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We reveal a close relationship between quantum metrologytla® Deutsch-Jozsa algorithm on continuous
variable quantum systems. We develop a general procechaeaaterized by two parameters, that unifies pa-
rameter estimation and the Deutsch-Jozsa algorithm. DRipgron which parameter we keep constant, the
procedure implements either the parameter estimatiormg@ubbr the Deutsch-Jozsa algorithm. The parame-
ter estimation part of the procedure attains the Heisenlimigand is therefore optimal. Due to the use of
approximate normalizable continuous variable eigenstdtee Deutsch-Jozsa algorithm is probabilistic. The
procedure estimates a value of an unknown parameter anessble Deutsch-Jozsa problem without the use of
any entanglement.

PACS numbers: 03.67.Ac, 42.50.Ex, 06.20.-f

I. INTRODUCTION The paper is organized as follows. In S#g.we review
the Deutsch-Jozsa algorithm over continuous variables and

esent its simplified version. In Seltl, we review basic

Quantum metrology promises many advances in science arﬁ%ncepts in quantum metrology. In Sé¢, we introduce a
technology. Continuous variables (CV) are natural cartdila general procedure that unifies parameter estimation weéh th

[cl)r_%ptl_lc_ﬁle|rirr1ﬁlir::aerr1\$t|gfr1 ig)rft?nt%r:;lsjr\?arr?ael;rlce)!:?(i prg;ﬁg:nDeutsch-Jozsa algorithm, and we analyze it in detail. Kinal
) P d we make some concluding remarks in Séc.

metrology stems from the unconditional and efficient charac
ter of CV preparation, manipulation and detection techesqu
[4, 5]. In this paper, we devise an optimal parameter estima-
tion procedure for continuous variables. Our procedure emt!- DEUTSCH-JOZSA ALGORITHM OVER CONTINUOUS
. . - . VARIABLES
ploys a single continuous variable and estimates a value of a
unknown parameter with Heisenberg-limited precision.-Fur
thermore, for a particular, fixed value of the parameter imsgu  The generalization of the Deutsch-Jozsa algorithm to oanti
tion the procedure behaves as the Deutsch-Jozsa algoathm fous variables was devised by Pati and Braunstéjin This
CVs. In fact our protoc0| extends the Deutsch-Jozsa a|gogenerallzat|0n was Implemented with idealized continuous
rithm over continuous variables presented by Pati and Braurvariables defined on an infinite domain. However, we need
stein []. Instead of idealized, nonnormalizable and unphysi-to stress that any practical continuous-variable impleen
cal states, we employ Gaussian states to represent consinudion of the Deutsch-Jozsa problem can be realized only on a
variables. Moreover, we define Gaussian states on a finite déihite domain. Nevertheless, for simplicity, we first recai
main, thus removing an unphysical, infinite speed-up over anDeutsch-Joz_sa algorithm over continuous variables as-orig
classical procedure offered by the idealized states. Aerext nally stated in Ref.q].
sive analysis of the Deutsch-Jozsa algorithm over contisuo ~ The objective of the Deutsch-Jozsa problem is to determine
variables was given by Adcock, Hgyer, and Sand@s [ whether some functiori(x) is constant or balanced. This is

) : . . chieved by Alice and Bob playing the following game. Al-
The Deutsch-Jozsa algorithm is one of the first quantun;'f::e submits a value of from —os to 4+ to Bob. Then Bob

algorithms, preceded only by the original Deutsch algamith ) ]
[8]. Even though the Deutsch-Jozsa problem is rather artifi?valu"’lteSf (x), which can take only two values: 0 or 1. Bob

cial, the algorithm drew enormous attention due to the compug:)sr?sprzné'gﬁ:tap‘#f?utnocgjs ii |t2§rr1é)ra(l)ar(l)cr:eld fg: ZCI)InvS;?un;sfuor}C_
tational speed-up over any classical procedure. The strict c ('_00 +o0). A balanced function is 0 for half of the values
of the algorithm is simple enough to determine the source oﬁf « ané 1 fc;r the remaining values &f This is defined in
this speed-up. The quantum superposition principle and Coﬂ,‘errr,\s of the Lebesaue meag enR: u(x< R|f(x) = 0) =
sequent quantum parallelism that lie at the heart of quantu (xER|F(x) = 1) [g] The Owél of thig ame is the_sam_e as
mechanics allows for the interference of many distinct comp ’:1 biecti _f h D t gh 3 gbl ‘e to establi
tational paths, and allows the correct answer to the probdem the objective of the Deutsch-Jozsa problem, I.e. to e !

