
Large scale surveys suggest limited mercury availability in 

tropical north Queensland (Australia)  
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Abstract 

 Little is known about the threat of mercury (Hg) to consumers in food webs of 

Australia’s wet-dry tropics.  This is despite high concentrations in similar biomes 

elsewhere and a recent history of gold mining that could lead to a high degree of 

exposure for biota.  We analysed Hg in water, sediments, invertebrates and fishes in 

rivers and estuaries of north Queensland, Australia to determine its availability and 

biomagnification in food webs.  Concentrations in water and sediments were low 

relative to other regions of Hg concern, with only four of 138 water samples and five 

mailto:t.jardine@griffith.edu.au


of 60 sediment samples above detection limits of 0.1 µg L-1 and 0.1 µg g-1, 

respectively.  Concentrations of Hg in fishes and invertebrates from riverine and 

wetland food webs were well below international consumption guidelines, including 

those in piscivorous fishes, likely due to low baseline concentrations and limited rates 

of biomagnification (average slope of log Hg vs. 15N = 0.08).  A large fish species of 

recreational, commercial, and cultural importance (the barramundi, Lates calcarifer), 

had low concentrations that were below consumption guidelines.  Observed variation 

in Hg concentrations in this species was primarily explained by age and foraging 

location (floodplain versus coastal), with floodplain feeders having higher Hg 

concentrations than those foraging at sea.  These analyses suggest that there is a 

limited threat of Hg exposure for fish-eating consumers in this region.    
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1. Introduction 

 Understanding biogeochemical hotspots and biological factors that lead to 

high concentrations of toxic metals in fish is critical in identifying where the health of 

humans and fish-eating wildlife might be compromised (Mergler et al., 2007; Munthe 

et al., 2007).  Our global understanding of one such metal, mercury (Hg), is focused in 

north temperate latitudes (e.g. Europe, North America) where much of the research 

has been conducted, and the neotropics (e.g. the Amazon River) where human 

activities, particularly artisanal gold mining, have lead to elevated concentrations in 

water, sediment, fish and humans (Malm et al., 1995).  Data for other tropical 

floodplain regions is currently limited despite the significant commercial, recreational 

 2



50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

and cultural fisheries that exist in these locations and the resultant high levels of fish 

consumption by humans, as well as wildlife (Welcomme, 2001).  

The threat of Hg to aquatic ecosystems in one of these tropical floodplain 

regions, northern Australia, is poorly understood (Jardine and Bunn, 2010).  Low 

atmospheric deposition rates (Nelson, 2007), coupled with rapid growth rates of biota 

and subsequent growth dilution of contaminants (Karimi et al., 2007), likely leads to 

low Hg concentrations in consumers.  However, certain features of the landscape (e.g. 

seasonal flooding) could promote localised Hg hotspots (Guimaraes et al., 2000).  

Furthermore, alluvial gold mining that reworks sediments possibly containing residual 

Hg from past extraction procedures may lead to concentrations in water, sediments 

and fish that are above acceptable levels (Akagi et al., 1995; Telmer et al., 2006; 

Dominique et al., 2007).  In Cape York, Queensland, the hosting of the Mitchell River 

Conference by Kowanyama Aboriginal Council in 1990, and the subsequent 

formation of Queensland’s first watershed management group, originated from 

Aboriginal community concerns relating to the potential impacts of past and 

contemporary upper watershed mining operations upon the health of the Mitchell 

River system and downstream communities (Sinnamon 1998, Strong 2001). 

Various factors are known to influence Hg concentrations in fish 

independently of point sources.  Typically, larger, older fish have higher 

concentrations than smaller, younger fish due to longer exposure times, consumption 

of larger, more contaminated prey, and lower prey assimilation rates (Trudel and 

Rasmussen, 2006).  Animals situated higher in the food chain exhibit higher Hg 

concentrations due to strong biomagnification through the food web (Cabana and 

Rasmussen, 1994).  Also, dietary sources of organic matter for consumers can affect 

Hg concentrations.  For example, some fishes that feed in the marine environment 
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have been shown to have lower Hg concentrations compared to their freshwater 

counterparts (Swanson and Kidd, 2010).  Therefore coastal species that move between 

and feed in different areas could exhibit different concentrations if methylation 

potential and resultant Hg availability differs among habitats (Hall et al. 2008). One 

such transient species is barramundi (Lates calcarifer), also known as Asian sea bass, 

a common predator in estuaries and the lower reaches of rivers throughout the 

Australasian region.  The commercial barramundi fishery in northern Australia 

supplies southern markets for table consumption with catches between 1000 and 2000 

tonnes annually (Blaber 2000).   This species is also consumed by traditional fishers 

in Aboriginal communities (Rae et al. 1982), as well as being a popular target for 

anglers, the latter having catches as high as 30% of the commercial catch (Griffin 

1979).  In Lake Murray of neighbouring Papua New Guinea, Hg concentrations in 

barramundi are often well above consumption guidelines (Sorentino, 1979); as a result 

there are severe health implications for local communities where barramundi is eaten 

regularly (Abe et al., 1995).  High Hg concentrations in barramundi in Lake Murray 

are due to efficient transfer of methyl Hg from water to plankton and high rates of 

biomagnification through the food web leading to this top predator (Yoshinaga et al., 

1992; Bowles et al., 2001).  Despite the importance of this species in the diet of 

humans and its ubiquity across the Australasian region, rarely have Hg concentrations 

been reported for locations other than Papua New Guinea (Jones et al., 2005).  

