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Abstract 

Offshore monopile foundations are one of the most commonly used foundation structures 

in offshore renewable energy, especially in areas with relatively shallow water. They are 

characterised by relatively large geometric dimensions compared with other offshore pile 

foundations and differ from onshore piles in that they suffer from more dynamic ocean 

environments during their lifetime. One of the most significant aspects is associated with 

the wave effect on the structural behaviour of monopile foundations. In this study, a 

three-dimensional scaled boundary finite element model (SBFEM) is proposed to 

investigate structural responses of monopile foundations when exposed to ocean waves. 

Unlike other numerical techniques, SBFEM provides an analytical solution in the radial 

direction with numerical approximation along the discretised faces of the monopile 

foundation. The SBFEM model is validated by an equivalent finite element model, by 

which favourable computational efficiency and reliable accuracy are demonstrated. 

Subsequently, a parametric study is carried out focussing on various wave properties to 

gain an insight into monopile behaviour. Results show that the lateral displacement of the 
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monopile foundation increases as wave numbers, wave amplitudes or water depths 

increase. This study aims at improving the design of offshore monopile foundations, 

when wave load is a dominant factor. 

Key words: Offshore monopile foundations; ocean waves; structural behaviour; scaled 

boundary finite element model; three-dimensional analysis 

1. Introduction 

 

Offshore monopiles, as an important foundation concept, have been receiving increasing 

attention of scientists and engineers since offshore renewable energy gained global 

popularity in the last few decades.  Generally, embedded in shallow waters with a depth 

of no more than 50 metres, offshore monopiles typically have a much larger diameter 

than those of other pile foundations. Serving as a supporting element connecting the 

turbine tower and the seabed, monopiles are key elements in offshore wind farm design 

and construction as they transfer all the loads acting on the turbine above sea level to the 

seabed and are exposed to harsh ocean environment itself. Their stability and structural 

behaviour are of great significance to an offshore wind farm project. Therefore, scientists 

and engineers have been engaged in exploring and investigating offshore monopile 

behaviour as it develops. Previous theoretical and practical experiences from 

conventional geotechnical pile foundations and onshore wind farms have been reviewed 

and referred to during the course of this research. However, the obvious difference in the 

sitting environment between offshore monopiles and their onshore counterparts, or 

conventional geotechnical piles, poses challenges and requires special consideration 

when conducting the analysis. One of the most significant aspects is associated with 
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ocean waves, to which monopiles are inevitably exposed. Ocean waves impose cyclic and 

detrimental loads on monopiles during their entire operational lifetime, and therefore, are 

considered as predominant factors when analysing monopile behaviour. 

 

Unfortunately, there is no established technical guideline for offshore monopile design 

and construction that can be universally applied due to its environmental-dependent 

nature. Pioneers in Northern Europe and other regions have been consistently 

documenting their experiences so that offshore renewable energy can be expected to 

contribute to sustainable development thereby benefitting human kind. Kellezi and 

Hansen (2003) developed both static and dynamic models, based on the Finite Element 

Method (FEM), to investigate monopile-seabed interactions. Static calculations were 

carried out for extreme static horizontal loads and rotational moment. The nonlinearity of 

the pile-seabed interaction was taken into consideration by using a ‘contact pair’ along 

the monopile-seabed interface, where elastic-plastic behaviour was enforced. Within this 

static analysis, a maximum horizontal deformation of 35-40 mm for a 22 m height pile at 

the seabed level was examined. The preliminary dynamic investigation of the seabed-

monopile interaction was presented thereafter, which was carried out in time domain with 

an absorbent boundary modelling the unbounded seabed. Johansen et al (2008) proposed 

two solutions: ‘Fins Structure’ and ‘Diversion Fence Structure’ to prevent scour from 

occurring around monopile foundations for the sake of environmental protection and cost 

reduction. A computational fluid dynamics model was employed to numerically analyse 

the benefits of the proposed scour protection solutions in their work. Physical 

experiments were also carried out to simulate the installation and maintenance operations. 

A rough cost analysis was provided to illustrate the economical-feasibility of the 
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proposed solutions. Achmus (2009) applied the results of drained cyclic triaxial tests on 

cohesionless seabed soil in a ‘degradation stiffness model’ to evaluate the accumulated 

displacement of the monopile head under cyclic lateral loads. Parametric studies to 

identify the effects of geometric configurations, subsoil properties and loading conditions 

on monopile behaviour were carried out. The results showed that the displacement 

accumulation rate is closely dependent upon the loading level, whereas that for a given 

load is mainly governed by the embedded length of a pile. Achmus’ analysis is expected 

to fulfil the preliminary design which involves long-term cyclic loading.  

