queri¢s. The most natu-

given by the Fisher information

This leads to the quantum Cramér-Rao bouh] ral way to map this operator to a number (i.e., toen) is by
1 taking the expectation valugZ’). However, we have to ad-
0¢ > TF@) ’ (2 dressan important subtlety. Wheff corresponds to a proper

Hamiltonian, the fact that the origin of the energy scalerias
where (6¢)? is the mean square error in the paramefter physical meaning means that the actual valuésf) can be
andT is the number of times the procedure is repeated. Thehanged arbitrarily. Hence, we must fix the scale such that
SQL is obtained when the Fisher information is a constanthe ground state (which may be degenerate) has zero energy.
with respect tol, and the Heisenberg limit is obtained in a In most cases, this is an intuitive choice. For example, most
single-shot experimen®(= 1) when the Fisher information people would agree that it is natural to associate zero gnerg
scales quadratically with the resource count. $he and the to the vacuum state, and add the corresponding amount of en-
Heisenberg limit therefore relate to two fundamentallyedif  ergy for each added photon. Technically, this correspomds t
ent quantitiesT andF, respectively. We need to reconcile the the normal ordering of the Hamiltonian of the radiation field
meaning of these two limits if we want to compare them in ain order to remove the infinite vacuum energy. Slightly less
meaningful way. intuitive is that the average energy Nfspins in a GHZ state

To solve this problem, we can define an unambiguous ref|1)®N 4| |)*N) /y/2 is no longer taken to be zero, but rather
source count for parameter estimation by recognising that &l /2 times the energy splitting betwegr) and| ).
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For more general interactiob ¢ ) where we include feed- When we count the resources that are used in a parame-
forward and arbitrary unitary gates between queries inEig. ter estimation procedure, we must make sure that we do not
we can use an argument by Giovannettl. [10] to show that  leave anything out, and this can be guaranteed by including i
() =(i(0U(¢)/d$)UT(¢)) is unaffected by the intermedi- our description the environment that the estimation praced
ate unitary gates, and the scaling is therefore still deteth  couples to. This reduces the quantum states to pure states,
by Q. which means that we can use Wootters’ distariegljetween

Finally, one may argue that the resource count should bguantum states as the statistical distance:
defined in terms of the variance or semi-normyéf. Indeed,
this is how the resource count is performed to date. However, S(y, @) = arccog|(Y|p)), (7)
there are important classes of quantum systems for which the _ )
variance of the energy diverges, such as systems with a Breivhere[y) and|g) are two pure states in the larger Hilbert
Wigner (or Lorentzian) spectrumi, 12]. In these cases the SPace, and(y, @) is the angle between them. The distance
resource count, and by implication the scaling of the errorbeétween the probe stajg0) and the evolved state(¢) can
would be ill-defined. By contrast, the expectation value oftNen be represented by the pure stafel®)) and|y(¢)), re-

2 always exists and is always positive. Moreover, when thesP€ctively, and the unitary evolution is given by
variance exists, both expressions can be bounded by a linear L
function in the number of querigl. Let 57 = szAj. The W(9)) = exp(—i¢) [4(0)). (8)

variance can then be written as Here,we place no restrictioon J#, other than fixing the en-

Q 2 Q 2 ergy scale if necessary. We can place an upper bound on the
(Aﬁﬂ)z = < (Z A,—) > — <ZA1> derivative of Wootters’ distance by evaluating the differal
] ] of sin Eq. (7) and using the Schrddinger equation implicit in
Q? Q Eqg. @) [159]:
XCIESYTIEEESS SN ;
] I s
— < .
ag =) (©)

for some positive number and positive operatadr;, which
givesAsZ < O(Q) [7]. Similarly, () = z?(AQ < O(Q) Combining this with Eq.&) and Eq. ) leads to the Cramér-
since all expectation values are positive and finite. In otheRao bound
words, in terms of the scaling behaviour wigh we can use S
either the variance or the expectation value. 21 (E) _ 1

. L o (09)° > = : (10)

Sometimes, it is unclear how the query complexity is de- T \do T ()2

fined, for example when the estimation procedure does not . _ )
involve repeated applications of the ga@g¢ ), or when an When all resources are used in a single-sfiot(1) experi-
indeterminate number of identical particles, such as pigmto ment, the error i is bounded by
are involved. Nevertheless, the generatfiris always well- 1
defined in any estimation procedure, and we can always use o > % (11)
its expectation value to define the relevant resource count.