 This study characterises Hg concentrations in river and wetland ecosystems of 

northern Australia (Lyle, 1984; Jardine and Bunn, 2010) by combining data from 

three sub-projects to yield a comprehensive picture for the region.  The first study 

conducted a broad scale survey of rivers, wetlands and estuaries in Cape York and 

measured total Hg in filtered and unfiltered waters and total Hg in sediments to 
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determine if concentrations were high or low relative to other comparable ecoregions 

(e.g. Amazonia, Papua New Guinea).  The second study used stable isotope analysis 

(SIA) of nitrogen to characterize Hg biomagnification rates in food webs 

(invertebrates and small fishes) of the Mitchell River, a large floodplain river of Cape 

York.  The trophic level of animals can accurately be determined using stable isotopes 

of nitrogen because the heavier isotope increases in a predictable fashion with each 

level of the food chain (Post, 2002).  The third study combined SIA with measures of 

size and age in two populations of barramundi to determine if Hg concentrations 

posed threats to human health, and to determine the factors responsible for variation 

(trophic level, and the relative use of marine and freshwater environments, Doucett et 

al., 1999; Post, 2002).  Sources of organic matter are traceable with stable isotope 

ratios of carbon and sulphur because ratios of these elements differ among habitats 

and food sources and change little once they enter food webs (Vander Zanden and 

Rasmussen, 1999).  We predicted that barramundi from the Mitchell River, which has 

current and historical alluvial gold mining in a portion of its catchment, would have 

concentrations that were higher than those from an adjacent catchment, the Flinders 

River, where this type of mining is limited.  We expected that concentrations would 

increase with body size, and largest individuals would have concentrations above 

acceptable consumption guidelines (Jones et al., 2005).  We also predicted that fish 

feeding and growing in saltwater would have higher Hg concentrations than those in 

freshwater, as would be expected due to growth dilution in the latter habitat which is 

believed to be more productive than the former in tropical regions (Gross et al., 1989; 

Davies et al., 2006; Milton et al., 2008).  All of these measurements were made to 

identify possible Hg risks to humans and wildlife and better understand sources of 

variation in Hg concentrations in this remote tropical landscape. 
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2. Materials and Methods 

2.1 Water and sediment sampling 

Water and sediment grab samples were collected from 11 river catchments in 

three principal regions across Cape York between 2005 and 2010 (Figure 1).  A total 

of 138 water samples (91 freshwater and 47 estuary) and 60 sediment samples (17 

freshwater and 43 estuary) were collected during both ambient flow and flood 

conditions.  Estuary water samples were collected on the out-going tide across a range 

of saltwater/freshwater mixes, with the measured salinity of estuary water samples 

ranging from 0 ppt to 35.8 ppt at the mouths of rivers where minimal mixing had 

occurred. Water samples are representative of both wet season flood event and dry 

season baseflow conditions. Samples were collected by boat or from the edge of the 

waterbody directly into the sample bottle, or using a 3m extended sampling pole 

sample collection bottle.   

Polypropylene water sample bottles were lab-sterilised and preserved with 

nitric acid to a pH <2 (APHA 2005).  Dissolved Hg samples were filtered at the site 

through 60cc/ml Terumo brand plastic syringes fitted with a 0.45 µm Sartorius brand 

cellulose acetate filter.  These filters have low adsorption characteristics. Sediment 

samples were collected using a stainless steel sediment grab sampler or stainless steel 

spoon and placed in sterilised glass sample jars.  Sediments containing clay and silt 

were targeted for analysis and sediment type was documented for each sample.  

All non-dedicated equipment including sample collection bottles, sediment 

grab sampler and spoons was decontaminated between each use using a scrub brush 

and distilled water and rinsate samples were collected to test for potential cross-

contamination.  Field duplicate, blank and rinsate samples were collected with each 
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sample batch or at a frequency of approximately 1 per 10 primary samples.  Rinsate 

and blank samples were collected using reagent grade Hg-free blank water which had 

been purified through a reverse osmosis system coupled with an ultra-filtration 

system.  All samples were placed immediately on ice and sent via refrigerator truck to 

a laboratory (ALS Group) in Brisbane, QLD, for analysis.  Samples were submitted 

and analysed within the recommended holding time of 28 days for sediments and 

nitric acid-preserved water samples (APHA 2005).   

 

2.2 Food web and barramundi sampling 

 Biotic samples to test for food-web biomagnification were collected from 16 

sites in the Mitchell River in June 2008 (early dry season) (Figure 1).  These samples 

included fish (99 samples) collected by backpack and boat-mounted electrofishing 

and invertebrates (64 samples) captured by electrofishing and dip netting.  Capture 

and retention methods were biased towards smaller and more common species which 

enabled comparisons across sites; however the full range of functional feeding groups 

was collected including top predators (barramundi and long tom Strongylura krefftii). 

Sites included two in the Palmer River, a location of historic alluvial mining that 

yielded 40 tonnes of gold largely in the period 1872-1900 (Bell, 1987) but is still in 

small-scale production today.  

