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Abstract

Error estimates are a very important aspect of numerical integration. It is desirable to know

what level of truncation error might be expected for a given number of integration points.

Here, we determine estimates for the truncation error when Gauss-Legendre quadrature is

applied to the numerical evaluation of two dimensional integrals which arise in the boundary

element method. Two examples are considered; one where the integrand contains poles, when

its definition is extended into the complex plane, and another which contains branch points. In

both cases we obtain error estimates which agree with the actual error to at least one significant

digit.
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1. Introduction

In a recent paper [1], the authors have considered, in the context of the boundary integral

method [2], the evaluation of double integrals of the form

∫ 1

−1

∫ 1

−1

φ(x, u) dx du

((x− x0)2 + (u− u0)2 + b2)α
, (1.1)

where −1 ≤ x0, u0 ≤ 1, 0 < b < 1, φ is a bi-quadratic function and α ∈ R
+. In order to

evaluate this integral approximately, the authors have used Gauss-Legendre quadrature in each

of the variables of integration.

Integrals of the form of equation (1.1) arise in many applications of the boundary element

method, especially when the potential or flux is required near a boundary. This occurs in the
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study of thin structures [3], sensitivity problems [4], contact problems [5] and displacement

around open crack tips [6].

In the past the authors have determined expressions for the truncation error when evaluating

integrals which are the single variable analogue of equation (1.1). The truncation errors of these

types of integrals were studied for numerical evaluation with Gauss-Legendre quadrature [7]

as well as with a sinh transformation [8, 7] for small values of the parameter b. Further,

error estimates for integrals involving the Hankel function, evaluated with Gauss-Legendre

quadrature, have also been obtained [9].

The purpose of this paper is firstly, to give an expression for the truncation error in the

evaluation of the integral (1.1) and secondly, to see how this can be used to give asymptotic

estimates for these errors. We shall consider, in detail, two particular examples in which we

shall compare the actual truncation errors with the asymptotic estimates.

2. The quadrature rule and its remainder

Consider first the integral I given by

I :=

∫ 1

−1

(

∫ 1

−1

f(x, u) dx
)

du =

∫ 1

−1

(

∫ 1

−1

f(x, u) du
)

dx, (2.1)

for some appropriate function f . Let us recall, from Donaldson and Elliott [10], the expression

for n-point Gauss-Legendre quadrature, where n ∈ N. We have
∫ 1

−1

f(x) dx =
n

∑

k=1

λk,nf(xk,n) +
1

2πi

∫

Cz

kn(z)f(z) dz. (2.2)

Here xk,n, k = 1(1)n, are the zeros of the Legendre polynomials Pn and λk,n, k = 1(1)n, are the

corresponding weights or Christoffel numbers. On the assumption that the definition of f may

be continued into the complex z - plane, where z = x + iy, we have expressed the remainder,

or truncation error, of the quadrature rule as a contour integral. The contour Cz encloses the

interval −1 ≤ ℜz ≤ 1 and is such that the function f is analytic on and within Cz. The function

kn is independent of f and depends only on the fact that we are using n-point Gauss-Legendre

quadrature. For z /∈ [−1, 1] it is defined by

kn(z) := Πn(z)/Pn(z) (2.3)

where

Πn(z) :=

∫ 1

−1

Pn(t) dt

z − t
. (2.4)
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We have that kn is analytic in the complex z-plane with the interval −1 ≤ ℜz ≤ 1 deleted.

We shall now derive an M×N point Gauss-Legendre quadrature rule for the double integral

I, defined in (2.1). For a given x ∈ [−1, 1] let us first consider the integral
∫ 1

−1
f(x, u) du. From

(2.2) and (2.3) we have

∫ 1

−1

f(x, u) du =
N
∑

k=1

λk,Nf(x, uk,N) +RN,1(x) (2.5)

where, if we write w = u+ iv, the remainder RN,1(x) is given by

RN,1(x) :=
1

2πi

∫

Cw

kN(w)f(x, w) dw. (2.6)

The contour Cw encloses the interval −1 ≤ u = ℜw ≤ 1 and is such that f(x, w) is analytic on

and within Cw. From (2.1) and (2.5) we have

I =

∫ 1

−1

(

∫ 1

−1

f(x, u) du
)

dx (2.7)

=
N
∑

k=1

λk,N

∫ 1

−1

f(x, uk,N) dx+

∫ 1

−1

RN,1(x) dx.

