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Abstract 

This paper investigates the critical parameters of power system which affect the stability of 

the system. The analysis is conducted on both a single machine infinite bus (SMIB) system 

and a large multi-machine system with dynamic loads. To further investigate the effects of 

dynamic loads on power systems stability, the effectiveness of conventional as well as 

modern linear controllers is tested and compared with the variation of loads. The 

effectiveness is assessed based on the damping of the dominant mode and the analysis in this 

paper highlights the fact that the dynamic load has substantial effect on the system damping. 
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1. Introduction 

Electric loads play an important role in the analysis of angle and voltage stability of 

interconnected power systems. Due to the large diverse load components, the changing load 

composition with time, weather and temperature, and uncertain load characteristic, it is 

difficult to accurately model the loads for stability studies. The stability of electromechanical 

oscillations and voltage oscillations between interconnected synchronous generators and 

loads is necessary for secure system operation because an unsecured system can undergo 

non-periodic major cascading disturbances, or blackouts, which have serious consequences. 

Power grids all over the world are experiencing many blackouts in recent years [1] which can 

be attributed to special causes, such as equipment failure, overload, lightning strokes, or 

unusual operating conditions. 

The secure operation of power systems with the variation of loads has been a challenge 

for power system engineers since the 1920s [2, 3]. The fundamental phenomenon of secure 

power system operation is investigated in [4] which has explored a variety of machine 

loading, machine inertias, and system external impedances with a determination of the 

oscillation and damping characteristics of voltage or speed following a small disturbance in 

mechanical torque. Based on this phenomenon, many techniques to assess the stability of the 

power system have been proposed. In [5], there is an extensive description of power system 

stabilizers (PSSs) which are now widely used in the power industry. Some improved 

methodologies of PSS design are proposed in [6, 7] which has large disturbance rejection 

capacity. A Fourier-based sliding method is considered in [8] for secure operation of a power 

system with large disturbances. Recently, a coordinated PSS design approach is proposed in 

[9]. In these papers [4]-[9], the power system is mainly considered as a single machine 

infinite bus (SMIB) system or a multimachine system and linear control techniques are used 

to ensure the secure operation of the power system. Some nonlinear control techniques are 



also proposed in [10]-[12] for single machine infinite bus (SMIB) system or a multimachine 

system to obtain a better performance as compared to the traditional linear controllers. 

Most of the work as mentioned in the literature [4]-[12], provides an overview of power 

system stability where the loads are considered as constant impedance loads. Recently, much 

attention has been paid to the research on the influence of dynamic or static characteristics of 

loads on power system stability analysis [13, 14] and the reasonable representation of loads 

for different study purpose which is elaborately described in [15, 16]. 

The induction motor loads which are considered as dynamic loads, account for a large 

portion of electric loads, especially in large industries and air-conditioning in the commercial 

and residential areas. The induction motors used in system studies are aggregates of a large 

number of different motors for which detailed data are not directly available; therefore it is 

important to identify the critical parameters for stability studies. The effects of induction 

machines on power system stability are focused in [17] where a Hellenic power system is 

considered for analysis and attention is given to electromechanical oscillations and the critical 

parameter investigation. In [17] induction motors and synchronous generators are considered 

separately but practically most of the nonlinearity occurs due to the interconnections between 

them. Moreover, in [17] some parameters are investigated which affect the stability of the 

system by neglecting the damping of the system, which is not practical, and finally power 

system stabilizers are implemented to make the system stable. The critical parameters for a 

SMIB system as well as large system are also investigated in our previous work [18] by 

considering all the limitations as presented in [17]. 

Dynamic stability analysis of power system networks with induction generators has been 

described in [19] where the induction generators are integrated with wind turbine, i.e., they 

are not considered as loads. The stability of induction motor networks is nicely described in 



[20] where the induction motors are considered as loads and bifurcation method is used to 

analyze the stability. In [20], only the slip of the induction motors is considered as dynamic 

which does not represent all the behaviors of the motors clearly. To analyze the stability of 

power system with induction motor loads, a conventional PSS which is also called power 

oscillation damping controller (PODC) is used in [17] and minimax LQG controller is used in 

[13, 21]. The minimax LQG controller provides better performance as compared to PODC 

[13, 21]. In these papers [15]-[20], the performances of the controllers are tested by applying 

different types of faults within a certain range of operating points. But in all of these papers, 

there is no indication about the effectiveness of the controllers with the variation of dynamic 

loads. 

