
Journal of Computational Information Systems 7:4 (2011) 1108-1115
Available at http://www.Jofcis.com

1553-9105/ Copyright © 2011 Binary Information Press
April, 2011

Polynomial-Time Hierarchy of Computable Reals

Qingliang CHEN1,2,3,†, Kaile SU3,4, Lijun WU5

1Department of Computer Science, Jinan University, Guangzhou 510632, China
2Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai,China

3 Key laboratory of High Confidence Software Technologies, Ministry of Education, Peking University, Beijing, China
4Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

5School of Computer Science and Engineering,University of Electronic Science and Technology, Chengdu, 610054, China

Abstract

In mathematics, various representations of real numbers have been investigated and all these representations are proved to
be mathematically equivalent. Furthermore, it is known that all effective versions of these representations lead to the same
class of “computable real numbers”. However, when subrecursive (such as primitive recursive) is taken into account, these
representations can lead to different notions of “computable real numbers”. This paper will look into the polynomial-time
version of the problem for computable real numbers under different representations. We will summarize the known results
to exhibit the comprehensive hierarchy they form. Our goal is to clarify systematically how the polynomial-time
computability depends on the representations of the real numbers..

Keywords: Computable Real Numbers; Polynomial-Time Computability

1. Introduction

The computability of real numbers is introduced by Alan Turing in his seminal paper [15]. According to
Turing, “the ‘computable’ numbers may be described briefly as the real numbers whose expressions as a
decimal are calculable by finite means”. In order to define the “finite means” precisely, he introduces the
nowadays well-known Turing machines. Since Turing machines compute exactly the computable functions
on natural numbers, Turing defines actually the real numbers with computable decimal expansions as
computable real numbers. Namely, x is computable if there is a computable function f : N → {0,1, …,9}

such that (1)

0
() 10 s

s
x f s

∞
− +

=

=∑ i . Here we consider only the real numbers in the interval [0,1]. As it was

pointed out by Robinson [13], Myhill [11], Rice [12] and others, the computability of real numbers can be
equivalently defined by means of Cauchy sequences, Dedekind cuts and other representations of real

† Corresponding author.

 Email addresses: tsingliangchen@gmail.com (Qingliang CHEN)

Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115 1109

numbers. That is, the computability of reals is independent of their representations. The class of
computable reals will be denoted by EC (for Effectively Computable).

Besides the computability, the subrecursive real numbers like primitive recursive (p.r., for short) and
polynomial time computable real numbers have also been discussed. The different notions of subrecursive
real numbers could be defined if different representations are used. Specker [14] is the first who
investigates this problem and he shows that decimal expansions, Dedekind cuts and Cauchy sequences lead
to three different versions of p.r. real numbers. Later on, Peter [4], Mostowski [10], and Lehman [8]
investigated other versions of p.r. reals and showed some relations between the notions of p.r. real numbers
based on different representations. For a comprehensive discussion of this problem, please refer to our
paper in [3].

As for the polynomial-time computable real numbers, Ko [5] has shown that the polynomial version of
Cauchy representation is more expressive than the standard left cut representation and binary expansion,
and later he showed that the continued fraction representation is less expressive than the standard left cut
representation but a slightly modified representation based on the principal convergents of real numbers
can be equivalent to it, by polynomial Turing reduction [6]. However, not every important representation of
real numbers have been discussed as far as polynomial-time computability is concerned and there is no a
systematical overview about the polynomial-time hierarchy of real numbers under all different
representations so far.

This paper aims to address the deficit. We summarize the known results about polynomial-time
computable reals which we can find in literature. We will analyze systematically the dependence of
polynomial-time computability of reals on the representations.

This paper is organized as follows. Firstly we recall the representations in the computability theory for
real numbers in the next section, then we will survey and explore the hierarchy in these representations in
section 3 and 4 by Cauchy sequences, binary expansions, Dekedind cut and continued fraction. And we will
conclude the paper in the last section.

2. Representations of Real Numbers

In this section, we recall the representations of real numbers [16] which will be discussed in this paper.
First we explain the classical form of the representations. Since we are interested in the effectivizations of
the representations to different levels, all representations will be defined again in a uniform way such that
they depend on some given class F of functions. According to the choice of the class F, various
computability of different levels about real numbers can be defined. These notions depend also on the
selected representations.

For simplicity, we consider only the real numbers in the unity interval [0,1]. If a real number x is notion
this interval, then there is a y ∈[0;1] and a natural number n such that x = y+n or x = y−n. In this case,
the real numbers x and y should have the same computability level in any reasonable sense.

