
Design and Implementation of a Data Compression Scheme: A Partial Matching
Approach

F. Choong, M. B. I. Reaz, T. C. Chin, F. Mohd-Yasin
Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia

{florence@mmu.edu.my}

Abstract

Data compression is an essential process due to the
need to reduce the average time required to send
messages and reduce the data size for storage purposes.
There is a vital need for lossless compression especially
for text and binary compression because it is important
to ensure that the restructured text is identical to the
original text. The predictive by partial matching (PPM)
data compression scheme has set the performance
standard in lossless compression throughout the past
decade. PPM is chosen as it is capable of very good
compression on a variety of data. In this paper, we
present the realization of data compression using PPM
on Altera FLEX10K FPGA device that allows for
efficient hardware implementation. The PPM algorithm
for binary data compression was successfully written and
modeled in VHDL. The design is followed by the timing
analysis and circuit synthesis for the validation,
functionality and performance of the designated circuit
which supports the practicality, advantages and
effectiveness of the proposed hardware realization for
the application. The designed was verified using both 16-
bit input and 32-bit input. The hardware prototype
utilized 1164 logic cells with a maximum system
frequency of 95.3MHz.

1. Introduction

Data compression is an essential process due to the
need to reduce the average time required to send
messages and reduce the data size for storage purposes.
The ultimate goal of data compression is to represent an
information source, e.g. a text file, binary information, an
image or a video signal, as accurately as possible using
the fewest possible number of bits [1]. There is a vital
need for lossless compression especially for text and
binary compression as it is important to ensure that the
restructured text is identical to the original text, because
a very small difference or variation in statement can lead
to a totally different meaning.

Prediction by Partial Matching (PPM) is a “finite
context” statistical modeling technique that can be
viewed as blending together several “fixed-order
context” models to predict the next character in the input
sequence. The “Prediction by Partial Matching” data
compression scheme is capable of very good
compression on a wide variety of source data. The
adaptive nature of the scheme, and the flexibility
afforded by arithmetic coding, mean that an effective
compression model will be built for any input file that is
reasonably homogeneous [2]. The original algorithm was
first published in 1984 by Cleary and Witten [1], and a
series of improvements was described by Moffat,
culminating in a careful implementation, called PPMC,
which has become the benchmark version [2]. This still
achieves results superior to virtually all other
compression methods, despite many attempts to better it.

In 1999, Charles Bloom [3] developed PPMZ which
uses an adaptive second level model to estimate the
optimum value as a function of the order, the total
character count, number of unique characters, and the
last one or two bytes of context. In 2002, Dmitry Shkarin
[4] developed PPMII which is similar to PPMZ as it also
uses a secondary escape model. PPMII does not use
statistics from the longest matching context. Instead,
PPMII inherits the statistics of shorter contexts to set the
initial estimate when a longer context is encountered for
the first time. PPMONSTR and PPMD are based on
PPMII. PPMONSTR is a variation of PPMD that trades
compression rate for execution speed. This project will
concentrate on the original version of PPM. Other
methods such as those based on Ziv.Lempel coding [5, 6]
are more commonly used in practice, but their
attractiveness lies in their relative speed rather than any
superiority in compression. Indeed, their compression
performance generally falls distinctly below that of PPM
in practical benchmark tests [7].

With the advent of hardware description language,
VHDL, the design process of a PPM lossless data
compression scheme is simplified tremendously. VHDL
is the acronym for VHSIC Hardware Description
Language where VHSIC stands for Very High Speed
Integrated Circuit. Its strength lies in its ability to model
a digital system at many levels of abstraction, varying

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

from algorithmic level to gate level allowing models of
varying levels of complexity to be modeled. Designing in
VHDL enables faster time-to-market, exploration of
design space and also enables designers to decide on
architectural trade-offs that would lead to lower costs.
VHDL is highly favored by electronics designers as it
allows rapid prototyping and adopts a standardized
design flow.

Field Programmable Gate Array (FPGA) offers a
potential alternative to speed up the hardware realization.
From the perspective of computer-aided design, FPGA
comes with the merits of lower cost, higher density, and
shorter design cycle [8]. It comprises a wide variety of
building blocks. Each block consists of programmable
look-up table and storage registers, where
interconnections among these blocks programmed
through the hardware description language [9, 10]. This
programmability and simplicity of FPGA made it
favorable for prototyping digital system.