The aim of this paper is to investigate the effects of dynamic loads on the stability of 

interconnected power systems. Here, the stability of the system with dynamic loads is 

analyzed by using the concept of critical parameter selection as described from our previous 

work [18]. In this paper, a PODC designed for power systems with dynamic loads and the 

effectiveness of the PODC is evaluated with the variation of dynamic loads. Also, the 

effectiveness of minimax LQG controller, which is referred to as robust PODC (RPODC), is 

determined with the changes in induction motor loads within the systems. The effectiveness 

is mainly considered based on the damping of the dominant mode with controller. This paper 

also addresses the question whether dynamic loads influence the effectiveness of PODC and 

RPODC with SMIB system and to what extent as well as what is a suitable way of 

representing induction motor loads for this purpose. 

The rest of the paper is organized as follows. In Section 2, the mathematical modeling of 

an SMIB system with dynamic load is given. Participation factors and eigenvalue analysis 

which are used to identify the critical parameters is given in Section 3. Section 4 shows the 

role of critical parameters on the stability of a large system. An overview of PODC and 



RPODC design is presented in Section 5 and Section 6, respectively. The effects of large 

dynamic loads with PODC and RPODC are shown in Section 7. Finally, the paper is 

concluded with future trends and further recommendation in Section 8. 

 

2. Power System Model 

Power systems can be modeled at several different levels of complexity, depending on the 

intended application of the model. Fig. 1 shows an SMIB system with induction motor loads 

[22] which is the main focus of this paper as the foundation of this work is built up from this 

model. Since an SMIB system qualitatively exhibits the important aspects of the behavior of 

a multimachine power system and is relatively simple to study, it is extremely useful in 

studying general concepts of power system stability [11]. 

In this SMIB model, the power is supplied to the load ( 1500=LP MW, 150=LQ  Mvar) 

from the infinite bus and local generator (approximately, ( 300=GP MW, 225=GQ  Mvar). 

The load at bus-2 is made of three parts: (i) a constant impedance load, (ii) an equivalent 

large induction motor, and (iii) a shunt capacitor for compensation purposes. The major 

portion of these loads is the equivalent induction motor. 

With some typical assumptions, the synchronous generator can be modeled by the 

following set of differential equations [5]: 
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where   is the power angle of the generator,   is the rotor speed with respect to 

synchronous reference, H  is the inertia constant of the generator, 
mP  is the mechanical input 

power to the generator which is assumed to be constant,  D  is the damping constant of the 

generator, qE  is the quadrature-axis transient voltage, AK  is the gain of the exciter amplifier, 

doT   is the direct-axis open-circuit transient time constant of the generator, dX  is the direct-

axis synchronous reactance, dX   is the direct axis transient reactance, 

22 )()(= qgddgd

'

qt IXIXEV   is the terminal voltage of the generator, 0V  is the output 

voltage of the transducer, rT  is the time constant of the transducer, dgI  and qgI  are direct and 

quadrature axis currents of the generator. The main source of significant nonlinear effects in 

this model is related to dgI  and qgI  for which the expressions will be provided at the end of 

this section. 

A simplified transient model of a single cage induction machine is described by the 

following algebraic-differential equations written in a synchronously-rotating reference frame 

[23]: 
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 =  is the transient reactance, sR  is the stator resistor which is 

assumed to be zero, 
sX  is the stator reactance, rX  is the rotor reactance, 

mX  is the 

magnetizing reactance, 
ms XXX   is the rotor open-circuit reactance, 

domT   is the transient 

open circuit time constant, 
mT  is the torque drawn by the machine, 

mH  is the inertia constant 

of the motor, rs  1  is the slip of induction motor where r  is the relative speed, 

qmqmdmdme ieieT   is the electrical torque, dme  and qme  are the direct and quadrature axis 

transient voltages, dmi  and qmi  are the direct and quadrature axis currents. Here, this model 

represents the induction machine in it own direct and quadrature axes, which is different from 

the d and q axes of synchronous generator. So axes transformation is used to represent the 

dynamic elements of both the induction motor and synchronous generator with respect to the 

same reference frame and to do so we use the following relations: 
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where the negative sign with dmi  and qmi  are indicates that they are opposite to dmI  and qmI  

are when expressed in the same reference frame with synchronous generator. 