emerge in a single query. In other words, the Deutsch-Jozdh the function used by Bob is constant or balanced. Classi-

algorithm probes a global property of an unknown functionfsllgéﬂ'tcﬁewcl’géira;f teortsugfrr::t \I/Uittlﬁlgt-:‘el?'{[;]r?ny I\-/|e(1)|\l/JvZ\S/e>orf
f(x) and returns the result in a single run. . 9 property (x) rtainty. ’
if Bob can use a unitary black-box operation to calculatefun

tion f(x), then a single function evaluation reveals the global
property of f(x). In the setting of idealized continuous vari-
“Electronic addresphp07mz@sheffield.ac.uk ables, this would imply an infinite speed-up over any cladsic
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CV onto the original position eigenstdi®). The continuous-
Xo) U F-! variable projection operator for idealized states can bgemr
f as

Xo+€
Bo = / dy|y){yl, ®3)
FIG. 1: A quantum circuit representing the Deutsch-Jozgardhm €

over continuous variables. The quantum netwgl consists of the h is th d | . h .
Fourier transformd= and controlled black-box gatds applied to wheree is the spread arounx value, i.e. the continuous-

the register and target CVs prepared in the idealized posttigen-  vVariable measurement cannot be performed with infinite pre-
states|xo) and |11/2), respectively. The last operation is an inverse Cision. The orthogonal complement§ is given by
Fourier transform that enables the interference of diffecemputa-

tional paths. Xo+€

Po=1—Po=1— [ "ayy), @

Xo—¢&

algorithm over continuous variables shown in Fig. This By construction, a complete set of orthogonal projecixs
implementation of the Deutsch-Jozsa algorithm employs tweatisfy the completeness relatidfn,Pm = | and PRy =
continuous variables, the so-called register and targes. CV dmniPm. If f(X) is constant then the measurement statistics
Alice stores her query in the register CV, and the target C\based on the above set of orthogonal projection operatdrs an
is used by Bob during function evaluation. The register CvVassuming — 0 is given by

is prepared in the position eigenstatg) and the target in the

eigenstatdrr/2). The quantum networkip; implementing p(x0) = Tr[RBypp] =1, (5)
the Deutsch-Jozsa algorithm is given by the following uwita p(Xo) = Tf[lf’ioPDJ] -0, (6)
transformation

. wherep(Xp) is the probability of measurement outcome to be
Npy = F Utk kR, D) x, p(Xo) is the probability of a measurement outcome differ-
ent tharxg andppy = Npy|r)[t) (t|(r|Np 3. Conversely, iff (x)
is balanced then the measurement statistics assuming is
given by

whereF is the Fourier transform ardt indicates the register

and target CV, respectively. The Fourier transform appiced

a CV in some position eigenstape creates a superposition

of all position eigenstates according to P(X) = Tf[lf’xoPDJ] —0, @)
=1

: (8)

Therefore, if the state of the register CV remains unchanged

where we used photon number units in whith- % The then the fgnctionf ()_() is definitely constant, and if Fhe state

unitary black-box operatdd; evaluates a value of function Of the register CV is nofxo) then the functionf (x) is bal-

f(x) and stores it in the state of the target QXfy) — [x)|y+ anced. A single function evaluation solves the Deutsclsaloz

f(x)). Let us analyze the Deutsch-Jozsa algorithm step bproblem. . .

step: (i) prepare the register and target CVs in anideatipasi ~ The core of the above implementation of the Deutsch-Jozsa

eigenstat¢X0> and|n’/2>, respective'y; (||) app|y the Fourier algo”thm IS I’epr.esented by a Un|tary, _COI’]tI’Olled black-bo

transformF to the register and target CVs operatorUs applied between the Fourier transformed reg-
ister and target CVs. Here, the Fourier transformed target