 

Given the limited studies of wave impacts on monopile behaviour, Li et al (2010b) 

proposed a semi-analytical numerical model based on the Scaled Boundary Finite 

Element Method (SBFEM), to study the monopile behaviour due to ocean wave loads 

and examine the effect of wave numbers on the structure response. SBFEM inherits the 

advantages of both FEM and Boundary Element Method (BEM), the two numerical 

techniques from which SBFEM was derived. Featuring at discretising the boundary only 

and satisfying the boundary condition exactly at infinity when dealing with problems 

involving unbounded domain, SBFEM does not necessitate any singular integral or 

fundamental solution. These favourable features bring about a wide application of 

SBFEM into various fields of engineering, such as structural engineering (Yang, 2006; 

Yang, 2007), ocean engineering (Li, 2007; Tao, 2007), geotechnical engineering (Khani, 

2007), hydraulic engineering (Wang, 2010) and electromagnetic engineering (Liu, 2010).  

 

In this study, the SBFEM is employed to develop a semi-analytical numerical model to 

further explore the monopile response to ocean waves. The model is non-dimensionalised 
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for the benefit of subsequent parametric analysis. Discussions based on variation of wave 

properties are expected to contribute to the fundamental understanding of monopile 

responses to ocean waves. The remaining part of this paper is organised as follows: the 

physical problem description is introduced in Section 2, followed by presenting the 

SBFEM model of the monopile and its non-dimensionalisation in Section 3. 

Subsequently, the monopile behaviour is investigated and detailed in Section 4 and a 

parametric study in terms of how wave properties affect monopile behaviour is presented 

in Section 5. 

  

2. Problem Formulation 

A typical monopile-supported wind turbine is associated with three physical aspects 

according to the spatial division by the medium surrounding it, i.e., aerodynamically with 

the wind, hydrodynamically with the sea water, and geotechnically with the seabed. The 

wind exerts aerodynamic forces on the turbine rotor during the wind turbine operation. 

There are also static axial loads transferred from the turbine tower and act on the 

monopile. These aspects are not considered due to the intensive objective of this study, 

which mainly focuses on the wave loads and the resulting structural response of the 

monopile. On the other hand, the embedded part of the monopile foundation exhibits 

relative motions with respect to the seabed, horizontal deflection and rotation for instance, 

the effect of which to the monopile behaviour are out of the scope of the current research. 

Considering the above assumptions, it is worth mentioning that, passive monopile 

foundations, such as those for oil rig installations, are also applications of the proposed 

formulation. 
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A free standing monopile foundation is shown in Fig. 1, with its bottom fixed at the 

seabed, i.e., the penetration depth into the seabed is neglected in this study. In Fig. 1, a 

denotes the monopile radius, h the monopile height, d the mean water depth and A the 

wave amplitude. 

Considering a specific condition when the magnitude of the dynamic wave pressure acts 

upon the monopile, the governing equations of the monopile behaviour follow those of 

elastostatics (Gould, 1994; Huang and Bush, 1997):   

    0
T

L              (1) 

with [L] representing the partial differential operator. The stress amplitude {σ} is related 

to the strain amplitude {ε} and the elastic matrix [D] as: 

    D             (2) 

The strain amplitude {ε} and displacement amplitude {u} are related by [L] in the form 

of: 

    L u             (3) 

Eqs. (1)-(3) describe the structural behaviour of any point within the monopile foundation. 

They can be solved with the boundary conditions specified at the seabed level, sea water-

monopile interface and the faces of monopile above mean water level. 

Zero displacements are enforced at the seabed level where the monopile foundation is 

rested. 

  0,   at 0u z 
 

Wave pressure, acting on the sea water-monopile interface, results from the summation of 

the dynamic wave pressure and the hydrostatic pressure. 