In this paper, the basic objects are integers and strings in {0,1}*. The length of a string w is denoted by
l(w). In order to define precisely the complexity of “computing” a real number, we need to use specific
models such as Turing machines or random access machines. What’s more, we need a uniform
representation of rational numbers that can provide a natural measure of complexity since the computation

1110 Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115

objects we are dealing with here are rational numbers. In this paper, Turing machines model is chosen for
its simplicity. Also, instead of the set of rational numbers, we use the set of dyadic rational numbers
because the length of a dyadic number is a natural measure of its complexity [7].

A dyadic rational number d is a rational number that has finite binary expansions, that is, d = m/2n for
some integers m, n and n ≥ 0. The set of dyadic rationals is D =m/2n : {m ∈ Z;n ∈ N}. Each dyadic
rational d has infinitely many binary representations with arbitrarily many trailing zeros. For each such
representation t, we use l(t) to denote its length. And l(d) denotes its shortest binary representation. We use
Dn to be the class of dyadic rationals with at most n bits in the fractional part of its binary representations.

Now we give the precise definition of the relativization of all important representations to a class F of
functions.

Definiton 1. Let F be a class of functions f : N→D, f : N→N or f : N→{0,1} and let x ∈ [0,1] be a real
number.

1. x has an F-Cauchy representation (x ∈ FCS) if there is a function f : N → D in F such that f (n) ∈ Dn
and | f (n)−x| ≤ 2-n.

2. x has a F-Dedekind cut representation (x ∈ FDC) if there is a function f : N → {0,1} and g :N → D in
F such that f (n) = 1 if and only if g(n) < x. Or intuitively, the Dedekind cut set {d |d ∈ D and d < x} can
be decided by some f ∈F.

3. x has a binary representation (x ∈ FBIN) if there is a function f : N → {0,1} in F such that

(1)

0
() 2 s

s
x f s

∞
− +

=

=∑ i

4. x has a continued fraction representation (x ∈ FCON) if there is a function f : N→N in F such that

1(0) 1(1)
(2) ...

x f
f

f

= +
+

+

denoted by x = [f (0), f (1), …].
When we limit the function classes F to be polynomial-time computable functions, it will lead to the

definitions of various versions of “polynomial-time computable real numbers”. Denote by PCON;PDC;PBIN;
and PCS the classes of real numbers which have polynomial-time continued fraction, polynomial-time
Dedekind cut, polynomial-time binary expansion and polynomial-time Cauchy representations respectively.
We will see that the hierarchy among these classes is as follows.

3. Dedekind Cut, Binary Expansion and Cauchy Representations

The Dedekind Cut, binary and Cauchy representations are the most frequently discussed ones in literatures.
And we can see in the following that the separation of the classes is also due to the application of
diagonalization.

Theorem 2 (Ko [5]). The class of real numbers with polynomial-time computable Dedekind cut and

Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115 1111

polynomial-time computable binary representations defines exactly the same class of computable real
numbers, i.e., PDC = PBIN.

Proof: (PDC ⊆PBIN) Assume that x∉ D (the case for x∈ D is trivial) and the function for the binary
expansion of x is f . Then for each n, the relation

So, f (n+1) can be computed from f (0), f (1),..., f (n) by making only one question to the Dedekind cut Dx of

x. So if DC BINx P x P∈ ⇒ ∈ (PBIN ⊆ PDC). Assume that x∉ D (the case for x ∈ D is trivial) and the

function for the binary expansion of x is f , then the greatest dyadic rational number d ∈ Dn such that d < x
is

So in order to decide a dyadic rational d ∈ Dn whether or not d < x, we can compute the binary

expansion of x to the first n bits and then compare the number d with g(n). Therefore, if

BIN DCx P x P∈ ⇒ ∈

Theorem 3 (Ko [5]). The class of real numbers with polynomial-time computable Dedekind cut is
strictly contained in the class of real numbers with polynomial-time computable Cauchy representations,

i.e.,

Proof: We show that there exists a real number x such that x ∈PCS while x∉ PDC. This can be done by

a complexity-theoretic variant of the diagonalization.
First of all, we define a linear time honest function T(n) inductively (In computational complexity theory,

a linear time honest function is a function T(n) that can be computed by a Turing machine in time O(T(n))):

Since T(n) is time-constructible, we know that, there exists a set A ⊆ {0}∗ such that its characteristic

function χA(0n) can be computed in time T(n) by some Turing machine but not in time logT(n) by any
Turing machine. This can be proved by the application of diagonalization to the complexity classes such as
that in the Time Hierarchy Theorem in [1], since T(n) grows fast than logT(n).