To examine Hg concentrations in larger, older fish that were under-represented 

in the biomagnification study, barramundi samples were collected from two river 

systems in the state of Queensland (Figure 1).  In the Mitchell River (15º 13’ S, 141º 

36 E, n = 46 analysed for Hg and isotopes, n = 38 analysed for Hg only), samples 

were from recreational fisherman in the lower river collected throughout the dry 

season (May to October), and in the Flinders River (17º 31’, 140º 44’, n = 41 analysed 
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for Hg and isotopes, n = 22 analysed for Hg only, n = 11 analysed for isotopes only), 

samples were from commercial fishermen that were caught during the late wet season 

(February to April) in the lower river.  An additional estuarine species, king threadfin 

(Polydactylus macrochir) was also collected from the Mitchell River (n = 14 analysed 

for Hg and isotopes) from recreational anglers during the dry season to compare 

concentrations and feeding patterns with those of barramundi.  For all fish, muscle 

tissue was removed from the head end of the fillet above the operculum and stored on 

ice and frozen.   

 

2.3 Water and sediment laboratory processing and analysis 

Mercury concentrations were measured in filtered and unfiltered water 

samples and sediment samples by the NATA accredited ALS Laboratory in Brisbane 

using a PE (Perkin Elmer) FIMS-400 Flow-Injection Mercury-Atomic Absorption 

Spectrometer (FIM-AAS) according to Method AS3550 and 3112 Hg-B (APHA 

2005).   Sediment samples were first prepared using a hot block acid digestion 

(USEPA Method 200.2), where 1.0 g of sediment sample was heated with nitric and 

hydrochloric acids then cooled.  Peroxide was added and samples were heated and 

cooled again before being filtered and bulked to a volume of 250 uL for analysis. A 

500 uL sample volume was analysed for water samples.  FIM-AAS is an automated 

flameless atomic absorption technique. A bromate/bromide reagent was used to 

oxidise any organic mercury compounds in the sample. The ionic mercury was 

reduced online to atomic mercury vapour by SnCl2 which was then purged into a 

heated quartz cell. Concentrations were quantified by comparing absorbance against a 

calibration curve. This method is compliant with NEPM (1999) Schedule B(3).  
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Field duplicate water samples (n= 10) and sediment samples (n=5) were 

analysed for Hg alongside primary samples and showed no differences; all differences 

between duplicate samples were below the laboratory detection limit (0.1 µg/L or 0.1 

ug g-1).  Aqueous field blank (n=13) and equipment rinsate samples (n=18) all 

contained less than 0.1 µg/L Hg.  Laboratory control spike (LCS), matrix spike (MS) 

and method blank samples were analysed by ALS with every sample batch in 

accordance with NEPM 1999 Schedule B(3).  Water samples were spiked by adding 

0.1 mL of spiking solution (1.0 mg/L Hg) to 10.0 mL of sample yielding 0.01 mg/L of 

Hg. Soil samples were spiked with 0.5 mL of a multi-element spiking solution 

(concentration = 10 mg/L Hg) added to a 50mL digest yielding 0.1 mg/L Hg.  

Recovery rates on MS and LCS samples were within the acceptable limits (84% - 

116% as per USEPA SW846) and method blank samples contained no Hg above the 

detection limit; however spike amounts were significantly higher than environmental 

values and recovery rates may have been lower at lower spike concentrations. 

Mercury concentrations in these water sediment samples were compared to guidelines 

for the protection of aquatic life (Gaudet et al. 1995, MacDonald et al. 2000) and 

those reported for areas contaminated by mining activties (Suchanek et al. 2008). 

 

2.4 Biotic sample laboratory processing and analysis 

Invertebrate and fish samples were freeze dried, ground to a fine powder, and 

analysed for total Hg on a Direct Mercury Analyzer (DMA-80, Milestone, Inc.).  

Recovery of certified reference materials analysed alongside samples was high 

(TORT-2: 110 ± 3% S.D., DORM-2: 92 ± 7% S.D.) as was recovery for an intralab 

standard (KJ-19: 100 ± 5% S.D.).  Samples analysed in duplicate had an average 

 9



difference of 0.04 ± 0.07 ug g-1 S.D. (n = 29).  Blanks (empty weigh boats) always 

contained less than 0.02 ug g-1 Hg so data were not blank corrected. 
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 For stable isotope analysis of carbon and nitrogen, samples were weighed to 

approximately 0.8 mg, combusted in an EA 3000 elemental analyser (Eurovector, 

Milan, Italy) and sample gases delivered to an Isoprime mass spectrometer (GV 

Instruments, Manchester, UK).  Working standards were dried solutions calibrated 

against IAEA CH6, CH7, N1 and N2, and had elemental composition that matched 

the samples (44% C and 11% N).  A single sample of fish (muscle from spangled 

perch, Leiopotherapon unicolour) analysed repeatedly to measure precision over time 

yielded 13C = -21.9 ± 0.2‰ S.D. and 15N = 5.5 ± 0.4‰ S.D. (n = 29).  The average 

difference between duplicate samples within runs was 0.3‰ for C and 0.4‰ for N (n 

= 97).   

For sulphur isotope analysis, samples were weighed to approximately 6 mg 

and combusted as above.  Working standards were dried solutions calibrated against 

NBS 127.  The precision of 34S analysis was monitored using a working standard 

(Qprawn) that had 34S = 13.7 ± 0.3‰ S.D. (n = 21).  The average difference between 

duplicate samples within runs was 0.7‰ (n = 11). 

 

2.5 Statistics 

 All statistical analyses were conducted using NCSS software (Kaysville, UT).  