In real ocean environment, short-crested waves are very likely to be generated and 

therefore, are the most common form of waves resulting from winds blowing over the 
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surface of the open sea. Since Jeffreys (1924) developed the theory of short-crested 

waves, many researchers have investigated their kinetic and dynamic properties, as well 

as the diffraction, reflection and radiation phenomena due to their interactions with 

coastal and offshore structures. Zhu (1993) systematically studied the loads exerted by 

short-crested waves on a cylindrical pile of coastal or offshore structures, and presented 

an analytical expression of the dynamic wave pressure acting at any point on the cylinder 

from the seabed level up to the free surface elevation, with the magnitude of which being 

given in Eq. (4) as: 

   
0 0

cosh '
, , ,

2 cosh

mw
m m n mn

m n
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p a z i Q a
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        (4) 

 

with the origin of the coordinate system being indicated in Fig.1. In Eq. (4), the azimuth 

angle θ is measured along the monopile circumference in the anti-clockwise direction. pm 

is also related to the radius of the pile a, and the properties of the short-crested waves, 

i.e., the wave amplitude A and the wave number k. ρw represents the water density, g the 

gravitational acceleration, d the water depth and ηθ, the wave elevation along the 

circumference of the pile, the magnitude of which is expressed as: 
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z' is the stretched coordinate calculated according to Wheeler (1969) as: 

'
zd

z
d 




  (6) 

where z is measured along the height of the monopile. 

In Eqs (4) and (5), εm, εn and Qmn(a, θ) are related to the series terms and are defined as: 



8 

 

1 , 0
,

2 , 0
m n

m n

m n
 


 

  

         

       

2 2

2 2

, cos 2

cos 2

mn m x n y mn m n

m x n y mn m n

Q a J k a J k a A H ka m n

J k a J k a B H ka m n

 







   
 

   
      (7) 

 

where  
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      (9) 

In Eqs. (7)-(9), J represents the Bessel function of the first kind and H represents the 

Hankel function. kx and ky explain the periodic property of the short-crested waves at the 

free-surface level in the x and y directions, respectively. They are related to the incident 

wave angle α by: 

cos , sinx yk k k k  
         (10) 

Generally, the wave period T for wind waves in ocean environments ranges from 5 

seconds to 20 seconds. With this condition, the wave number k in Eq. (4) can be 

evaluated using the wave dispersion equation    
2

2 tanhT gk kd  , given the water 

depth d.  

The hydrostatic pressure ph is calculated as: 

 'h wp g d z            (11) 

 

3. SBFEM Model 

3.1 Brief introduction of SBFEM 
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SBFEM, based on BEM and FEM from the nomenclature, was proposed by Wolf and 

Song (1996). The main framework of SBFEM is based on a local coordinate system, the 

scaled boundary coordinate system (ξ, η, ζ) (see Fig. 2), which is defined by a scaling 

centre O, a radial direction ξ starting from the scaling centre to the boundary and 

circumferential directions, η and ζ, on the boundary. Same as BEM when dealing with 

problems involving unbounded domains, SBFEM does not necessitate a fundamental 

solution, which consequently generalises its application in many fields. Applying the 

geometric transformation from a conventional coordinate system (Cartesian coordinate 

( x̂ , ŷ , ẑ ) for example) to the scaled boundary coordinate system (ξ, η, ζ), and employing 

the discretisation concept of FEM only on the boundary of the study domain, the 

governing partial differential equation (PDE) is transformed into a matrix-form ordinary 

differential equation (ODE). Therefore, the behaviour of the physical problem is 

investigated numerically in the FEM sense along the boundary, and analytically in the 

radial direction by solving the matrix-form ODEs mathematically. The solution 

procedure of SBFEM is illustrated concisely in Fig. 3. Galerkin’s weighted residual 

concept is employed in the circumferential direction when deriving the weak form scaled 

boundary finite element equation. The coefficient matrices are assembled from the 

boundary discretisation in the same way as that in FEM. After the nodal function is 

obtained, interpolation using shape functions and specification of the scaled boundary 

coordinates lead to the semi-analytical solution in the entire domain. Apart from the 

above-mentioned advantages, the radiation condition at infinity can be satisfied exactly in 

SBFEM for unbounded domain problems. However, SBFEM shows its disadvantages 

when dealing with problems involving nonlinearity and material inhomogeneity. 
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3.2 SBFEM model formulation 

 