In this paper, the framework of FPGA-based
hardware realization of data compression using PPM is
proposed. With this approach, both the speed and
compression performance are preserved without the need
to trade-off between these two important criteria in data
compression. In this method, VHDL is selected as the
hardware description language to realize the data
compression system. In the computation of method, the
problem is first divided into small pieces; each can be
seen as a sub- module in VHDL [4, 11, 12]. Following
the software verification of each sub-module, the
synthesis is then activated that performs the translations
of hardware description language code into an equivalent
netlist of digital cells. The synthesis helps integrate the
design work and provides a higher feasibility to explore a
far wider range of architectural alternative [10]. The
method provides a systematic approach for hardware
realization, facilitating the rapid prototyping of data
compression system.

2. Design Methodology

For effective data compression, the compression
algorithm must be able to predict future data accurately
in order to build a good probabilistic model for
compression [7]. The PPM compression scheme would
operate on binary data as computer-based data is
represented and transmitted using binary digits. The
PPM involves two steps, the generation of the adaptive
model and the compression/decompression using
arithmetic coding [1]. The generation of the adaptive
model uses Markov modeling to build a probabilistic
distribution of binary digits. The Markov predictor of an
order j predicts the next bit based on the j preceding bits.
Adaptive coding allows the model to be constructed
dynamically by both encoder and decoder during the
course of the transmission, and has been shown to incur a
smaller coding overhead than explicit transmission of the
model’s statistics [1]. A block diagram of a complete
data compression system is shown in Figure 1.

Figure 1: A basic compression system

Data that has been compressed need to be
decompressed to return it to its original form. Therefore
a decompressor comes hand-in-hand with a compressor.
Compression is dependent upon the fact that data is
redundant and that its generation was based on a fixed
set of rules. If those rules are known, we can accurately
predict the data. The data compression can be viewed as
a branch of information theory whose primary objective
is to minimize the sum of data to be transmitted [13].

3. PPM Implementation

As mentioned earlier, PPM involves two steps, the
generation of an adaptive model (predictor stage) and the
compression or coding stage [1]. Both the encoder and
decoder of a PPM system, adapts the model of coding
dynamically to the message statistics as the transmission
proceeds [14]. Adaptive coding is effective because what
is happening is counted and used as the basis of
subsequent coding so that the counts only needs to be
incremented in the event that a character is correctly
predicted [2]. It should also be noted that text statistics in
reality are not homogeneous and so well behaved, thus
requiring a need for the adaptive coding method [1]. In
PPM, the adaptive model is generated using a Markov
predictor.

The bases of the PPM algorithm of order m are set
of (m + 1) Markov predictors. A Markov predictor of
order j predicts the next bit based upon the j immediately
preceding bits. It is just a very simple Markov chain.
There will be 2j possible patterns if there is j number of
bits. The transition frequency is built by the predictor in
proportion to the observed frequencies of a ‘1’ or a ‘0’
that occur, given that the predictor has seen the bit
pattern associated with that state. The predictor builds
the transition frequency just by recording the number of
times a ‘1’ or a ‘0’ occurs in the (j + 1)th bit following
the preceding j bits. A Markov chain is built at the same
time that it is used for prediction and often the chain is
incomplete. Figure 2 shows an example of the 4-state
Markov chain. Let there be an input sequence of
‘010101101’ bits and the order of the Markov predictor
is to be 2. The next bit is to be predicted based on the
two immediately preceding bits of ‘01’. From
observation, it can be noted that the pattern ‘01’ occurs
three times throughout the current input sequence. The
frequency counts of the bit following ‘01’ are as such:
‘0’ follows ‘01’ twice and ‘1’ follows ‘01’ once.
Therefore, the predictor should predict the next bit to be
‘0’ with a probability of 2/3 [15].

A 0th order Markov predictor simply predicts the
next bit based on the relative frequency in the input

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

sequence. For simplicity, the 0th order Markov predictor
is adopted for this project and it assumed that each bit
encountered by the Markov predictor is novel. Figure 3
shows the flowchart for a Markov predictor.