To assess biomagnification in the food web samples from the Mitchell River, we ran 

regressions of log-transformed Hg concentrations against 15N as an indicator of 

trophic level.  Two sites were excluded from this analysis because the 15N range 

within the site was too small (<1 trophic level) to assess biomagnification.  Using log-

transformed slopes of Hg versus 15N allowed linear regressions and comparisons to 
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previous biomagnification studies with stable isotopes (Bowles et al. 2001; Campbell 

et al. 2003, 2008; Kidd et al. 2003).  Non-zero slopes were considered indicative of 

biomagnification (Jardine and Kidd, 2011).  For those sites with non-zero slopes, 

trophic magnification factors (TMFs, Jardine et al., 2006) were calculated according 

to: TMF = 10m, where m is the slope of log Hg vs 15N multiplied by 3.4 (the average 

increase in 15N per trophic level, Post, 2002).  To further determine if Hg 

concentrations differed within different compartments in the food web, we grouped 

invertebrates and fishes into five categories based on their assumed diet (Pusey et al., 

2004).  These categories were: herbivorous invertebrates (shrimps Atyidae), 

omnivorous invertebrates (crayfish Cherax spp., prawns Macrobrachium spp., 

mussels Hyriidae), herbivorous fishes (bony bream Nematalosa erebi), omnivorous 

fishes (mouth almighty Glossamia aprion, rainbowfish Melanotaenia splendida, 

sleepy cod Oxyeleotris lineolatus, and spangled perch Leiopotherapon unicolor), and 

piscivorous fishes (barramundi, longtom).  These categories were deemed to provide 

an appropriate level of resolution because of the generalist nature of consumers in the 

Australian wet-dry tropics (Pusey et al. 2010) compared with more specialized niches 

occupied by fishes in the Neotropics (McIntyre et al. 2008).  They were grouped 

across sites and a one-way ANOVA was run, followed by a Bonferroni post-hoc test 

to determine if there were differences among groups in log-transformed Hg 

concentrations.  Differences were considered significant if p < 0.05. 

For the barramundi samples, the proportion of the diet derived from three 

sources (marine, floodplain, river) was calculated for all fish using methods outlined 

in Jardine et al., (in press) and using IsoError software for three sources and two 

isotopes (13C and 34S, Phillips and Gregg, 2001).  Neither of these isotopes 

undergoes significant trophic fractionation (McCutchan et al. 2003) so values in top 
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predators are reflective of underlying food sources available in the different habitats. 

For these analyses, values for the mixing model end members were derived from 

marine predatory fish (“marine”: 13C = -17.1 ± 1.2‰ S.D., n = 16; 34S = 19.6 ± 

0.8‰ S.D., n = 15), small floodplain-resident fish (“floodplain”: 13C = -22.8 ± 2.1‰ 

S.D., n = 43; 34S = 13.6 ± 1.0‰ S.D., n = 45), and invertebrates from dry season 

freshwater refuges (“river”: 13C = -27.4 ± 6.0‰ S.D., n = 16; 34S = 20.9 ± 1.9‰ 

S.D., n = 16).  We assumed that end-members in the mixing model were similar for 

the Flinders River where we did not have sulphur isotope data for prey from the 

floodplain or the river.  A multiple regression model was used to evaluate the relative 

effect of river of capture, barramundi age (determined from otoliths using standard 

methods, Staunton-Smith et al. 2004), body size, % marine feeding and 15N (as an 

indicator of trophic level) on Hg concentrations, using p < 0.05 as criteria for 

inclusion of a variable in the final model.  We focused on those barramundi that had 

recruited to the fishery, excluding five small fish that were captured in a floodplain 

lagoon in the food web biomagnification survey.  These latter fish were excluded 

because they were captured at a single site and were considerably smaller (29 to 38 

cm) than the smallest fish (55 cm) from the fishery.  Prior to running the model that 

included data from both catchments, we tested for seasonal variation in barramundi 

Hg in the Mitchell because these samples were collected over a four month period and 

Hg has been shown to vary seasonally in tropical fishes (Dorea et al. 2006).  This 

preliminary model that included the other variables found no effect of sampling date 

(F = 0.537, p = 0.470), so we ran the remaining full model for both catchments 

without it. 

 

3. Results 
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3.1 Water and sediments 298 
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 Mercury concentrations in water (dissolved and unfiltered) and sediment 

across Cape York were low compared to know threshold effects levels – 0.1 ug L-1 for 

water and 0.17 ug g-1 for sediment.  Of 138 fresh and brackish water samples analysed 

from the three regions that spanned the peninsula, only four samples contained Hg at 

or above the detection limit of 0.1 µg L-1 (Table 1). The maximum concentration 

detected in water was 1.0 µg L-1 in the Wenlock River.  Similarly, of 60 sediment 

samples from five different catchments, only 5 had detectable concentrations (≥ 0.1 

µg g-1, Table 2). The maximum concentration of Hg detected in sediments was 1.1 µg 

g-1 in a sample from the Endeavour River. 

 

3.2 Food web biomagnification 

 Biomagnification of Hg through food webs in the Mitchell River was low, 

with an average slope of log Hg versus 15N of 0.08 (Table 3).  At only three of the 14 

sites were slopes significantly different to zero (Table 3).  At the three sites with 

significant regressions, slopes ranged from 0.14 to 0.36, corresponding to trophic 

magnification factors of 2.9 to 16.3 (TMFs at the remaining sites were effectively 

zero).  When taxa were pooled across sites, only slight increases in Hg with trophic 

level were observed, and all groups, including top predators (piscivorous fishes) had 

concentrations that were well below typical international consumption guidelines of 

0.5 ug g-1 wet weight (Figure 2).  There were significant differences in Hg among 

trophic categories (F = 30.78, p < 0.001, n = 188) and a general trend of increasing Hg 

from primary to tertiary consumers as expected, but post-hoc analyses could not 

differentiate between the two groups that should have had most divergent Hg 
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concentrations, the herbivorous invertebrates and piscivorous fishes (p > 0.05, Figure 

2). 