The three-dimensional local scaled boundary coordinate system (ξ, η, ζ) introduced for 

the monopile foundation is shown in Fig. 4. Due to symmetry of the physical problem, 

only half of the monopile is analysed. The scaling centre O(x0, y0, z0) is selected to 

coincide with the geometric centre of the monopile. The radial coordinate ξ ranges from 0 

at O to 1 at Г, which represents the external surface of the symmetrical half of the 

monopile (see Fig. 4). The other two local coordinates η and ζ, with magnitudes ranging 

from -1 to 1 for each element, rely on the tangential directions of Г. The two coordinate 

systems are geometrically related by the following expressions: 
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        (12) 

where {x}, {y} and {z} represent the coordinates of the discretised nodes on Г.  Eight-

node quadratic quadrilateral elements are used for boundary discretisation with a shape 

function [N(η, ζ)] being expressed as: 
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With this geometric mapping, the differential operator [L] is reformulated in the scaled 

boundary coordinate system using ξ, η and ζ as: 
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     1 2 31

[ ] , ( , , )L b b b     
   

  
                    (13) 

in which, [b1(η, ζ)],  [b2(η, ζ)] and [b3(η, ζ)] only depend on the  boundary discretisation, 

and are independent of the radial coordinate ξ. 

 

Using the same shape function [N(η, ζ)] as for boundary discretisation, the displacement 

amplitude is expressed as: 

{ ( , , )} [ ( , )]{ ( )}u N u              (14) 

where {u(ξ)} represents the displacement variation with the radial coordinate ξ. Once it is 

solved, the displacement field within the monopile foundation can be obtained using 

Eq.(14) with the specified scaled boundary coordinates ξ, η and ζ, and subsequently the 

stress and strain fields can be calculated as: 

1 2

,

1
{ } { ( , , )} { ( )} { ( )}B u B u      


        

1 2

,

1
{ } { ( , , )} [ ] { ( )} { ( )}D B u B u      



 
         
 

 

in which 1B    and 2B    are formulated as : 

1 1[ ( , )] [ ( , )][ ( , )]B b N      , 
2 2 3

, ,[ ( , )] [ ( , )][ ( , )] [ ( , )][ ( , )]B b N b N             

Applying the weighted residual technique and Green's theorem, and through a series of 

manipulations, the governing PDEs (1)-(3) are transformed into the second-order matrix-

form Euler-Cauchy ODEs with respect to the nodal displacement function {u(ξ)}: 

   0 2 0 1 1 1 2

, ,[ ] { ( )} 2[ ] [ ] [ ] { ( )} [ ] [ ] { ( )} 0T TE u E E E u E E u          
   (15) 

Eq.(15) is termed as the scaled boundary finite element equation. In Eq.(15), only the 

radial coordinate ξ appears. The other two coordinates η and ζ are incorporated in the 

coefficient matrices in the form of: 
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       (16) 

where [D] is the elastic matrix representing the physical property of the monopile 

foundation. The three matrices [E
0
], [E

1
] and [E

2
] in Eq.(16) are first formulated for each 

individual element discretised on Г and then assembled in the same way as in FEM.  

 

3.3  Non-dimensionalisation of SBFEM model 

 

In order to investigate monopile responses to various ocean wave loads, the variables and 

coefficient matrices appeared in Eq.(15) are nondimensionalised using a set of reference 

variables, which are listed in Table 1. Therefore, all computed quantities are of relatively 

similar magnitude regardless of the unit systems used to measure the variables.  

 

To derive the non-dimensional version of Eq.(15), the following definitions are 

introduced based on the fact that, different from conventional coordinates, x̂ , ŷ and ẑ  in 

Cartesian coordinate for example, the scaled boundary coordinates ξ, η and ζ are 

dimensionless: 
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where, asterisks denote dimensionless variables. Rearrange the above equations in terms 

of the dimensional variables and substitute into Eq.(15), a constant coefficient ρwga
2
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appears for each term throughout the equation and can be cancelled out. Therefore, the 

non-dimensionalised form of Eq.(15) can be obtained as: 

        
* * * * * ** * *0 2 0 1 1 1 2

, ,
( ) 2 ( ) ( ) 0

T T

E u E E E u E E u
 

                               
 (17) 

Following discussions are based on this non-dimensionalised analysis. For ease of 

presentation, all asterisks are removed from the mathematical expressions thereafter.  

To solve the scaled boundary finite element equation Eq.(17), a new variable 
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is introduced to incorporate the nodal displacement function   u   and the nodal force 

function   Q  , which is expressed as:         0 2 1

,

T

Q E u E u


            . 