We shall now apply anM -point Gauss-Legendre quadrature rule to the integral
∫ 1

−1
f(x, uk,N) dx.

On defining

RM,2(u) :=
1

2πi

∫

Cz

kM(z)f(z, u) dz, (2.8)

where the contour Cz encloses the interval −1 ≤ x = ℜz ≤ 1 and is such that, for all u ∈ [−1, 1],

the function f(z, u) is analytic on and within Cz we find, from (2.7), that

I =
N
∑

k=1

λk,N

(

M
∑

j=1

λj,Mf(xj,M , uk,N) +RM,2(uk,N)
)

+

∫ 1

−1

RN,1(x) dx. (2.9)

Now equation (2.9) contains the expression
∑N

k=1 λk,NRM,2(uk,N) but, from equations (2.5) and

(2.6), we have

N
∑

k=1

λk,NRM,2(uk,N) =

∫ 1

−1

RM,2(x) dx− 1

2πi

∫

Cw

kN(w)RM,2(w) dw, (2.10)

on assuming that the remainder RM,2(u) may be continued into the complex w-plane. In any

case, the last term in (2.10) is essentially the “remainder of a remainder” and henceforth we

shall assume that it is negligible and will replace it by zero. On combining (2.9) and (2.10) we

find that

I ≈ QM,N +

∫ 1

−1

RN,1(x) dx+

∫ 1

−1

RM,2(u) du, (2.11)
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where the quadrature sum QM,N is given by

QM,N :=
M
∑

j=1

N
∑

k=1

λj,Mλk,Nf(xj,M , uk,N). (2.12)

The remainder, or truncation error, RM,N for this quadrature sum is then approximated by

RM,N :=

∫ 1

−1

RM,2(u) du+

∫ 1

−1

RN,1(x) dx. (2.13)

The question now arises as to how well this estimate of the error works out in practice

and whether it can be used to obtain good asymptotic estimates of the quadrature error, on

assuming that M and N are “large.” The ability to obtain one significant digit accuracy for

the estimate of the remainder will be useful in determining a priori the values of M and N to

be used in any given case. We might note from [10] on assuming both n “large” and z bounded

away from the interval [−1, 1], that the function kn of (2.3) is given approximately by k̂n(z)

where

k̂n(z) :=
cn

(z +
√
z2 − 1)2n+1

, (2.14)

with

cn :=
2π(Γ(n+ 1))2

Γ(n+ 1/2)Γ(n+ 3/2)
. (2.15)

In the next two sections we shall consider, in detail, two examples. In §3 we shall consider

the integral of (1.1) with α = 1 so that the integrand, when continued into either the complex

z-plane or complex w-plane, has simple poles. In §4 we shall choose α = 1/2 so that, in this

case, the integrand has branch point singularities in either of the complex planes. In each case

we shall compare asymptotic estimates of the truncation error with the actual computed error

and, in particular, consider how the accuracy of these estimates depends upon the parameter

b.

3. An example with simple poles

We shall now consider the integral I(a, b) defined by

I(a, b) :=

∫ 1

−1

∫ 1

−1

dx du

(x− a)2 + u2 + b2
, (3.1)

where −1 ≤ a ≤ 1 and b > 0. Unfortunately, in this case we do not have an analytic expression

for I(a, b) although we have been able to calculate its value, for given values of a and b, with
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considerable precision using a Mathematica (www.wolfram.com) program.

First, let us consider RN,1(x) where, from (2.6), we will have

RN,1(x) =
1

2πi

∫

Cw

kN(w) dw

w2 +
(

(x− a)2 + b2
) . (3.2)

The integrand has simple poles at points w0, w0 say, where

w0 := ic with c :=
√

(x− a)2 + b2 > 0. (3.3)

On letting the contour Cw tend to infinity we find that

RN,1(x) = −2ℜ
{

res
w=ic

kN(w)

w2 +
(

(x− a)2 + b2
)

}

(3.4)

where res
w=ic

denotes the residue of the integrand at the point w0 = ic. We have simply

res
w=ic

kN(w)

w2 +
(

(x− a)2 + b2
) = lim

w→ic

(w − ic)kN(w)