 

3.3 Barramundi 

Of all barramundi samples analysed for Hg (n = 142, Figure 3), only one was 

above the recommended consumption guideline of 0.5 ug g-1 wet weight (or 2.5 ug g-1 

dry weight assuming 80% moisture).  Likewise all king threadfin (n = 14) were below 

the consumption guideline (data not shown). 

 There was a significant correlation between 13C and 34S (r = 0.62, p < 

0.001), likely due to both elements reflecting to some degree the location of foraging 

for barramundi and king threadfin (freshwater vs. marine).  All of the data points for 

the Mitchell River fell inside the mixing space created by the three isotopic end-

members (marine, floodplain, river, Jardine et al. in press), while several of the 

Flinders barramundi had 13C that was higher than the presumed marine end-member 

(13C = -17.1‰), resulting in estimates of % marine feeding greater than 100. 

The multiple regression model identified key factors determining Hg in 

barramundi (adjusted model r2 = 0.52, n = 67, F = 15.02, p < 0.001).  Barramundi age 

accounted for the most variation in Hg concentrations (F = 15.47, p = 0.002, Figure 

4a).  Body size surprisingly did not account for significant variation in the model (F = 

2.58, p = 0.113, Figure 3).  Likewise, 15N as a measure of trophic level was not 

significant in the model (F = 0.34, p = 0.561, Figure 4b).  Instead, % marine feeding 

explained a significant proportion of the variation (F = 4.92, p = 0.030, Figure 5) that 

was independent of fish size or age; fish with high 34S and 13C values indicative of 

marine feeding had lower Hg concentrations than those that were feeding in 

freshwater.  Location of capture (Mitchell vs. Flinders River) was not a significant 
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predictor of Hg concentrations (F = 0.20, p = 0.659), even though mean 

concentrations in the Mitchell were higher (ANOVA, F = 142.79, p < 0.001).  This 

discordance is likely because Mitchell fish had a stronger connection to freshwater 

production that drove differences in fish Hg between the catchments.     

  

4. Discussion 

 Our broad scale survey of Hg in water and sediments coupled with first results 

from fish and other biota at the site and catchment level suggests that Hg is not a 

major environmental concern in north Queensland, Australia (Jardine and Bunn, 

2010).  Mercury trophic magnification factors within food webs were low relative to 

other regions of the world and few fish approached or exceeded consumption 

guidelines, suggesting that the health of humans and wildlife consuming fish such as 

barramundi from these rivers is unlikely to be compromised because of exposure to 

this toxic element.  This includes Aboriginal communities that harvest riverine 

resources, and contrasts with several other tropical locations where natural sources of 

Hg (e.g. Papua New Guinea, Bowles et al. 2001) or point sources such as artisanal 

gold mining (e.g. Brazil, Akagi et al., 1995; Ghana, Hilson et al., 2007; Indonesia, 

Kambey et al., 2001) have led to considerable Hg exposure in local communities 

largely via fish consumption. 

Concentrations measured in the broad scale survey of water and sediments 

were generally below known thresholds for biological effects (Gaudet et al. 1995, 

MacDonald et al. 2000) and low relative to sites that have been contaminated by Hg 

point sources such as mining discharges.  For example, Telmer et al. (2006) found Hg 

concentrations in unfiltered water from an Amazonian tributary impacted by gold 

mining that ranged from 2 to 27 ug/L, well above the highest detected concentration 
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in the current study.  This suggests that historical mining inputs in many Cape York 

catchments are not significantly contributing to Hg availability.  Likewise, Suchanek 

et al. (2008) report Hg concentrations in surficial sediments for Clear Lake, California 

impacted by a Hg mine, that range from 0.3 µg g-1 to 425 µg g-1; only one value in the 

current study was within that range of values (from the Endeavour River estuary).  

Other contaminated sites worldwide also typically have sediment concentrations 

above those detected in the current study, while uncontaminated sites have 

concentrations that range from 0.001 to 0.4 µg g-1 (summarized in Suchanek et al., 

2008).  Cape York rivers therefore have water and sediment Hg concentrations that 

are consistent with those expected for un-impacted river catchments.   

Low Hg concentrations in abiotic compartments such as water and sediment 

do not preclude exposure to high concentrations for consumers in food webs because 

uptake of metals by biota can be high (Stewart et al., 2010).  For example, Bowles et 

al. (2001) found extremely low concentrations of Hg in water (1.4 ng L-1 – well below 

detection limit in the current study) and in sediment (0.1 µg g-1 – at the detection limit 

in the current study) in Lake Murray, Papua New Guinea, but efficient uptake into 

plankton and subsequent food web biomagnification led to concentrations in fish that 

were above recommended guidelines.  For this reason, we extended our study to 

include food web Hg biomagnification, measured using stable isotopes of nitrogen 

(Kidd et al., 1995). 

Trophic magnification factors (TMFs) for Hg, as measured by log Hg-15N 

regressions, were lower than those typically reported in other tropical waterbodies.  