Figure 2: The (incomplete) 4-state Markov chain

4. Arithmetic Encoder and Decoder

Arithmetic coding is one approach to generate
variable length codes and is one of the best algorithms
that can be used in lossless data compression. For the
case of PPM, where the modeling and coding stages of
the lossless data compression have to be kept separate,
arithmetic coding is a particularly well-suited method to
adopt.

Arithmetic coding replaces a sequence of symbols
with a coding range of real numbers between 0 and 1.
The range accorded to a symbol will depend on the
probability of that particular symbol, the higher the
probability, the higher the range, which assigns to it. The
gist of arithmetic coding is the generation of a tag from
that range for a sequence encoded. The tag is a floating-
point value that corresponds to a binary fraction.
Eventually this binary fraction will become the binary
code for the sequence. In practice, the generation of the
tag and the binary code are one in the same process. The
arithmetic coding is divided into two phases. The first
phase generates a unique identifier or tag for a given
sequence of symbols and the second phase gives a
unique binary code to the tag [16].

The arithmetic encoder is used to generate a tag. The
tag generated by the arithmetic encoder has to fall within
the probability line of 0 to 1. The symbols are given a
range based on their probability. The higher the
probability, the higher is the range that is given to it.
Once the ranges and the probability line are defined, the
symbols are then encoded where each symbol defines
where the output floating point number lands [17].

The algorithm for arithmetic encoding is:
Low=0
High=1

Loop for all symbols.

Range = High – Low
High = Low + Range * Q(x)
Low = Low + Range * Q(x – 1)

where,
 Q(x) = high range of symbol being encoded
 Q(x- 1) = low range of symbol being encoded
The tag can actually be any real number between

0.47265625 and 0.578125. For the purpose of this
project, the tag is taken as the value of the low range,
0.47265625. The tag is useless if it cannot be deciphered.
The decoder is used to recover the original data.

The algorithm for decoding is:
Loop for all symbols.

Range = Q(x) – Q(x – 1)
Tag = Tag – Q(x – 1)
Tag = Tag / Range

Where,
Q(x)=high range of symbol being decoded
Q(x-1)=low range of symbol being decoded

Figure 3: Flowchart of the Markov predictor

5. Software Implementation

The whole design is described using IEEE-
compliant VHDL language. Optimization to the VHDL
code was performed to reach an even higher speed. As
described earlier, the PPM module carries out probability
distribution using Markov predictor followed by
arithmetic encoding and decoding. A bottom-up
approach is adopted here, whereby the PPM module is

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

split into sub-modules with each sub-module being
coded, verified and validated separately before being
combined to produce the final design. The three sub-
modules are the Markov predictor, arithmetic encoder
and arithmetic decoder. However, for the design of this
project, the Markov predictor would be combined with
the arithmetic encoder and referred to as the Markov
model. Thus, the total number of sub-modules is two.
Each distinct module performs a specific function as
stated below:

Markov Model: The Markov predictor builds the
probability distribution from the input symbols seen and
the arithmetic encoder generates a unique identifier or
tag based on the probability distribution of symbols.
Figure 4 shows the block diagram of a Markov model.

Figure 4: Block diagram of Markov model

The input to the Markov model sub-module is
bit_stream1_1, where a string of binary bits would be
read in accordance with the clock cycle, clock1. The
control signal enable1 is used to select between the
Markov model sub-module and the arithmetic decoder
sub-module. The probability of ‘1’ and ‘0’ occurring will
then be calculated and the probability of both will be
outputted separately in real values (floating-point values)
through two output ports, prob0_0 and prob1_0. The
values of these probabilities are universal to all sub-
modules. The Markov predictor needs to calculate all
probabilities before the arithmetic encoder can start
encoding.

After the probabilities have completely been
calculated and the values have been outputted, the
arithmetic encoding would be carried out to produce the
tag in real value. The string of bits is then encoded based
on the probability according to the clock cycle, clock1.
The outcome is a series of ranges in real values
signifying the high and low range of each bit occurring at
the input. For these ranges of highs and lows, the tag is
generated and outputted at output_tag1. After the tag has
successfully been generated, the sub-module would
output a high bit to port trigger_decoder for the decoder
to start decoding.