(w − ic)(w + ic)
=

kN(ic)

2ic
. (3.5)

From (2.14)

kN(ic) ≈ k̂N(ic) =
cN(−1)N

i(c+
√
c2 + 1)2N+1

, (3.6)

so that, from (3.4) - (3.6), we find

RN,1(x) ≈
cN(−1)N

√

(x− a)2 + b2
(

√

(x− a)2 + b2 +
√

(x− a)2 + b2 + 1
)2N+1

. (3.7)

In order to evaluate
∫ 1

−1
RN,1(x) dx let us write

√

(x− a)2 + b2 = sinh(θ + θ0), (3.8)

with x = a corresponding to θ = 0 so that

b = sinh θ0 and cosh θ0 =
√
1 + b2. (3.9)

Then
√

(x− a)2 + b2 +
√

(x− a)2 + b2 + 1 = eθ+θ0 , (3.10)

where, from (3.9), we see that

eθ0 = b+
√
1 + b2. (3.11)
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Now, from (3.8),
(x− a) dx

√

(x− a)2 + b2
= cosh(θ + θ0) dθ. (3.12)

But

(x− a)2 = sinh2(θ0 + θ)− sinh2 θ0 = sinh(2θ0 + θ) sinh θ. (3.13)

For a ≤ x ≤ 1 we shall write

(x− a) =
√

sinh(2θ0 + θ) sinh θ, (3.14)

but, for −1 ≤ x ≤ a, we have

(x− a) = −
√

sinh(2θ0 + θ) sinh θ. (3.15)

Again, from (3.8), let us define θ(−1) and θ(1) through

√

(1− a)2 + b2 = sinh(θ(1) + θ0) and
√

(1 + a)2 + b2 = sinh(θ(−1) + θ0). (3.16)

Putting these results together gives
∫ 1

−1

RN,1(x) dx ≈ cN(−1)N

(b+
√
1 + b2)2N+1

(

∫ θ(1)

0

+

∫ θ(−1)

0

)e−(2N+1)θ cosh(θ0 + θ) dθ
√

sinh θ sinh(2θ0 + θ)
. (3.17)

We see that if we assume N is “large,” then the major contribution to each integral comes from

the neighbourhood of θ = 0. Consequently, if we replace cosh(θ0 + θ) by cosh θ0, sinh(2θ0 + θ)

by sinh 2θ0 and sinh θ by θ we find that
∫ 1

−1

RN,1(x) dx ≈ cN(−1)N cosh θ0√
sinh 2θ0(b+

√
1 + b2)2N+1

(

∫ θ(1)

0

+

∫ θ(−1)

0

)e−(2N+1)θ

√
θ

dθ. (3.18)

Since, for all X > 0
∫ X

0

e−(2N+1)θ

√
θ

dθ =

√

π

2N + 1
erf(

√

(2N + 1)X), (3.19)

where erf denotes the error function, it follows that
∫ 1

−1

RN,1(x) dx ≈
√
π(−1)NcN(1 + b2)1/4

√

2b(2N + 1)(b+
√
1 + b2)2N+1

(

erf(
√

(2N + 1)θ(1))+erf(
√

(2N + 1)θ(−1))
)

.

(3.20)

We might note that since we are assuming that a and b are real then it follows from (3.9),

(3.16) and Abramowitz and Stegun [11, §4.6.20] that we can write

θ(1) = log
(

√

(1− a)2 + b2 +
√

(1− a)2 + b2 + 1

b+
√
1 + b2

)

, (3.21)

θ(−1) = log
(

√

(1 + a)2 + b2 +
√

(1 + a)2 + b2 + 1

b+
√
1 + b2

)

.
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So much for the second term of the remainder RM,N (see (2.13)). It now remains to consider

the other term
∫ 1

−1
RM,2(u) du where, from (2.8),

RM,2(u) :=
1

2πi

∫

Cz

kM(z) dz

(z − a)2 + u2 + b2
. (3.22)

The integrand has simple poles at z0, z0 where

z0 := a+ id with d :=
√
u2 + b2. (3.23)

Arguing as before we have

RM,2(u) = −2ℜ
{

res
z=a+id

kM(z)
(

(z − a)2 + u2 + b2
)

}

. (3.24)