1/ ikt ] CV together with a black-box operator induces a phase shift,

Is) = R R[x0)|11/2) = Eldedyélxm Ly); which depends on the global property of the functic):

. . . Ur([0R|m/2) = e 21O xR(m/2) = e MM XR|m/2).
(iii) following the action of a unitary black-box operatdff  Notice that the state of the target CV is not changed follow-

o=z [ ave . @ PO0) = TRgpod

the state of the CVs is given by ing the action olUs. In fact R|7/2) is an eigenstate dfs
1 e with an eigenvalue"" ™ “kicked back” in front of the regis-
Utls) = T/ dx&oe X xR |11/2); ter CV [9]. Conventionally, the Deutsch-Jozsa algorithm em-
.o

ploys multiple quantum systems, however, as the above sim-
ple analysis of the action df; indicates the target CV can

be omitted. It is easy to show that a single register CV to-
gether with a redefined black-box operdtgr= e 27/2f(% js
enough to implement the Deutsch-Jozsa algorithm over con-
tinuous variables. In Ref7], the authors arrived at the same
conclusion; however, they used a slightly different apphoa

We emphasize that a direct consequence of employing a single
(v) following the quantum networklp, the property of func-  system is that this protocol does not use any entanglement to
tion f(x) is determined by projecting the state of the registerdetermine the global property of the function in a single.run

(iv) the quantum networlNp; is finalized with an inverse
Fourier transfornF ~ applied to the register CV. Therefore,
the state of the CVs can be written as

FUsls) = 7_1T /7 ded% X0 X) e M0 VR | 11/2);



p(0) p(p)
P U(p) M 1G(x0))

P(x|p)
FIG. 3: A quantum circuit representing the general protamar

continuous variables. The quantum network consists of theiér
transformF and black-box gat&;(¢) applied to a single register
CV prepared in the Gaussian sté@xp)). The last operation is an
inverse Fourier transformation that enables the intenfezef differ-
ent computational paths.

FIG. 2: The general parameter estimation procedure irnglsiate
preparatiorP, evolutionU (¢) and generalized measureméhiwvith
outcomesx, which produces a probability distributiqe{x|¢).

Moreover, the above implementation of the Deutsch-Jozsa al

gorithm is expressed in terms of the idealized positionreige -

states. However, a more realistic and physically meanlngfu[13] or by the expectation value o [14, 15
representation of a continuous variable is given by, fonexa F(¢) <16(A#)% and F(¢) < 4(#)2 (11)
ple, Gaussian states. - - ’

Similar to the setting of discrete quantum systems (€.Qwhere we again uséii= 3. Since both bounds are completely
qubits), some features of the Deutsch-Jozsa algorithm cageneral and complement each other, any parameter estimatio
serve as a starting point for developing other quantum alprocedure must respect them. Typically, the Fisher inferma
gorithms. A slightly modified black-box operatdfr =  tjon is related to an appropriate resource count such as the
e~2m2f(% for a simplified Deutsch-Jozsa algorithm can beaverage photon number, the average energy of the probe sys-
used as the core of a protocol capable of estimating an unem or the number of unitary evolution gates that are used in
known parameter that under appropriate conditions still rethe estimation procedure. The expectation valug#ilays
tains the capabilities of the Deutsch-Jozsa algorithmo@ef the role of the resource courit4]. We usually consider two
introducing this protocol, let us recall some basic coneé@pt scaling regimes of the quantum Cramér-Rao bound. The first
quantum parameter estimation theory. regime: the so-calledtandard quantum limi(sqQL) [16] or

shot-noise limitis obtained when the Fisher information is a

constant with respect {d and the resource count. TBeL is
I1l. PARAMETER ESTIMATION typically given by

The most general parameter estimation procedure is shown in 5¢ >
Fig. 2, and consists of three elementary steps: (i) prepare a ~
probe system in an initial quantum stga€0), (ii) evolve it i . o i
to a statep(¢) by a unitary evolutiotd (¢) = exp(—i¢.7#), The se<_:ond regime: the so-ca}IIIddlsenberg limi{17] is _ob-
(iii) subject the probe system to a generalized measuremeffiined in a single-shot experimerit & 1) when the Fisher
M, described by a Positive Operator Valued Measamv{1) |nfc_>rmat|on s_ca_le_s quadra_ltmally with the resource colihe
that consists of elements,, wherex denotes the measure- Heisenberg limit is then given by