Without loss of generality, let 0 ∈ A. Define

First, we claim that x is a polynomial-time computable Cauchy real. The computation of the Cauchy

function φ (0n) such that |x−φ (0n)| ≤ 2-n is as follows:
(1) Find the integer k such that T(k) ≤ n < T(k+1). This can be done in O(n) steps because T(n) is linear

time honest.
(2) Then compute and output

1112 Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115

which can be done in
1

(()) ()k

i
O T i O n

=
=∑ steps. It is obvious that |x−φ (0n)| ≤ 2−(T(k+1)−1) ≤ 2-n and φ ∈ P.

Secondly, we claim that x ∉ PDC by the way of contradiction. We will show that, if Dedekind cut set of
x Dx can be computed in time p(n) for some polynomial p, then we will construct a Turing machine which
computes χA(0n) in time logT(n) for almost all n ∈ N and thus establish a contradiction.

Suppose MA is the Turing machine that computes χA(0n) in time T(n). We construct another Turing
machine which works as follows.

(1) For a given input 0n and n > 0, first simulate MA on inputs 0,02,...,0n−1 and compute

(2) Then, we can determine the value of χA(0n) by computing the membership of d in Dx since d ∈ Dx

iff χA(0n)= 1. Intuitively, if d ∈ Dx we have to add something to approximate x, so χA(0n)= 1, and vice
versa.

Then the computation time above is bounded by

for almost all n. Then we have a contradiction.

4. Continued Fraction Representation

First of all, we list some basic facts about this representation [9]. Let x = [a0,a1, …] and

Lemma 4. For any k ≥ 2,

Lemma 5. For any k ≥ 2, qk ≥ 2(k−1)/2, the fractions of the form with 0 < r < ak+1,

are called intermediate fractions.
Lemma 6. For any k ≥ 0, the following sequence

is monotone increasing if k is even, and is decreasing if k is odd.
Lemma 7. For any k ≥ 0, if x≠ pk/qk, then

A fraction a/b is a best approximation to x if |a/b−x| ≤ |c/d−x| for all c/d with 0 < d≤ b.

Lemma 8. Let qk+1 > b. Then, a/b ≤ pk/qk iff a/b ≤ x if k is even; and a/b < pk/qk iff a/b < x if k is odd.

Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115 1113

For any real number x, let CONx and DCx denote its continued fraction and Dedekind cut representations
respectively.

Theorem 9 (Ko [6]).
1. CONx ≡T DCx.
2. Assume that x is a real number such that l(CONx(n)) ≤ p(n) for some polynomial p. Then,

CONx ≡T
P DCx.

3. There exists a real number x such that DCx is polynomial-time computable, but CONx is not

polynomially length-bounded, and hence,
Proof:
1. Assume that x is rational, then it is obvious that both CONx and DCx are recursive. Therefore, CONx

≡T DCx.
If x is irrational, let x = [a0,a1, …] and pk/qk = [a0,a1,… ,ak] for k ≥ 0. To compute DCx from CONx, we

have the following Algorithm 1.
By Lemma 6, for each even k, pk/qk < x and for each odd k, pk/qk > x. So, the algorithm always outputs

the right answer when it halts. Furthermore, { pk/qk } converges to x and a/b≠x.
Therefore, the algorithm always halts.

To compute CONx from DCx, we note that for each k ≥ 2, the value ak = CONx(k) can be computed from
pk−2/qk−2 and pk−1/qk−1 along with DCx. Then by Lemma 6, we have the following Algorithm 2:

2. Assume that l(an) ≤ p(n) for some polynomial p. Then we modify Algorithm 1 as following Algorithm

3. By Lemma 7, qk > b iff 2log 1k b≥ +⎡ ⎤⎢ ⎥ . Therefore, according to Lemma 8, a/b ≤ pk/qk iff a/b ≤ x,

we can easily verify the Algorithm 3 is correct. Since the computation of pk/qk from
CONx(0),CONx(1),...,CONx(k) can be done in polynomial time with O(k) arithmetic operations, the above
algorithm halts in polynomial time.

Next, we need to modify Algorithm 2 to become Algorithm 4. We define, for each k, bk = 2p(k). Then,
trivially bk ≥ ak. We will perform a binary search. Again, Lemma 8 will imply that the algorithm is correct.

Furthermore, the binary search halts in log ()kb p k=⎡ ⎤⎢ ⎥ steps. So, CONx ≡T
P DCx.