Food webs in African lakes had log Hg-15N regression slopes ranging from 0.12 to 

0.22 (Campbell et al., 2003, 2008; Kidd et al., 2003) and biota from Lake Murray in 

Papua New Guinea had a slope of 0.28 (Bowles et al., 2001), considerably higher than 
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the average value of 0.08 ± 0.18 S.D. for the current study.  However, fishes and 

invertebrates from a coastal freshwater lagoon in Brazil also showed no evidence of 

Hg biomagnification (slope = 0.08, Pereira et al., 2010), suggesting that biotic factors 

such as growth dilution could limit Hg biomagnification (Karimi et al., 2007).  While 

the low slopes in the current may be a function of the use of total Hg that does not 

biomagnify as strongly as the methyl fraction alone (Mason et al. 1996), one 

alternative explanation is a decoupling of consumers from their resources (Jardine et 

al. 2006).  Many of the larger fishes derive biomass from the floodplain and carry it 

back into dry season refugia (main channel and waterholes) (Jardine et al., in press).  

As such, non-mobile consumers with low 15N such as shrimps and bivalves are 

inappropriate baselines with which to measure biomagnification because larger fishes 

have 15N and Hg concentrations reflective of habitats external to the location of 

capture (Jardine et al., 2006).  This uncoupling of diet information from contaminant 

information violates the assumption of steady-state when calculating biomagnification 

(Borga et al. 2011). 

A second possibility for the low TMFs is artificially high 15N in some 

herbivorous consumers that leads to a dampening of log Hg-15N slopes.  Herbivorous 

fishes have been shown to have 15N diet-tissue fractionation that is higher than 

average values for other taxa (Mill et al., 2007).  Bony bream in the current study 

have relatively high 15N yet they are known to be strict herbivores (Sternberg et al., 

2008).  Similarly, prawns (Macrobrachium spp.) and rainbowfish (M. splendida) are 

both omnivores as suggested by past dietary studies (Pusey et al., 2004) and have 

similar 15N when they co-occur (8.4‰ vs. 8.6‰), yet prawns have far lower Hg 

concentrations (mean = 0.01 µg g-1) compared with rainbowfish (mean = 0.24 µg g-1).  

Eliminating prawns from the biomagnification analysis resulted in a higher average 
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slope (0.12 versus 0.08) and typically improved r2 for the Hg-15N regressions within 

sites, leading to significant TMFs in four of seven sites where prawns were excluded 

(Table 3).  This suggests that prawns feed at a lower trophic level than suggested by 

their 15N, they eliminate Hg during moulting of their exoskeletons, or simple 

metabolic differences between fishes and invertebrates confound comparisons across 

taxa.  Regardless of the sources of error associated with measuring Hg 

biomagnification (Borga et al. 2011), there is little evidence to suggest that these food 

webs significantly biomagnify Hg to tertiary (small barramundi and longtom) and 

apex (large barramundi) predators. 
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Mercury concentrations in barramundi from the coastal fishery, with one 

exception, were below the recommended consumption guideline of 0.5 µg g-1 wet 

weight (approximately 2.5 µg g-1 dry weight assuming 80% moisture) suggesting that 

consumption of this popular recreational and commercial species poses no threat to 

human health.  This is in contrast with measurements made on barramundi and other 

species in Lake Murray of Papua New Guinea, where 23% of all samples were above 

the consumption guideline (Sorentino, 1979; Bowles et al., 2001).  Other top predator 

fish in tropical locations have Hg concentrations that are greater than the guideline 

level (e.g. 10 to 45% of samples in Indonesian gold mining areas, Castlihos et al., 

2006, 34% of samples of Cichla spp. in Brazil, Kehrig et al., 2008).   

Body size explained little of the variation in barramundi Hg concentrations (r 

= 0.02, Figure 3).  This is surprising given the strong positive relationship between 

barramundi size and Hg observed in prior studies (Sorentino, 1979; Jones et al., 2005) 

and generally strong correlations between these variables for a broad range of 

predatory fish species in tropical and temperate locations (e.g. Wiener et al., 1990; 

Lange et al., 1994; Da Silva et al., 2005; Desta et al., 2008).  Relationships between 
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body size and Hg can be highly variable among species depending on a myriad of 

other factors known to influence fish Hg (Jackson, 1991).  In our analysis, age was the 

most important determinant of Hg concentrations in barramundi.  Separation of the 

effects of body size and age on barramundi Hg is possible because these two variables 

are only weakly correlated, particularly in the Flinders River (r = 0.20), suggesting 

considerable variability in growth rates among individuals.  High growth rates are 

associated with lower Hg accumulation because of growth dilution (Simoneau et al., 

2005), but in the current study there was no negative correlation between body size 

and Hg within the 2-year old age class even though 2-year-olds ranged in size from 

549 mm to 932 mm in the Flinders River.  Furthermore, there was no negative 

correlation between size at age 2 and % marine feeding, even though barramundi are 

expected to grow more rapidly in productive freshwaters (Gross et al., 1988; Milton et 

al., 2008).  The increase in Hg concentrations with barramundi age is likely due to a 

combination of reduced feeding efficiency and higher Hg concentrations in prey in 

older fish (Trudel and Rasmussen, 2006). 