: (12)

=8

ment outcome. Here, the Hermitian opera#étis the gener- 1

ator of translations i, the parameter we wish to estimate. o¢p > . (13)
The amount of information abogtthat can be extracted by a F(¢)

measurement of the probe system is given by the Fisher info

[I_'herefore, the uncertainty in the paramepescales linearly
inversely with the resource count. Both scaling regimes of
1 op(x|¢) 2 the quantum Cramér-Rao bound can be compared directly in
F(9) :Z P(X®) ( a9 ) ) (9  termsofan appropriate resource coul#][

where p(x|¢) = Tr[Exp(¢)] is the probability distribution
given by the Born rule that describes the measurement data!V: GENERAL PROCEDURE WITH GAUSSIAN STATES

andx is a discrete measurement outcome. Based on the Fisher
information one can bound a minimal value of the uncertaintyin this section, we present a general procedure capable of de

mation

in ¢ with the quantum Cramér-Rao bourtDF12)] termining the value of a single parametee [0,2m) or im-
plementing the Deutsch-Jozsa algorithm (see Bjg.Here,
(5¢)% > 1 (10) the black-box operator is defined in the following way
T TR(¢)’
Us(¢) =exp(—2i¢ (X)), (14)

where(d¢)? is the mean squared error in the paraméteand

T is the number of times the procedure is repeated. The ultiwhere f(X)|x) = f(x)|x). The functionf(x) again takes only
mate limit of the quantum Cramér-Rao bound depends on hoiwo values 0 and 1. Without loss of generality, ideal, noanor
the Fisher information is bounded from above. The Fisher inmalizable continuous variable states are regularized tsGa
formation can be bounded in two ways: by the variancezof  sian input states. Similar to the case of the Deutsch-Jozsa



algorithm, any physical continuous-variables paramesér e with
mation protocol can be implemented only on a finite domain.

There_fqre, we inFrO(J!uce the semi-Gaussian input stateet&fin _ 1ol (x—x0)2 oxo | — (y—x0)2 (19)
on a finite domain given by Sy = N2 P 2g2 P 2g2 ’
, 2
1G(x0)) = /T dx ex [_ (X—Xo) } 1X), (15) andeis the intrinsic precision of the measurement apparatus,
J-1 Nk 202 i.e. any continuous-variable measurement must have finite

precision if it is to be physical, and; is the normalization
constant given byN? = /re2/2 [erf(”TXO)Jrerf(T’TXO)].
The optimal measurement which corresponds to the initial
semi-Gaussian register state lgas A, thusNg = Ny.
Now let us calculate the measurement statistics. Analyti-
cal expressions for the measurement statistics are hamtto fi
%ue to the presence of error functions(gyf However, for
the semi-Gaussian states witk« T the calculations simplify
P dp considerably. Under this regime, the limits of integration
|G(po)) = / N exp[—20%(p—po)?] |p),  (16)  the integrals containing terms that dependZonange from
7P —oo to 400, Necessarily, the normalization constants have to
where ¥/(24) is the variance of the Fourier transformed semi-P€ changed and are expressed/as N, = ﬁc mA?. Inother
Gaussian state ard, is given by yvords, a §em|—Gau.SS|an input state deﬂned_ on a finite c_ior_n{;un
is approximated with a Gaussian state defined on an infinite

whereA is the variance of the state aNgis the normalization
constant given byNZ = /7A2/2 {erf(”TXO)Jrerf(T’TXO)}.
We note that forA < T we recover the normalization con-
stant in the form oNZ = +/7A2 which is characteristic for a
Gaussian state defined on an infinite domain, i.e. fromto

400, The Fourier transformed semi-Gaussian state defined
a finite domain can be written as

\/m domain. Therefore, the measurement statistics based on the
N2 = — lerf(2(P+ po)A) + erf(2(P — po)d)] . above POVM are given by the following expression