We find

RM,2(u) = ℜ
{ ikM(a+ i

√
u2 + b2)√

u2 + b2

}

. (3.25)

From (2.14) we obtain

kM(a+ i
√
u2 + b2) ≈ k̂M(a+ i

√
u2 + b2) =

cM(−1)M

i
(

(
√
u2 + b2 − ia) +

√

(
√
u2 + b2 − ia)2 + 1

)2M+1

(3.26)

so that

RM,2(u) ≈ cM(−1)Mℜ
{

1
√
u2 + b2

(

(
√
u2 + b2 − ia) +

√

(
√
u2 + b2 − ia)2 + 1

)2M+1

}

. (3.27)

In order to evaluate
∫ 1

−1
RM,2(u) du = 2

∫ 1

0
RM,2(u) du, since RM,2 is an even function, we write

√
u2 + b2 − ia = sinh(φ+ φ0) (3.28)

with u = 0 corresponding to φ = 0 so that

sinhφ0 = b− ia and coshφ0 =
√

1 + (b− ia)2. (3.29)

We also have

(
√
u2 + b2 − ia) +

√

(
√
u2 + b2 − ia)2 + 1 = eφ+φ0 (3.30)

where, from (3.29),

eφ0 = (b− ia) +
√

1 + (b− ia)2. (3.31)



Estimates of the Error in Gauss-Legendre Quadrature for Double Integrals 8

From (3.28) it follows that
u du√
u2 + b2

= cosh(φ+ φ0) dφ. (3.32)

From (3.28) and (3.29) we have

u2 =
(

sinh(φ+ φ0) + ia
)2 − b2 (3.33)

=
(

sinh(φ+ φ0)− sinhφ0

)(

sinh(φ+ φ0) + sinhφ0

)

=4 cosh(φ0 + φ/2) sinh(φ/2) sinh((φ+ φ0 + φ0)/2) cosh((φ+ φ0 − φ0)/2).

Since, as before, the major contribution to the integral when M is “large” comes from the

neighbourhood of φ = 0 we shall, in (3.33) assume that φ is small so that we have approximately

u2 ≈φ coshφ0 × (2 sinh((φ0 + φ0)/2) cosh((φ0 − φ0)/2)) (3.34)

=φ coshφ0(sinhφ0 + sinhφ0),

see Abramowitz and Stegun [11, §4.5.41]. Consequently

u2 ≈φ coshφ0 × 2ℜ{b− ia}, from (3.29), (3.35)

=2bφ
√

1 + (b− ia)2.

From (3.32) and (3.35) we have

du√
u2 + b2

≈ (1 + (b− ia)2)1/4 dφ√
2bφ

(3.36)

so that, on putting this together, we find

∫ 1

−1

RM,2(u) du ≈
√
2cM(−1)M√

b
ℜ
{ (1 + (b− ia)2)1/4

((b− ia) +
√

(b− ia)2 + 1)2M+1

∫ φ1

0

e−(2M+1)φ

√
φ

dφ
}

.

(3.37)

From (3.28), we have
√
1 + b2 − ia = sinh(φ1 + φ0) (3.38)

and, from (3.29), it follows that

φ1 = arcsinh(
√
1 + b2 − ia)− arcsinh(b− ia). (3.39)

On recalling (3.19) we obtain our required result that

∫ 1

−1

RM,2(u) du ≈
√
2πcM(−1)M√
b
√
2M + 1

ℜ
{(1 + (b− ia)2)1/4erf(

√

(2M + 1)φ1)

((b− ia) +
√

(b− ia)2 + 1)2M+1

}

. (3.40)
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By combining (3.20) and (3.40) we now have an explicit estimate for RM,N assuming that M

and N are “large”. However, in practice, it turns out that since we are interested only in at

most the first two significant digits in the remainder we can replace the values of the error

function in both (3.20) and (3.40) by the value 1 to give, as our asymptotic estimate,

RM,N ≈
√
2π(−1)NcN(1 + b2)1/4√

b
√
2N + 1(b+

√
1 + b2)2N+1

+ (3.41)

+

√
2π(−1)McM√
b
√
2M + 1

ℜ
{ (1 + (b− ia)2)1/4

((b− ia) +
√

(b− ia)2 + 1)2M+1

}

.