Trophic level, while correlated with Hg concentrations, was not a significant 

predictor of Hg in the multiple regression model.  Barramundi are known to feed more 

heavily on fish as they grow, switching from a diet dominated by macrocrustaceans as 

juveniles (80-400 mm total length) to a diet dominated by fish as adults (>400 mm) 

(Pusey et al., 2004), however subtle dietary changes do occur within the latter size 

class that was examined here (Davis, 1985).  Stable N isotope data suggest that 

trophic level continues to increase within the size range for the Mitchell River fish (r 

= 0.72, p < 0.001) but not the Flinders River fish (r = 0.21, p = 0.279).  The 

appearance of large-bodied species such as clupeid, ariid and mugilid fishes in the diet 

of barramundi > 600 mm and the strong correlation between barramundi size and the 
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size of its fish prey (Davis, 1985) likely explains the higher 15N with increasing size 

in the Mitchell River.  The 15N for clupeids (8.9 ± 1.1‰ S.D., n = 35) and mugiliids 

(8.0 ± 0.6‰ S.D., n = 9), as more strictly herbivorous species, are low compared to 

ariids (10.5 ± 0.4‰ S.D., n = 30) that are omnivorous (T.D. Jardine, unpublished 

data), so differences between catchments in barramundi length-15N associations may 

be due to differential consumption of those taxa.  A consistent diet across a range of 

size classes in African sharptooth catfish (Clarias gariepinus) resulted in no change in 

15N or Hg with size (Desta et al., 2007) while another species, the straight fin barb 

(Barbus paludinosus) exhibited increases in both 15N and Hg with size (Desta et al., 

2008), suggesting that when body size affects Hg in fish it is likely due to larger 

individuals occupying higher trophic levels (i.e. increased gape).  Some tropical fishes 

decrease their trophic level as they age, yet their Hg concentrations do not show a 

corresponding decrease (Da Silva et al., 2005), suggesting that Hg continues to 

accumulate with age or is efficiently retained in the organism with a long half life, 

despite eating less-contaminated prey (Trudel and Rasmussen 2006).  This may be the 

case for barramundi, where age is a more important determinant of Hg than trophic 

level, and Hg is accumulated more strongly than can be explained by differences in 

15N alone.   
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The strong negative correlation between % marine feeding and Hg 

concentrations suggests that there is lower Hg in prey in marine habitats compared to 

floodplains and dry season freshwater refugia.  These latter habitats have locations for 

Hg methylation, with the roots of floating macrophytes having the highest 

methylation potential compared with flooded soils and sediments (Guimaraes et al., 

2000).  The lower Mitchell River has waterholes containing floating macrophytes, 

many of which are non-native weeds such as water hyacinth (Eichornia crassipes) 
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that can dominate the vegetation assemblage.  While concentrations in biota measured 

at one such waterhole, Fish Hole Creek, were not higher than others in the catchment, 

the spread of these invasive weed species with enhanced methylation potential may 

have biogeochemical implications for Hg cycling in these catchments.   

The data from this study that included multiple environmental matrices (water, 

sediment, invertebrates and small and large fish) from a broad geographic region 

suggests that Hg does not pose a threat to the health of humans or wildlife in this 

region of Australia (Jardine and Bunn 2010).  However, focused investigations of 

methyl Hg dynamics in various compartments of these floodplain systems and their 

uptake into food webs would help draw more comprehensive comparisons to other 

tropical regions (Guimaraes et al. 2000, Bowles et al. 2001).  Advocates of future 

water resource development that is expected in this region should remain wary of the 

possibility that subtle changes to hydrology or geomorphology could lead to enhanced 

Hg risks as are observed elsewhere (Akagi et al., 1995; Bowles et al., 2001; Kambey 

et al., 2001).  
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Table 1. Number of samples analysed for unfiltered and dissolved total mercury in water at locations across Cape York, Queensland, and the 

number of those samples above the analytical detection limit of 0.1 µg L-1. 

663 

664 

Number of Aqueous Hg Samples 
Freshwater Estuary 

Region River 
Catchment / 
Wetland Site Unfiltered Dissolved Unfiltered Dissolved

No. at or above 
Det. Limit  
(0.1 µg/L) 

Detected 
Concentration  

Pormpuraaw Christmas Cr. 
Chillagoe  Lagoon  

3     0  

Kowanyama Joe’s Lagoon 
Magnificent Cr. 
Meggara Lagoon 
Penambl Swamp 
Crayfish Lagoon 
Red Lily Lagoon 

7 2   1 0.1 µg L-1 

Cooktown Endeavour River   20 10 0  
Southeast CYP Annan River 25 21 4  3 1 0.1 µg L-1 
Southeast CYP Jeannie River 7   1  2  1 0  
Southeast CYP Starke Inlet   4  1 0  
Southeast CYP Laura-Normanby R. 26 6 4 3 0  
Southeast CYP Laura-Normanby-  

Jack Lakes  
8 3   1 0.1 µg L-1 

Bathurst Bay Muck River 1  8 2 0  
Mapoon Wenlock River 

Turtle Creek 
Alligator Creek 
Big Swamp 
Fish Creek 
Scorpion Lagoon 

10 10 4*  1 1.0 µg L-1 

Weipa Albatross Bay 4  1  0  
Totals  91 43 47 20 4 0.1 – 1.0 µg L-1 
* Detection Limit 0.5 µg L-1 665 
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667 

Table 2. Number of samples analysed for total mercury in sediment at locations across Cape York, Queensland, and the number of those 

samples above the analytical detection limit of 0.1 µg g-1. 