1114 Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115

3. Let x = [a0,a1,a2, …] where a0 = 1, an =
2

2
n

for all n. Then, l(CONx(n)) grows as an exponential

function. We prove that DCx is polynomial-time computable by giving the following Algorithm 5. We
should note that by Lemma 8, Algorithm 5 is correct if qk+1 >b. Indeed, by Lemma 4, we can prove by

induction that
22 2

2 2
k k

kq
+

≤ ≤ . So the correctness follows. Furthermore, since 0 ≤ x ≤ 1,

22

2
k

kq
+

≤ implies
22

2
k

kp
+

≤ and so the computation of pk/qk costs O(log logb) many arithmetic

operations on numbers of length O(l(b)). This justifies that DCx is polynomial-time computable.
Theorem 9 shows that the polynomial-time nonequivalence of DCx and CONx is basically due to the fact

that the growth rate of l(CONx(n)) may be faster than any polynomial for some x. This suggests the
following final conclusion.

Corollary 10 (Ko [6]). The class of real numbers with polynomial-time computable continued fraction is

strictly contained in the class of real numbers with polynomial-time computable Dedekind cut

representation, i.e.,

5. Conclusion

In this paper we summarize several known results about polynomial-time computable real numbers under
different representations which are scattered in literatures and analyze systematically the dependence of

Q. Chen et al. /Journal of Computational Information Systems 7:4 (2011) 1108-1115 1115

polynomial-time computability of reals on the representations. We have seen that, the polynomial- tim
computable reals under different representations form a comprehensive hierarchy:

It is also very natural to discuss these representations in other complexity classes such as the NC and

Log-Space computable reals.[2].

Acknowledgement

This work is supported by National Basic Research 973 Program of China grant 2010CB328103; National
Natural Science Foundations grant 60725207, 61003056 and 61073033; ARC Future Fellowship
FT0991785, Key research project of Ministry of Education in China grant No. 210257; Open Funds of Key
Laboratory of Embedded System and Service Computing, the Fundamental Research Funds for the Central
Universities of China and Guangdong Distinguished Young Scholar Nurturing Program grant
No.LYM09028.

References

[1] Sanjeev Arora, Boaz Barak, “Computational Complexity: A Modern Approach”, Cambridge University Press,
2009.

[2] Fuxiang Yu, On the Representations of NC and Log-Space Real Numbers, Computing and Combinatorics, 13th
Annual International Conference, COCOON 2007, Banff, Canada, July 16-19, 2007, Proceedings. Lecture Notes
in Computer Science 4598 , Springer 2007.

[3] Qingliang Chen, Kaile Su, Xizhong Zheng, Primitive Recursiveness of Real Numbers under Different
Representations. Electr. Notes Theor. Comput. Sci. 167: 303-324 (2007).

[4] R. P´eter, Rekursive Funktionen, (Akademischer Verlag, 1951).
[5] Ko, Ker-I. On the definitions of some complexity classes of real numbers, Math. Systems Theory,16

(1983):95–109.
[6] Ko, Ker-I. On the continued fraction representation of computable real numbers, Theoretical Computer Science,

47(1986):299–313.
[7] Ko,Ker-I. “Complexity Theory of Real Functions”, Progress in Theoretical Computer Science. Birkhauser,

Boston, MA,1991.
[8] Lehman,R.S. On primitive recursive real numbers. Fundamenta Mathematicae, 49(1960/61):105–118.
[9] A.Ya.Khintchine, Continued fractions (transl.by P.Wynn) ,Noordhoff, Groningen, The Netherlands, 1963
[10] Mostowski, Andrzej. On computable sequences. Fundamenta Mathematicae, 44(1957):37–51.
[11] Myhill, John. Criteria of constructibility for real numbers. Journal of Symbolic Logic, 18(1953):7–10.
[12] Rice, H. Gordon. Recursive real numbers. Proc. Amer. Math. Soc. 5(1954):784–791.
[13] Robinson, Raphael M. Review of “R´ozsa P´eter, Rekursive Funktionen”. Journal of Symbolic Logic,

16(1951):280–282.
[14] Specker,Ernst. Nicht konstruktiv beweisbare S¨atze der Analysis. Journal of Symbolic Logic, 14(1949):145–158.
[15] Turing,Alan M. On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the

London Mathematical Society, 42(1936):230–265.
[16] Weihrauch,Klaus. “Computable Analysis: An Introduction”. Springer, Berlin Heidelberg, 2000.