By introducing   X   and employing a Hamiltonian matrix  Z , which is formulated by 

coefficient matrices of Eq.(17) and the identity matrix  I  as:  
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                            , 

the number of DOFs of the problem is doubled, however, the order of the matrix-form 

ODE (15) is reduced from two to one, as can be examined from the resulting 

homogeneous linear ODE (16): 

       
,

0X Z X


   
         (18) 

The Schur decomposition has been proven to be a qualified and efficient method to solve 

Eq.(18), following the solution procedure presented in Song (2004) and Li et al (2010a). 

The nodal displacement function is expressed as: 

             0.5

1 1 2 2
n nS S

u uu C C   
    

      (19) 

with [Ψu1], [Ψu2] and [Sn] being determined from the Schur decomposition of [Z]. {C1} 

and {C2} in Eq.(19) are two sets of constants to be determined according to the 
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displacement and stress boundary conditions on monopile boundaries Г. 

4. Structural Response 

4.1 Convergence test and model verification 

 

To validate the proposed three-dimensional SBFEM model of the monopile and its 

numerical performance, a case is studied as a benchmark with a monopile foundation 

subjected to a hydrostatic pressure being expressed as:  h wp g d z  . The geometric 

properties and other quantities are listed in Table 2. To examine the convergence, the 

displacements in the z direction at the monopile head level are plotted in Fig. 5 (a) for 

several discretisation schemes, which are shown in Table 3. ‘Mesh1’ corresponds to ‘1-3-

4’, meaning that 1 element along the height of the monopile above the mean water level, 

3 elements below and 4 elements each for both monopile radius and a quarter of the 

monopile circumference. Fig. 5 (a) shows a satisfactory convergence of the proposed 

SBFEM model when ‘Mesh4’ is employed, which is thus adopted for the analysis 

thereafter. 

 

For convenient interpretation of the results, two representative locations on the monopile 

foundation as shown in Fig. 6 are specifically examined. One is Line L-L’ along the 

monopile height at 0    ; the other one is Line R-R’ along the monopile circumference 

at the monopile head level.  

 

A comparative FEM analysis, using the commercial software package STRAND7 (2010), 

is also carried out to verify the credibility and numerical competency of the SBFEM 
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model. The converged displacements from both SBFEM and FEM models are plotted in 

Fig. 7 against the height of the monopile along L-L’. Only a 0.67% discrepancy is 

observed which guarantees the reassuring agreement of the results from the two models. 

With respect to the DOFs used by the two models, as compared in Fig. 5 (b) and Table 3, 

it is easy to see that SBFEM requires a significantly less number of DOFs for the same 

mesh than that of an equivalent FEM model, through which the favourable numerical 

efficiency of the SBFEM model is demonstrated.   

 

4.2 Monopile behaviour analysis 

 

With the proposed SBFEM model, the problem described in Section 2, viz the structural 

response of a monopile foundation to ocean wave loads is studied herein. Parameters of 

the monopile foundation and the wave condition are tabulated in Table 4. 

 

As mentioned in Section 3.2, when setting up the SBFEM model, the physical problem is 

symmetric with respect to the incident wave direction, which results in zero displacement 

in the y direction along L-L’. Displacements in the z direction are less significant 

compared with the x counterparts and are not of major concern. Therefore, displacements 

in the x direction, reflecting lateral deflections of the monopile when subjected to wave 

loads, are mainly addressed in the following discussions.  

 

The non-dimensionalised lateral displacement along L-L’ in Fig. 8 (a) shows a maximum 

displacement of 0.8254×10
-3

 at the monopile head level when the wave amplitude, wave 

number and the water depth are 1, 0.25 and 12, respectively. The displacement variation 
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along monopile circumference at z =16 is illustrated by the polar plot in Fig. 8 (b). Note 

that numerics in the polar plot mark the scale of the radial axis, and this is the same for 

the following polar plots. It is noticed that the maximum displacements at the monopile 

head level are the same everywhere around the monopile circumference when θ ranges 

from 0 to pi.  

 

To understand how each force component, i.e., the dynamic wave pressure and the 

hydrostatic pressure, contributes to the monopile behaviour, displacements due to the two 

components are illustrated separately. It is observed from Fig. 9 that the displacement at 

the monoile head level caused by the hydrostatic component is greater than that from the 

dynamic counterpart, with corresponding magnitudes being 0.4354×10
-3

 and 0.3899×10
-3

, 

respectively. Propagating in the positive x direction with A =1 and k =0.25, the incident 

short-crested wave generates a total free-surface elevation ηθ as being depicted in Fig. 10.  