)

of NFZ, = /m/4A?, characteristic for a Fourier transformed _
Gaussian state define on an infinite domain. The relation- P(Xo|¢) = 1—p(Xo|¢). (20)
ship between domains of the semi-Gaussian input state and _ . - _ .
its Fourier transformed counterpart is givenmy- 1/(2T). Here, the interva(—P,P) is a finite domain of the Fourier
The general procedure consists of the following instruciransformed semi-Gaussian stg®xo)), and denotes the in-
tions: (i) prepare the register CV in the normalized semi-terval, where for this particular procedure functitix) is de-

Gaussian statlg) = |G(xo)), and apply the Fourier transform fined.
F defined by At this point, we have to give an explicit definition of the

function. Functionsf(x) defined on a finite domain return-
1 /7 ing only two valueg{0,1}) fall into three distinct categories:
N '/7T constant, balanced and neither constant nor balanced. \We re
call that the objective of the Deutsch-Jozsa algorithm is to
where|x), is the Fourier transformed position eigenstate, i.e probe whether an unknown functidix) is constant or bal-
the momentum eigenstate; (i) subsequently, a black-bex opanced. We parameterize the three possibilities for defining

eratorUs (¢) is applied. Then the state of the system is f(x) by introducing a parameter The above integrals can
then be evaluated for any functidi{x) behaving as a step

2
For P > 1/(2A) the normalization constant takes the form p(xo|$) = 44 /P dzdyém2(22+y2)e2i¢(f(z)ff(y))
mJop
(

FIX) = [X)p = dye™ly), (17)

T dx (x—x0)2 o function, with the parametermarking the point wheré (x)
Ut(9)F|r) = / — exp l—izl e 20T ), changes its value. Hence, for= 0 andr = P the function
-7 Ny 2h f(x) is balanced and constant, respectively. Foer 6 < P
1 /T dxdy (X—X0)? (or —P < r < 0), the functionf(x) is neither constant nor
= —/ ——exp|— SN2 balanced. We consider only positive valuesrafue to the
var ot N symmetry of the setup. This leads to

><e2iy><e—2icl)f(y) |y> :
% [erf(2PA) +erf(2rn)] +

(iii) finally, an inverse Fourier transfori—1 is applied fol- PCxol¢)
lowed by a measurement. The state of the register CV is mea- 1 [eer(ZPA) -~ erf2(2rA)} cog29)
sured by projecting onto the original semi-Gaussian stte ¢ ’
tered aroundg. Measurement is described by a POVM set p(Xo|@) = 1— p(xo|®),
{Pgy: P}, where

wherep(xo|¢) is the probability of measurement outcome to

T be in the intervaky + £ andp(xo|¢) is the probability of mea-

Bo = /4 dxdygy|x){y, andBg =1-Pqy  (18)  grement outcome not to be in the intenggi €.



A. Representationsof f(x) 4 rﬁ
Our choice to represerit{x) as a step function simplified our

calculations. However, we can imagine more elaborate be ~N TN N
havior patterns forf (x). In principle, since in the case of the 3 \ / \ /
Fourier transformed idealized continuous variables athte \ / \ /
have amplitudes of equal magnitude, all finite sub-intexval \ / \ /
where the function takes value 0 can be added up to a singl \ / \ /
interval. The same applies to all sub-intervals, wheretionc ~ \ / \ I
takes value 1. Therefore, one ends up with two intervals and « &~
relationship between them given by the parametetowever, \ \
in the setting of semi-Gaussian states defined on a finite do v
main, the above reasoning is not quite as straightforwand. T o)
amplitudes of the Fourier transformed Gaussian states hav | S :
a slightly different magnitude. One may notice this feature v ! y | /
by inspecting Eq.Z0). Since in our calculations we favor a Wl |/ \ \ /
step-function representation over any other, let us estitha W / "\ |-
maximum error we make with this assumption. Due to a triv- \J/ \.\/'
ial nature of a constant function, in the following analysis 0-
consider a balanced function. We consider the step-fumctio
representation of a balanced function witk 0. The biggest
?uer:/(lzg(r)lrlfj;?r(?hg:'ll;er_firi;evsaelEtea::/(\?ir::elsatoggirqetc;b!Pa/ZbZ:’?dnceqT_IG' 4: (Color. online) General dependence of the Fisherrinés

- T ., tion F(¢) for five values of the parameter r = 0 corresponds to
r, = P/2. Both representations produce two distinct probabilhe yppermost solid line (greem)= P/8 corresponds to the dashed
ity distributionspstep(Xo|¢) and phat(Xo|¢), respectively, that  |ine (blue),r = P/4 corresponds to the dashed-dotted line (brown),
differ by the errorepa given by r = P/2 corresponds to the long dashed line (gray), madP corre-

sponds to the lowermost solid line (red).