Arithmetic Decoder: The arithmetic decoder takes
the tag generated by the encoder, decodes it and output
the results as a string of bits. The output string of bits for
the decoder should be similar to the input string of bits
for the Markov model. This sub-module consists of four
input ports, one clock signal, one control signal and one

output port. Figure 5 shows a block diagram of an
arithmetic decoder.

The input to the arithmetic decoder is the tag in real
value together with the probability of ‘1’ and ‘0’
(prob0_1 and prob1_1) also in real values and the trigger
signal, decode. The tag is then decoded with reference to
clock2. Once again, the control signal enable2 is used to
select between the two sub-modules. The output is a
string of bits, output_bits similar to that of the input
string of bits of the Markov model.

Figure 5: Block diagram of arithmetic decoder

3. PPM Model: The PPM main module consists of
the two sub-modules; Markov model and arithmetic
decoder. It does not have any input ports corresponding
to clock signals or control signals but has one output
port. The output is a value that needs to be checked to
ensure correct operation of the module. The output is a
string of bits, output_bit. Figure 6 below shows the
complete top-level view of a PPM module.

Figure 6: Top-level view of PPM model

6. Hardware Implementation

Hardware implementation is the unique abstract of
this work, it is not sufficient by only performing software
simulations. The physical hardware layout is generated
using the synthesis tool Quartus II version 5.0. The
compilation process is repeated with different synthesis

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

options in order to properly trade-of between area and
speed. The project was successfully configured and
downloaded to the FLEX10K EPF10K30BC356-3
FPGA, tested and validated. The FLEX10K family
provides the density, speed, and features to integrate
entire systems, including multiple 32-bit buses into a
single chip. The implementation results are shown in the
next section.

7. Experimental Study and Discussions of
Results

7.1 Simulation Results

An extensive experimental investigation was
conducted in order to demonstrate the efficiency and
feasibility of the proposed method. Functional simulation
is performed to test the logic function of the hardware
design and it is presented to verify the correctness of all
the modules involved. The results of classification used
different 16-bit inputs and later expanded to using a few
different 32-bit inputs.

7.2 16-bit Input

The test vectors have been predetermined before the
simulation was carried out. Therefore the first 16-bit
input to the PPM module to test its functionality is
“1101011011011000” in binary or “D6D8” in
hexadecimal. The simulation results are shown in Fig7,
using the following input/output:

bit_stream1=16-bit
input

s01=probability of
‘0’

s02=probability of
‘1’

s03=output tag
output_bit=16-bit

output

At the start of the clock, the probability of ‘0’ is
0.43750 and the probability of ‘1’ is 0.56250. From
observation, the number of occurrences of ‘0’ in the 16-
bit input stream is 7 and the number of occurrences of ‘1’
is 9. The total number of bits is 16. Thus,

P(‘0’) = 7/16 = 0.43750
P(‘1’) = 9/16 = 0.56250
Since both simulated and computed results are

similar, it can be concluded that the Markov predictor
portion of the PPM module is functioning correctly.

At time 200ns, the tag value is 0.77111 as shown in
Figure 7. The subsequent values that appear at s03 are
due to the fact that the operation of the arithmetic
encoding runs based on the clock event. Therefore, since
the clock continues to run there will still be values at
signal s03. The only way to prevent values from

appearing at s03 after the first value of the tag has been
outputted is to find a way to stop the clock from running
after that. At time 400ns, the 16-bit output “D6D8” is
available at the port output_bit. By comparing, the initial
16-bit input with the current 16-bit output, it can be
observed that both of them are similar. Therefore, it can
be concluded that the arithmetic encoding portion of the
PPM module is functioning correctly.

Figure 7: Simulation results for16-bit PPM
module

7.3 32-bit Input

The PPM module is expanded to accept 32-bit
inputs. The first 32-bit input to the PPM module to test
its functionality is
“10111010101010111101011011011000” in binary or
“BAABD6D8” in hexadecimal. The simulation result is
shown in Fig8.

Figure 8: Simulation results for 32-bit PPM
module

At the start of the clock, the probability of ‘0’ is
0.40625 (13/32) and the probability of ‘1’ is 0.59375
(19/32). The values are correct since ‘0’ has a count of
13 and ‘1’ has a count of 19. At 200ns, the tag is
outputted as 0.60798. Finally at time 800ns, the 32-bit
output appearing on the output ports is “BAABD6D8.
Comparing that with the 32-bit input shows that they are
similar. Therefore, the PPM module functions properly
with a 32-bit input.