In Table 3.1 we have considered an example in which we have chosen M = 20, N = 15,

fixed a at 1/4 and considered various values of b.

b = 1/2 b = 1/5 b = 1/10 b = 1/20 b = 1/30

actual error −1.40× 10−6 -0.0144 -0.523 -4.70 -11.20

equation (3.41) −1.39× 10−6 -0.0142 -0.471 -3.43 -7.35

Table 3.1: M = 20, N = 15, a = 1/4

As can be seen, for b = 1/2, 1/5 and 1/10 the asymptotic estimate of the error agrees with

the actual error to at least one significant digit. However, as b becomes smaller so the accuracy

of the estimate diminishes although even for b = 1/30 the sign is correct! When b is small the

singularity of the integrand is very close to the region of integration in the (x, u) plane and

it is suggested that for such b the estimate of kn as given in (2.14) is not good enough. The

investigation of this is beyond the scope of this paper.

Table 3.2 shows a similar comparison with b fixed at 1/10 and the number of integration

points increasing (with the restriction that M = N). The Table shows that as N increases, not

M = N = 10 M = N = 15 M = N = 20 M = N = 25 M = N = 30

actual error +1.11 −7.84× 10−2 +9.55× 10−2 −4.67× 10−2 +1.84× 10−2

equation (3.41) +1.21 −1.82× 10−1 +7.97× 10−2 −4.67× 10−2 +1.95× 10−2

Table 3.2: M = N , a = 1/2, b = 1/10

only does the actual error decrease, as would be expected, but also equation (3.41) becomes a

better approximation to the actual error. Such a result is to be expected as the approximation

suggested in equation (2.14) improves with increasing N .
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We shall now turn our attention to the second example where the integrand has branch

point singularities.

4. An example with branch point singularities

Let us consider the integral I(b) where

I(b) :=

∫ 1

−1

∫ 1

−1

dx du√
x2 + u2 + b2

, (4.1)

and b > 0. In this case we have an analytic expression for the integral, so that

I(b) = 4 log
(

√
2 + b2 + 1√
2 + b2 − 1

)

− 4b arctan
( 1

b
√
2 + b2

)

. (4.2)

Since the integrand is a symmetric function in x and u we shall, throughout this section, assume

that M = N . Consequently we have from (2.6) and (2.8) that RN,2(u) = RN,1(u) so that, from

(2.13), the remainder RN,N is given by

RN,N = 2

∫ 1

−1

RN,2(u) du. (4.3)

But, since

RN,2(u) =
1

2πi

∫

Cz

kN(z) dz√
z2 + u2 + b2

, (4.4)

we see that RN,2(u) is an even function of u so that, from (4.3), we have

RN,N = 4

∫ 1

0

RN,2(u) du. (4.5)

To evaluate the contour integral in (4.4), if we write

c :=
√
u2 + b2, with c > 0, (4.6)

then the integrand has branch points at z0, z0 where

z0 := ic. (4.7)

On letting the contour Cz go to infinity then we have, see Figure 1, that

RN,2(u) = 2ℜ
{ 1

2πi

∫

AB∪CD

kN(z) dz√
z2 + c2

}

. (4.8)
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Now along AB we have z − ic = reiπ/2 with r going from ∞ to 0. Along CD, we have

z − ic = re−3πi/2 with r going from 0 to ∞. From (4.8) it can be shown that

RN,2(u) =
2

π
ℜ
{

eiπ/2
∫

∞

0

kN((r + c)eiπ/2) dr√
r
√
r + 2c

}

. (4.9)

With k̂N as defined in (2.14) we obtain

RN,2(u) ≈
2(−1)NcN

π

∫

∞

0

dr
√
r
√
r + 2c

(

(r + c) +
√

(r + c)2 + 1
)2N+1

. (4.10)

In order to evaluate this integral let us write

r + c = sinh(θ + θ0), (4.11)

with r = 0 corresponding to θ = 0 so that

c = sinh θ0 and cosh θ0 =
√
1 + c2. (4.12)

From (4.11) we have dr = cosh(θ + θ0) dθ and, from (4.11) and (4.12), we find that

r = 2 sinh(θ/2) cosh(θ0 + θ/2) and r + 2c = 2 cosh(θ/2) sinh(θ0 + θ/2). (4.13)