8 %(PA)BJrO((PA)lO) .
n n occurs when functiorf (x) is balancedr(= 0) with the corre-
sponding measurement statistics

The error tends to zero witRA — 0. This is natural since

gpp = |1—C0g29)| x (PA)® +

whenA — 0 all amplitudes of the Fourier transformed ide- p(xol¢) = }eer(ZPA) [1+cog2¢)],
alized position eigenstate have the same magnitude,he., t 2 1
spectrum is flat. P(ol9) = 1-3 erf?(2PA) [1+ cog2¢)].

Here, the optimal value of the Fisher informatibig) = 4
is given for erf(2PA) = 1 = P > 3/(2A) which, in general,
B. Analysis impliesP > 1/(2A) and is consistent with the approximation
applied above. The general dependence of the Fisher informa
ionF (¢) on parameter with P = 3/(2A) andA = 1/+/2 (the

. i
Our procedure can b_e analyzed in two ways. AS. expeCteé/ariance of the coherent state) is shown in BigThe dips that
from one perspective it behaves as a parameter estimatien pr

) . are especially visible for the balanced function appeaabse
t(_)col. From the other, it behaves_as the Deutsch-Jozsa .algﬂﬁe Fisher informatioffr (¢ ) retains some dependence on the
rithm. First, we analyze the behavior of the parameter estim

tion part of the procedure. Based on the above measuremep‘%‘r"’u”nem"j since forP = 3/(24): erf*(2PA) ~ 1. Based on

S ; . ) the general dependence B{¢) onr, we conclude that the
statistics, we calculate the Fisher mformatlb(np)_. The min- maximal value of the Fisher information is indeed obtained
imal value ofF (¢) = 0 occurs when functiofi(x) is constant for a balanced function
(= P) with the corresponding measurement statistics To address the optimality of our parameter estimation pro-
tocol, we analyze the behavior of the generator of trartsiati

p(x|@) = erf(2Pn), in the parameteg: . = f(X). The expectation value of the
p(Xo|¢) = 1—er(2PA). generator? in the state of the register CV preceding applica-
tion of the black-box operator, i.é(in) = F|r) with A< T,
is given by

Conversely, the maximal value of the Fisher information
() =(f(X)) = 1(erf(ZPA) —erf(2rp)).
E(4) = 4erf(2PA)(cog2¢) — 1) 2

 erf(2PA)(cog2¢) + 1) — 2

(21) Sincef?(x) = f(x) the variance of the generatef’ in |in)



can be written as 104

(A = (BF(R)? = %(erf(ZPA) ~erf(2rD) x
1- %(erf(ZPA) —erf(2rp)) | .

The maximal expectation value of the generatgroccurs for

a balanced functiorr (= 0) with P > 3/(2A) and is given by

() =1/2. On the other hand, the maximal variance of the =
generator# is (A#)? = 1/4. Hence, the Fisher information &=
is bounded byF(¢) < 16(A#)? = 4. Therefore, we note

that according to Eqs1() and (L3) our procedure attains the
scaling regime of the Heisenberg limit. However to estéblis

its optimality we must calculate whethép =1//F(¢). We 2.5
use the standard expression for the mean squared error give

by
AX .
00 = —r s (22) 4
d(X)/d¢| 0
where X is the measurement observable definedXas-
P, [see Eg. 18)]. Hence, for the final stateftp¢> = _ _ o
F~2U¢(¢)F|r) with € = A we calculateX) = (WPl Wp) = FIG. 5: (Color online) General dependence of the Fisherméion