It is noticed that ηθ at θ = 180° is greater than that at θ = 0°. This elevation distribution 

leads to a resultant hydrostatic force acting on the monopile in the incident wave 

direction and causes a displacement of 0.4354×10
-3

. Prevailing throughout the entire 

vertical length from the free surface to the seabed, the hydrostatic pressure contributes 

more to the monopile deflection than the dynamic pressure, which predominates only 

around the free surface and decays rapidly into the water. The displacements around the 

monopile circumference are uniformly distributed for both the hydrostatic and the 

dynamic components, as read from Fig. 9 (b). 

 

5. Parametric study 
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Key wave parameters such as wave numbers, wave amplitudes and water depths are of 

great significance to the monopile behaviour. Considering the real situation where these 

parameters vary within a certain range, a study on the monopile response to the variation 

of these parameters is carried out to gain further insight into the functional performance 

of the monopile foundation. In this study, the analysis mainly focuses on how these 

parameters affect the wave load on the monopile and accordingly the monopile 

behaviour. 

 

5.1 Effect of wave number, k 

For a water depth of 30 m, and with the wave period ranging from 5 s to 20 s, the wave 

number varies approximately from 0.02 m
-1

 to 0.18 m
-1

. Therefore, the non-

dimensionalised wave number k is chosen as 0.05, 0.15, 0.25, 0.35 and 0.45 to investigate 

how it affects the monopile behaviour. Other relevant parameters are listed in Table 4. 

 

Wave numbers influence the wave pressure distribution on the monopile foundation in 

the vertical direction as well as the horizontal direction. Being dominated by the z 

component: 
'cosh / coshkz kd  of the pressure formulation Eq.(4), the dynamic wave 

pressure shows a rather rapid decay with water depth when it is associated with a higher 

wave number. Superimposed with the hydrostatic pressure, the total wave pressure 

variation in the vertical direction along L-L’ on the monopile foundation for varying k is 

plotted in Fig. 11 (a). Horizontally, on the other hand, greater wave numbers indicate 

more frequent waves acting on the monopile. With incident waves propagating in the 

positive x direction, the wave pressure generated with a relatively small wave number is 

distributed axisymmetrically around the monopile circumference as shown in Fig. 11 (b) 
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for k =0.05 and 0.15. When the wave number k gradually increases to 0.45 by an 

increment of 0.10, the wave pressure acting on the upstream face of the monopile 

(corresponds to 90°<θ<180°) increases, whereas that on the other side (0°<θ<90°) 

decreases. This, consequently, results in a substantial increase in the magnitude of the 

resultant force acting on the monopile in the incident wave direction. 

 

Fig. 12 (a) shows the lateral displacement of the monopile along L-L’ for varying wave 

numbers at A =1 and d =12. With increasing wave numbers from 0.05, 0.15, 0.25, 0.35 to 

0.45, the maximum displacement at the monopile head level increases from 0.0076×10
-3

, 

0.1878×10
-3

, 0.8254×10
-3

, 1.8805×10
-3

 to 3.3194×10
-3

. It is noticed from Fig. 12 (b) that 

for each individual case, the displacement at the monopile head level are the same 

everywhere around the monopile circumference when θ ranges from 0 to pi. Plotting 

these maximum displacements against the wave numbers k in Fig. 13 and examining the 

slope of the curve, it can be concluded that as k becomes greater, the increase in the 

maximum displacement becomes more noticeable. 

 

5.2 Effect of wave amplitude, A 

 

The magnitude of the wave amplitude reflects the kinetic energy associated with the 

wave motion. In this analysis, the non-dimensionalised wave amplitude A ranges from 

0.5 to 2.0 at 0.5 increments, which corresponds to a wave height of  2.5 m, 5.0 m, 7.5 m 

and 10.0 m, respectively. The wave height of 10.0 m represents a wave condition which 

may serve as an extreme case for engineering design. Other parameters are shown in 

Table 4. The total wave pressure at the mean water level, shown in Fig. 14, increases 
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evenly as the wave amplitude A rises. 

 

The lateral displacement along L-L' of the monopile for each case is plotted in Fig. 15 (a). 