Finally, we note that

(r + c) +
√

(r + c)2 + 1 = eθ+θ0 (4.14)

where, from (4.12), it follows that

eθ0 = c+
√
1 + c2. (4.15)

Combining (4.10) - (4.15) we obtain

RN,2(u) ≈
2(−1)NcN

π(c+
√
1 + c2)(2N+1)

∫

∞

0

e−(2N+1)θ cosh(θ0 + θ) dθ√
sinh θ

√

sinh(2θ0 + θ)
. (4.16)

Now the integrand of this integral is exactly the same as that discussed in the previous section

at equation (3.17). Since the main contribution to the integral comes from the neighbourhood

of θ = 0 then making the same assumptions as before and recalling from (3.19), that

∫

∞

0

θ−1/2e−(2N+1)θ dθ =
√
π/

√
2N + 1, (4.17)

we find that(4.16) gives

RN,2(u) ≈
√
2(−1)NcN(u

2 + 1 + b2)1/4
√

(2N + 1)π(u2 + b2)1/4(
√
u2 + b2 +

√
u2 + 1 + b2)2N+1

. (4.18)
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From (4.5) and (4.18) we have that

RN,N ≈ 4
√
2(−1)NcN√
π
√
2N + 1

JN(b) (4.19)

say, where the integral JN(b) is defined by

JN(b) :=

∫ 1

0

(u2 + 1 + b2)1/4 du

(u2 + b2)1/4(
√
u2 + b2 +

√
u2 + 1 + b2)2N+1

. (4.20)

In order to evaluate this integral we make a similar transformation to that in (3.28) by writing

√
u2 + b2 = sinh(φ+ φ0) (4.21)

with u = 0 corresponding to φ = 0 so that we have

b = sinhφ0 and coshφ0 =
√
1 + b2. (4.22)

It follows that
√
u2 + b2 +

√
u2 + 1 + b2 = eφ+φ0 (4.23)

where, from (4.22), we have

eφ0 = b+
√
1 + b2. (4.24)

From (4.21)

u du = sinh(φ+ φ0) cosh(φ+ φ0) dφ, (4.25)

and, from (4.21) and (4.22), we obtain

u =
√

sinhφ sinh(2φ0 + φ). (4.26)

Combining (4.20) - (4.26) gives

JN(b) =
1

(b+
√
1 + b2)2N+1

∫ φ1

0

e−(2N+1)φ
√

sinh(φ0 + φ)(cosh(φ0 + φ))3/2 dφ
√
sinhφ

√

sinh(2φ0 + φ)
, (4.27)

where φ1 is such that

φ1 = arcsinh
√
1 + b2 − arcsinh b = log

(

√
1 + b2 +

√
2 + b2

b+
√
1 + b2

)

. (4.28)

Again, we see that for N “large”, the major contribution to the integral comes from the neigh-

bourhood of φ = 0. On replacing sinh(φ0+φ) by sinhφ0, cosh(φ0+φ) by coshφ0, sinh(2φ0+φ)

by sinh(2φ0) and sinhφ by φ we have

JN(b) ≈
√
1 + b2√

2(b+
√
1 + b2)2N+1

∫ φ1

0

e−(2N+1)φφ−1/2 dφ (4.29)

=

√
π
√
1 + b2 erf(

√

(2N + 1)φ1)√
2
√
2N + 1(b+

√
1 + b2)2N+1

,
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on recalling (3.19). On combining (4.19) with (4.29) we obtain our required result that

RN,N ≈ 4(−1)NcN
√
1 + b2 erf(

√

(2N + 1)φ1)

(2N + 1)(b+
√
1 + b2)2N+1

. (4.30)

Let us see how good this estimate of the error is, by considering some numerical examples.

Firstly, with b = 1/2 we find in Table 4.1 the following comparison of exact errors with the

asymptotic estimates of (4.30) for N = 10(5)25.