F (r) for four values of the parameter. ¢ = 17/2 corresponds to the
1 —
2 erfz(ZPA) [1+cog2¢)]. Based onthe propengfO =B, we uppermost solid line (greeng, = 511/12 corresponds to the dashed

find that(X?) = (X). ForP > 3/(2A) the mean squared error line (blue),$ = 71/3 corresponds to the dashed-dotted line (brown),
isd¢ = 1/2. Hence, we conclude that for a balanced functiong = /4 corresponds to the long dashed line (gray), g¢nd 71/8
our parameter estimation procedure over continuous vagab corresponds to the lowermost solid line (red). The optinaduie ofr
attains the ultimate limit of the quantum Cramér-Rao boundshifts from balanced to constant.

and therefore is optimal. This result constitutes an aneiog

the phase estimation with a qubit realized as a single photon

placed in the arms of the Mach-Zender interferometer. Hergh® Deutsch-Jozsa protocol does not offer an unphysidal, in
the balanced property of functidrix) plays a role of two dis- _nlte speed-up over the clas_s_lcal procedures. We note that fo
tinct paths in a balanced Mach-Zender interferometer. ideal, nonnormalizable position eigenstatas-¢ 0), the con-
Next, let us analyze the Deutsch-Jozsa side of the procétant function measurement statistics is retainedPfe o
dure. Under appropriate conditions the developed progeduf€ndering® andr unphysical, thus making a meaningful dis-
can determine the character of functibx). If a value of the tinction between the balanced and constant functions impos

parametep is fixed: ¢ = 11/2 then the measurement statistics sible.

is given by We also calculated the Fisher informatiiir) and plot-
ted it against € (0,P) for five different values of the param-

p(x) = erf?(2rh), eter¢ = {m/2,5m/12 11/3, 11/4, 11/8} with P = 3/(24) and
p(o) = 1— erf2(2rA)7 A=1/+/2 (see Fig5). The maximal value of the Fisher infor-

mationF (r) is obtained forp = 11/2 corresponding to a sim-
It is clear that for a constant and balanced functf¢k) the  plified Deutsch-Jozsa algorithm. We note that the optimalit
corresponding measurement statistics of the Deutsctadbzs changes from balanced to more constant whea /2. Any
gorithm are recovered. Indeed, when functfgr) is constant ~ further analysis of this side of the procedure is problemati

(r =P) then due to a lack of the generator of translations.in
One possible application of the Deutsch-Jozsa part of our
p(xo) = erf(2PA), procedure is to test the quality of the implementation otfun
p(X) = 1_erf2(2PA)’ tion f(x) employed in the parameter estimation protocol.

Whenever the function is balanced or constant the quality of
and when functionf (x) is balancedr(= 0) thenp(xp) =0 its implementation can be established by probing the param-
andp(Xp) = 1. The Deutsch-Jozsa algorithm over the semi-eterr. We also stress that since we are employing a single
Gaussian states defined on a finite domain becomes a probentinuous variable, no entanglement is present at theaprep
abilistic procedure. This is consistent with the conclasio ration stage nor is created during the computation. The-quan
found in Ref. [7]. However, when the size of the domain is tum superposition principle itself is responsible for spe@
sufficiently large withP > 3/(2A) then a definite distinction over any classical procedure. Even though, in principl&ya s
between constant and balanced functions can be made. Nevgte continuous variable is quite sufficient, a practical leap
theless, even for large enough domains this implementafion mentation of the Deutsch-Jozsa algorithm may require more



continuous variables. i.e. physically feasible, speed-up over any classical @roc
dure. Furthermore, no entanglement is present at any stage
of the procedure. A similar conclusions concerning quan-
V. CONCLUSIONS tum metrology can be found in Refd §, 19]. We emphasize
a special role played by balanced functioi{x). The pro-
In conclusion, we developed a general procedure capable éedure equipped with the black-box operator that introduce
performing two distinct tasks. For one mode of operationthe parameteg via the balanced function attains the ultimate
the protocol estimates a value of an unknown parameter withimit of the quantum Cramér-Rao bound. This behavior can be
Heisenberg-limited precision. On the other hand, for a fixedinked to the phase estimation with a qubit realized as dsing
value of the parameter in question the procedure addrdsses tphoton placed in the arms of the Mach-Zender interferometer
Deutsch-Jozsa problem in a single run. Our procedure em-
ploys Fourier transforms and black-box unitary operater ap
plied to a single continuous variable represented as thé sem Acknowledgments
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