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

8. Synthesis Results

A comparatively low critical path frequency was
achieved which was 25.1 MHz. The design took a
minimum resource i.e. 1164 logic cells, which is 67.36%
of the EPF10K30BC356-3 device. A maximum
frequency of 95.3MHz was achieved. Table 1 shows a
detailed report of the usage of resources.

Table 1: The Usage Of Resources

Logic resources: 1164
LCs of 1728 (67.36%)

Number of Nets: 386
Number of Inputs: 1066
I/O cells: 57
Cells in logic mode: 312

Logic Resources
(EPF10K30BC356-

3)

Cells in cascade mode:
45

Conclusions

In this research project, the FPGA prototyping of
data compression using partial matching algorithm that
allows for efficient hardware implementation had been
implemented. It was successfully simulated and
generated acceptable results for a 16-bit input as well as
for a 32-bit input. The modules were successfully
compiled and simulated. The hardware implementation
demonstrated complete, correct functionality and met all
the initial system requirements. The performance of the
hardware prototype is encouraging. The results reveal
that the proposed approach is computationally simple,
accurate and exhibits a good balance of flexibility, speed,
size and design cycle time. Comparison and results
presented validate the successful compression of data
using partial matching.

References

[1] Cleary, J. G. and Witten, I. H., “Data Compression Using
Adaptive Coding and Partial String Matching”, IEEE
Transactions on Communications, vol. COM-32, April,
1984, pp. 396-402.

[2] Moffat, A., “Implementing the PPM Data Compression
Scheme”, IEEE Transactions on Communications, vol.
COM-38, November, 1990, pp.1917-1921.

[3] Bloom, C., http://www.cbloom.com/src/ppmz.html (15th
July 2003)

[4] Shkarin, D., “PPM: One step to practicality”,
Proceedings of Data Compression Conference, April
2002, pp. 202-211

[5] Ziv, J. and Lempel, A. (1977) A universal algorithm for
sequential data compression. IEEE Trans. Inform.
Theory, IT-23, 337.343.

[6] Ziv, J. and Lempel, A. (1978) Compression of individual
sequences via variable rate coding. IEEE Trans. Inform.
Theory, IT-24, 530.536.

[7] Bell, T. C., Cleary, J. G. and Witten, I. H., “Text
Compression”, Englewood Cliffs, NJ, Prentice Hall,
1990, 318 pages

[8] C. E. Cummings, “Verilog Simulation Xilinx Designs,”
Proc. Int. Verilog HDL Conf., Santa Clara, CA, 1994,
pp. 93-100.

[9] A. Rushton, VHDL for Logic Synthesis, Wiley, New
York, 1998.

[10] B. K. Fawcett, “Tools to Speed FPGA Development,”
IEEE Spectrum, November 1994, vol. 31, pp. 88-94.

[11] Alexandre Schmid, Yusuf Leblebici, and Daniel Mlynek,
“Hardware Realization of A Hamming Neural Network
with On-Chip Learning,” IEEE International Symposium
on Circuits and Systems, Monterrey CA, 1998, vol. III,
pp. 191-194.

[12] Peter J. Ashenden. 1996. The Designer’s Guide to
VHDL. Morgan Kaufmann Publishers Inc., San
Francisco.

[13] Hirschberg, D.
http://www.ics.uci.edu/~dan/pubsDataCompression,
November 2003

[14] Langdon, G. G and Rissanen, J., “Compression of Black-
White Images, with Arithmetic Coding”, IEEE
Transactions on Communications, vol. COM-29, June
1981, pp. 858-867.

[15] Mudge, T. N., Chen, I-Cheng K. and Coffey, J. T.,
“Limits to Branch Prediction”, 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996, pp.
128-137.

[16] Sayood, K., “Introduction to Data Compression”, 2nd
Edition, San Francisco, Morgan Kaufmann Publishers,
1996, 636 pages.

[17] Campos, A., http://www.arturocampos.com/, November
2003

Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)
0-7695-2606-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