After establishing the appropriate resource count, we are fisince(.#’) is the resource count in the parameter estimation
nally in a position to prove the optimality of the Heisenbergprocedure, this is the Heisenberg limit. It is always pusiti
limit for quantum parameter estimation in its most generalyng finite, and in the limit wherés#’) — 0 there are no re-
form. The Fisher information can be related to a statisticakoyrces available to estimage andd¢ cannot be bounded.
distanceson the probability simplex spanned pgx|¢). Con- |y general, the bound is not tight. Indeed, only carefullg-ch

sider two probability distributionp(x) andp(x) +dp(x). The  sen entangled systems can achieve this boliéid This com-
infinitesimal statistical distance between these distiams is  pletes the proof of the optimality of the Heisenberg limit in

given by [13, 14] the most general case.
, 1 In addition to Eqgs.§) and 0), the Fisher information is also
ds? = / dxm[d p(x)]?. (5)  bounded by the variance o# [16]:
F(¢) <4(ax)°. (12)

Dividing both sides by(d¢)? and including the dependence

on¢ in p(x), we obtain This leads to a (single-shot) quantum Cramér-Rao bound

(:_;)2:/.dxp<xl|¢> (apﬂd’))zzﬁd’)’ ® 59> 5 (13)

which relates the Fisher information to the rate of change oHowever, sincé)l.’# is not a resource count, such as the av-
the statistical distance (i.e., the speed of dynamicalgiami).  erage photon number, but rather a variance (or uncertainty)




4

this is not the Heisenberg limit. In fact, itis Heisenbetdis  (X) = (s [X|@s) = cogN2¢) andAX = sin(N?¢). Using the
certainty Principlefor the paramete¢ and its conjugate op- standard expression for the mean squared error, we find that
erator.Z. Any parameter estimation procedure must respect

both bounds, and the Heisenberg limit in Ej1)( may not 56 — AX 1 (15)

be attained, even in principle, because the bound in E3}. ( |d(X)/d¢| N2~

prevents it from doing so.

The term “Heisenberg limit” was introduced by Holland Since(#) = <ﬁ2> :o(NZ), this procedure exactly attains the
and Burnett§], who referred to the number-phase uncertaintyHeisenberg limit. Note that this is a formal demonstration
relation in Heitler L7]. However, as our optimality proof and  that the Heisenberg limit can be attained according to quan-
the subsequent discussion indicate, the Heisenberg 8mitti  tum mechanics, even though we currently do not know how to
an uncertainty relation, since it relates the uncertaifthe  implement it.
parameter to thrst moment of the conjugate observabi€, In conclusion, we demonstrated that the Heisenberg limit
rather than the second. It turns out instead that the Heégsgnb g optimal for all parameter estimation procedures in quiamt
limit is intimately connected to the Margolus-Levitin balin - metrology, but it requires careful consideration as to Wi
on the time it takes for a quantum system to evolve to an orsoyrce is appropriate for expressing the scaling behagibur
thogonal state][5, 18]. To see this, we can formally solve the mean square error. The correct resource to take into ac-

Eq. (9) by separation of variables, yielding count is (the expectation value of) the generator of thestran
p 1 /2 11 lations in the parameter. In the case of most optical phase
/ d¢’ > _/ ds = ¢>———. (14)  estimation protocols this reduces to the average photort num
0 () Jo 2(X) ber. Contrary to the origin of the term “Heisenberg limit’, i

We can therefore identify the Heisenberg limit with the is not a generalised uncertainty relation, but rather amesxp

Margolus-Levitin bound on the speed of dynamical evolutionSioN Of the Margolus-Levitin bound on the speed of dynamical

of quantum systems whe# is the Hamiltonian. The (gener- €volution for quantum states. _

alized) uncertainty principle, on the other hand, can beide Acknowledgements.We thank Jonathan Dowling for es-

tified with the Mandelstam-Tamm bound. Both limits  tablishing the etymology of the term “Heisenberg limit".can
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Finally, we demonstrate that our proof applies to continu-

ous variable systems as well as discrete systems, by consid-

ering the procedure of Beltran and Lu@].[ The construc-

tion_ is as fqllows: The evqlutiom(qb) is generated by an * Electronic address.kok@sheffield.ac.uk
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