Number of Sediment 
Samples 

Region River / Wetland 
Site 

Freshwater Estuary 

No. at or above the 
Det. Limit (0.1 µg g-1) 

Detected 
Concentration  
(µg g-1) 

Kowanyama Joe’s Lagoon 
Magnificent Cr. 
Meggara Lagoon 
Penambl Swamp 

5  0  

Southeast CYP Annan River 3 10 1 0.2 
Southeast CYP Endeavour River  32 3 0.2, 0.3, 1.1 
Southeast CYP Starke Inlet  1 0  
Southeast CYP Laura-Normanby 7  1 0.1 
Weipa Albatross Bay 2  0  
Totals  15 43 5 0.1 – 1.1 µg g-1 
 668 
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670 
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672 

 

 

 

 



Table 3. Slopes of mercury biomagnification (Hg vs. 15N) and corresponding trophic 

magnification factors for significant slopes at 14 sites in the Mitchell River, 

Queensland, Australia.  Italicized text in parentheses indicates values calculated after 

removing Macrobrachium spp. from the analysis (see Discussion). 

673 

674 

675 

676 

677 

678 

679 

680 

 

                

Site Latitude Longitude n Slope ± S.E. r2 p TMF 

McLeod River -16.50 145.00 15 (12) 
0.24 ± 0.14 

(0.13 ± 0.04) 
0.17 

(0.53) 
0.113 

(0.007) 
~0  

(2.8 ± 1.4) 
Emu Creek 
(Petford) -17.34 144.95 14 (11) 

-0.16 ± 0.30 
(0.21 ± 0.17) 

0.02 
(0.14) 

0.598 
(0.252) 

~0  
(~0) 

Palmer River 
(Goldfields) -16.10 144.78 16 (13) 

-0.18 ± 0.19 
(0.14 ± 0.05) 

0.06 
(0.41) 

0.351 
(0.019) 

~0  
(3.1 ± 1.5) 

Fish Hole Creek -15.48 141.79 14 (11) 
0.37 ± 0.24 

(0.34 ± 0.05) 
0.16 

(0.85) 
0.154 

(<0.001) 
~0 

(14.3 ± 1.5) 
Hodgkinson River -16.72 144.82 12 -0.01 ± 0.16 <0.01 0.973 ~0 
Ten Mile Lagoon -16.34 143.04 11 0.14 ± 0.04 0.62 0.004 2.9 ± 1.4 
Saltwater Creek -17.82 144.42 9 0.22 ± 0.11 0.36 0.083 ~0 
Twelve Mile 
Lagoon -16.29 143.03 10 0.21 ± 0.03 0.85 <0.001 5.0 ± 1.3 
Mitchell River 
(Koolatah) -15.95 142.38 15 (13) 

0.05 ± 0.12 
(0.13 ± 0.05) 

0.01 
(0.36) 

0.733 
(0.030) 

~0  
(2.8 ± 1.5) 

Mitchell River 
(Gamboola) -16.54 143.68 10 (8) 

-0.08 ± 0.11 
(0.09 ± 0.05) 

0.06 
(0.36) 

0.497 
(0.119) 

~0  
(~0) 

Magnificent Creek -15.48 141.75 12 (9) 
0.36 ± 0.11 

(-0.01 ± 0.06) 
0.51 

(0.01) 
0.009 
0.839 

16.3 ± 2.4 
(~0) 

Walsh River 
(Nullinga) -17.17 145.30 13 0.02 ± 0.02 0.09 0.309 ~0 
Cairo Lagoon -16.46 143.22 9 -0.01 ± 0.03 <0.01 0.860 ~0 
Kingfish Lagoon -16.17 142.83 7 0.02 ± 0.04 0.05 0.648 ~0 
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Figure 1. Map of the study area, showing the regions where water and sediment 

samples were collected (shaded bubbles), the sites where food web samples were 

collected in the Mitchell River (open circles), and where barramundi samples were 

obtained from commercial fisheries (solid circles). 

Figure 2. Mercury concentrations (mean ± 1 S.E.) in various food web compartments 

from sites in the Mitchell River, QLD, Australia.  See methods for taxa included in 

each category. 

Figure 3. Mercury concentrations in relation to body size for barramundi from the 

Mitchell (open circles) and Flinders (solid circles) Rivers, QLD, Australia.  The best-

fit regression line for barramundi from Port Curtis, QLD, Australia (solid line) is 

shown for comparison (Jones et al. 2005, data converted from wet weight to dry 

weight assuming 80% moisture) as well as the typical maximum guideline for human 

consumption (hatched bar). 

Figure 4.  Barramundi age vs. mercury (A) and 15N vs. mercury (B) in the Mitchell 

(open circles) and Flinders (solid circles) Rivers.   

Figure 5.  Mercury concentrations in relation to % marine feeding for barramundi 

from the Mitchell (open circles) and Flinders (solid circles) Rivers, and king threadfin 

salmon (shaded squares) from the Mitchell River, North Queensland, Australia.  % 

marine feeding estimates are derived from mixing models using 13C and 34S 

(Jardine et al. in press).   

 

 

 

 



Figure 1. 706 

 707 

708 

709 

710 

711 

712 

713 

714 

715 

716 

717 

718 

719 

720 

 

 

 

 

 

 

 

 

 

 

 

 

 

 32



Figure 2. 721 
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Figure 3. 739 
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Figure 4 757 
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769 Figure 5. 
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