The corresponding polar plot, illustrating the variation in the lateral displacement with 

respect to the azimuth θ, is shown in Fig. 15 (b). Similarly, for each case with certain 

wave amplitude, equal lateral displacement is examined around the monopile 

circumference although the pressure distribution, shown in Fig.14 (b), is not uniform 

when θ goes from 0 to pi. With the wave amplitude increasing from 0.5 to 2.0, the 

maximum displacement increases from 0.4353×10
-3

, 0.8254×10
-3

, 1.5024×10
-3

 to 

2.2067×10
-3

 at the monopile head level. The dependence of the mechanical behaviour of 

the monopile on wave amplitudes is presented in Fig. 16. Physically, the greater the wave 

amplitude, the greater the energy associated with the wave motion, accordingly, the 

greater the displacement of the monopile foundation induced by the wave load. 

 

5.3 Effect of water depth, d 

 

The variation of water depth inevitably affects the hydrostatic pressure, as well as the 

dynamic pressure according to Eqs (4) and (11). Therefore, it is an important parameter 

when analysing the monopile response to ocean wave loads. In this study, the non-

dimensionalised water depth in shallow water conditions varies from 9 to 13 with an 

increment of 1. Being linearly related to the water depth, the hydrostatic pressure 

increases with the water depth. The dynamic wave pressure, on the other hand, is related 

to the water depth by the hyperbolic cosine function cosh '/ coshkz kd . The superimposed 

total wave pressures acting along L-L’ for varying d at k =0.25 and A =1 are plotted in Fig. 
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17 (a). Those acting upon the monopile foundation around R-R’ at the mean water level 

are the same, and are overlapped as shown in Fig. 17 (b). 

 

As shown in Fig. 18, the corresponding maximum lateral displacement for varying water 

depth at k =0.25 and A =1 is 0.4827×10
-3

, 0.5966×10
-3

, 0.7232×10
-3

, 0.8254×10
-3

 and 

0.8954×10
-3

 when the water depth is 9, 10, 11, 12 and 13, respectively. Similar to Fig. 13, 

the maximum displacement at the monopile head level is plotted against the water depth 

in Fig. 19, which illustrates that the deeper the water, the more significant the 

displacement becomes. Also, same lateral displacement is examined around the monopile 

circumference for each individual water depth. 

 

6. Conclusions 

 

A three-dimensional SBFEM model is developed herein to study the structural behaviour 

of a monopile foundation when subjected to varying ocean wave loads. By introducing a 

local scaled boundary coordinate system, the SBFEM model reduces the PDEs governing 

the structural behaviour of the monopile foundation to matrix-form ODEs in the radial 

direction. Only the degrees of freedom associated with the discretised monopile 

boundaries are involved when formulating the coefficient matrices of the ODEs, which 

considerably reduces the computational effort. Subsequently, the ODEs are solved 

analytically for the nodal displacement function, which represents the displacement 

variation in the radial direction. Adopting the same interpolation concept as that of FEM, 

the SBFEM model explores the displacement field within the monopile foundation by 

specifying the radial coordinate in the nodal displacement function and the other two 
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coordinates in the shape functions. This model therefore demonstrates analytical as well 

as numerical features in the solution process, and has displayed favourable applicability 

in modelling monopile behaviour through comparison with an equivalent FEM model. 

 

Structural responses of the monopile foundation to wave loads are studied non-

dimensionally using the SBFEM model. It is found that: 

 The hydrostatic pressure is a more dominant factor contributing to the monopile 

deflection in the incident wave direction than its dynamic counterpart as it 

prevails from the free surface to the seabed, whereas the dynamic pressure decays 

rapidly as it goes into the water.  

 The lateral displacement of the monopile increases when wave numbers, wave 

amplitudes and water depths increase. More specifically, when the wave number 

increases, the increase of the maximum lateral displacement of the monopile 

becomes more noticeable. For all cases, equal lateral displacement is obtained 

around the monopile circumference no matter how the wave pressure is 

distributed. 

  

The model presented in this study demonstrates the favourable capability of SBFEM in 

modelling the structural behaviour of the monopile foundation for offshore wind turbines, 

and is considered to be applicable to other structures, such as piers of coastal bridges and 

passive pile foundations for oil rig installations. Further analysis, taking the wind and 

structural load effects into consideration, will be performed during the next step of study 

to gain further insight into the monopile behaviour. 

 



22 

 

Acknowledgement 

 

The first author would like to thank Prof. Gao Lin and Mr Yong Zhang, from Dalian 

University of Technology, for their technical assistance. 