N actual error equation (4.30)

10 +5.49× 10−5 +5.34× 10−5

15 −3.04× 10−7 −2.96× 10−7

20 +1.86× 10−9 +1.83× 10−9

25 −1.22× 10−11 −1.20× 10−11

Table 4.1: b = 1/2

We see from Table 4.1 that the asymptotic estimate of RN,N as given by (4.30) gives almost

two significant digits of the actual error. However, as in §3, the estimate of error deteriorates

as we let b become smaller. In Table 4.2 we have chosen N = 20 and compared the exact error

with the asymptotic estimate for decreasing b.

b = 1/5 b = 1/10 b = 1/20 b = 1/30 b = 1/40

actual error +1.78× 10−4 +8.95× 10−3 +5.52× 10−2 +9.55× 10−2 +1.24× 10−1

equation (4.30) +1.79× 10−4 +1.02× 10−2 +7.81× 10−2 +1.55× 10−1 +2.17× 10−1

Table 4.2: N = 20

As can be seen, the asymptotic estimate becomes worse as b tends to zero. It might be

noted in passing that we get precisely the same asymptotic estimates in Tables 4.1 and 4.2 if,

in equation (4.30), we replace erf(
√

(2N + 1)φ1) by 1.
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5. Conclusion

In this paper we have considered the truncation error when Gauss-Legendre quadrature is

used to evaluate double integrals taken over the region (−1, 1)× (−1, 1). There appears to be

no literature on this specific topic so we have first derived an approximate expression for this

truncation error, see equation (2.13). This expression is given in terms of contour integrals since

we have assumed that the definition of the integrand can be continued into the appropriate

complex planes. Such will be the case for the sort of integrals envisaged here which arise from

the boundary integral method.

By approximating these contour integrals we have then considered asymptotic estimates of

the remainder in two important cases. In the first example we have assumed that the singu-

larities of the integrand are poles and, in the second example, that they are branch points.

It appears that, provided the singular point of the integrand is not too close to the surface

(−1, 1)× (−1, 1), these asymptotic estimates are quite good, giving one or two correct signifi-

cant digits.

In the context of the boundary integral method, the authors, in [7] and [8] have advocated

the use of the sinh- and iterated sinh- transformations in order to give greater accuracy for

a given number of quadrature points. However, we have not considered the effects of these

transformations on the integrals discussed here, but will leave such results for a future paper,

or two.

References

[1] B. M. Johnston, P. R. Johnston, D. Elliott, A sinh transformation for evaluating two di-

mensional nearly singular boundary element integrals, International Journal for Numerical

Methods in Engineering 69 (7) (2007) 1460–1479.

[2] C. A. Brebbia, J. C. F. Telles, L. C. Wrobel, Boundary Element Techniques, Springer–

Verlag, Berlin, 1984.

[3] Y. J. Liu, Analysis of shell–like structures by the boundary element method based on 3–D



Estimates of the Error in Gauss-Legendre Quadrature for Double Integrals 15

elasticity: formulation and verification, International Journal for Numerical Methods in

Engineering 41 (1998) 541–558.

[4] D. Zhang, F. J. Rizzo, Y. J. Rudolphi, Stress intensity sensitivities via hypersingular

boundary element integral equations, Computational Mechanics 23 (1999) 389–396.

[5] M. H. Aliabadi, D. Martin, Boundary element hyper–singular formulation for elastoplastic

contact problems, International Journal for Numerical Methods in Engineering 48 (2000)

995–1014.

[6] T. Dirgantara, M. H. Aliabadi, Crack growth analysis of plates loaded by bending and

tension using dual boundary element method, International Journal of Fracture 105 (2000)

27–74.

[7] D. Elliott, P. R. Johnston, Error analysis for a sinh transformation used in evaluating nearly

singular boundary element integrals, Journal of Computational and Applied Mathematics

203 (1) (2007) 103–124.

[8] P. R. Johnston, D. Elliott, A sinh transformation for evaluating nearly singular bound-

ary element integrals, International Journal for Numerical Methods in Engineering 62 (4)

(2005) 564–578.

[9] D. Elliott, P. R. Johnston, Gauss-Legendre quadrature for the evaluation of integrals

involving the Hankel function, Journal of Computational and Applied Mathematics 211 (1)

(2008) 23–35.

[10] J. D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic esti-

mates of their remainders, SIAM Journal on Numerical Analysis 9 (1972) 573–602.

[11] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,

1972.



Estimates of the Error in Gauss-Legendre Quadrature for Double Integrals 16

b b

b

b

-1

0

1

Cz

ℜz

ℑz

A

BC

D

H

GF

E

Figure 1: Contour for the evaluation of the integral (4.4)