References 

 

Achmus, M, Kuo, YS, and Abdel-Rahman, K (2009). "Behavior of monopile foundations 

under cyclic lateral load," Computers and Geotechnics, Vol 36, No 5, pp 725-735. 

Gould, PL (1994). ''Introduction to linear elasticity,'' Second edition, Springer-Verlag 

New York, Inc. 

Strand7 Pty Ltd (2010). Using Strand7: Introduction to the Strand7 Finite Element 

Analysis System, Sydney, Australia. 

Huang, H and Bush, MB (1997). "Finite element analysis of mechanical properties in 

discontinuously reinforced metal matrix composites with ultrafine microstructure", 

Materials Science & Engineering A,  232, 63-72. 

Jeffreys, H (1924). "On water waves near the coast," Philosophical Magazine Series 6, 

Vol 14, pp 44-48. 

Johansen, N, Simon, JM, and Danyluk, R (2008). "Scour prevention devices for large 

offshore wind turbine monopile foundations," Creative Offshore Challenge 2008, 

International Offshore Competition Final Report, Denmark Technical University, 

Denmark. 

Kellezi, L, and Hansen, PB (2003). ''Static and dynamic analysis of an offshore mono-

pile windmill foundation,'' Offshore mono-pile, Lyngby, Denmark, GEO - Danish 



23 

 

Geotechnical Institute. 

Khani, MHBM (2007). ''Dynamic soil-structure interaction analysis using the scaled 

boundary finite-element method,'' The University of New South Wales. Doctor of 

Philosophy. Sydney, Australia. 

Li, BN (2007). ''Extending the scaled boundary finite element method to wave diffraction 

problems,'' The University of Western Australia. Doctor of Philosophy. Perth, Australia. 

Li, M, Song, H, Guan, H, and Zhang, H (2010a). ''Schur decomposition in the scaled 

boundary finite element method in elastostatics,'' 9th World Congress on Computational 

Mechanics and 4th Asian Pacific Congress on Computational Mechanics, Sydney, 

Australia. 

Li, M, Song, H, Zhang, H, and Guan, H (2010b). ''Structural Response of offshore 

Monopile Foundations to Ocean Waves,'' Proceedings of the Ninth (2010) ISOPE 

Pacific/Asia Offshore Mechanices Symposium, Busan, Korea. 

Liu, J, Lin, G, Wang FM, Li, JB (2010). ''The scaled boundary finite element method 

applied to Electromagnetic field problems,'' 9th World Congress on Computational 

Mechanics and 4th Asian Pacific Congress on Computational Mechanics, Sydney, 

Australia. 

Song, CM (2004). "A matrix function solution for the scaled boundary finite-element 

equation in statics," Computer Methods in Applied Mechanics and Engineering, Vol 193, 

No 23-26, pp 2325-2356. 

Tao, LB, Song, H, and Chakrabarti, S (2007). "Scaled boundary FEM solution of short-

crested wave diffraction by a vertical cylinder," Comput. Methods Appl. Mech. Engrg., 

Vol 197, pp 232-242. 

Wang, Y, Lin, G, Hu, ZQ (2010). ''A coupled FE and Scaled Boundary FE-Approach for 



24 

 

the Earthquake Response Analysis of Arch Dam-Reservoir-Foundation System,'' 9th 

World Congress on Computational Mechanics and 4th Asian Pacific Congress on 

Computational Mechanics, Sydney, Australia. 

Wheeler, JD (1969). "Methods for Calculating Forces Produced by Irregular Waves," 

Offshore Technology Conference, Houston, America. 

Wolf, JP, and Song, CM (1996). Finite-element modelling of unbounded media, 

Chichester, Wiley. 

Yang, ZJ (2006). "Fully automatic modelling of mixed-mode crack propagation using 

scaled boundary finite element method," Engineering Fracture Mechanics, Vol 73, No 12, 

pp 1711-1731. 

Yang, ZJ, and Deeks, AJ (2007). "Fully-automatic modelling of cohesive crack growth 

using a finite element-scaled boundary finite element coupled method," Engineering 

Fracture Mechanics, Vol 74, No 16, pp 2547-2573. 

Zhu, S (1993). "Diffraction of short-crested waves around a circular cylinder," Ocean 

Engineering, Vol 20, No 4, pp 389-407. 