With these relations, a modified third-order induction motor model can be written as 

follows: 
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To complete the model, the equation of dgI , qgI , dmI , and qmI  can be written as 

follows: 
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where nfVi is the infinite bus voltage, TX is the reactance of the transformer, and eX  is the 

reactance of the transmission lines. 

By linearizing equation (1)-(7) we can represent the overall linearized system as: 
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where the state vector Δ x  is given by 

T

mmrq EVEx ][ 0   , 

A  is the system matrix, B  is the input matrix, C  is the output matrix, and y  is the output 

vector.  

 

3. Critical Parameter Analysis 

The linearized system is unstable with one mode in the right-half-plane. The eigenvalues 

of the SMIB system with dynamic load and participation factors for the unstable mode of the 

system are shown in Table 1 and Table 2. 

Table 1: Eigenvalues without any variation of parameters 

Eigenvalues 

-1.1056±19.0242i 

0.4689±13.1049i 

-3.9657±11.5717i 

     -3.9686 

 

Table 2: Participation factors without any variation of parameters 

States of the system        
qE   

0V  r  mE  m  

Participation factor of 0.4004 0.1339 0.6519 0.06 0.31 0.6110 0.1672 



unstable mode (Mode 2) 

 

From the eigenvalues in Table 1, it is seen that the system has unstable mode 2 with 

some low frequency oscillations. The participation factors in Table 2 show that the states  , 

qE  , and 
mE  have the highest participation in this unstable mode which means that there are 

both angle instability and voltage instability problems in the system. Therefore, now if the 

elements in the A  matrix related to  , qE  , and mE  are varied then the system is likely to 

become stable. The following elements of A : 11a , 13a , 16a , 21a , 23a , 26a , 31a , 33a , 36a , 41a , 

43a , 46a , 51a , 53a , 56a , 61a , 62a , 63a , 66a , 71a , 73a , and 76a , depend on the system 

parameters which affect the stability. 

By varying the parameters related to the states as mentioned above, it is observed that 

only the direct axis open circuit time constant of the induction motor domT  , affects the 

stability of the system when the damping is provided by the synchronous generator. But when 

no damping is provided by the synchronous generators, the inertia constant of the induction 

machine also affects the system stability. For nominal value of domT   equal to 18.7, the system 

is unstable. After varying the value of direct axis open circuit time constant of the induction 

motor, domT  , from 18.7 to 18 or less than 18, the system becomes stable and the eigenvalues 

are shown in Table 3. 

 

 

 

Table 3: Eigenvalues with the variation of parameter 



Eigenvalues 

-0.8889±19.2638i 

-10.6874 

-0.0497±12.988i 

-4.2795±11.789i 

          

          To make the system stable, the value of domT   is reduced from its nominal value. 

Though the system is stable, still there are three oscillating modes. These modes are 

dominated by the voltage as well as angle dynamics. Small variation of the exciter gain AK   

does not affect the power system stability. But if AK  is set to a very high value, the system is 

stable with high frequency oscillation. On the other hand, very low values of AK  make the 

system unstable. 

           Fig. 2 shows the variation in the damping of mode 2 with change in domT  . From Fig. 2, 

it can be seen that with the small variation of the induction motor direct axis rotor open 

circuit time constant, the damping changes dramatically. If the domT   of the induction motor is 

varied from 17.9 to 18.1, the damping of mode 2 changes from -0.004 to +0.004.  Fig. 3 

describes the damping of mode 2 with variation in the exciter gain, AK . From Fig. 3, it is 

seen that if the exciter gain varies from 25 to 50, the damping of mode 2 varies from -0.001 

to 0.008. In conclusion, the variation of domT   is more sensitive to the system stability as 

compared to the variation of the exciter gain as shown in Fig. 2 and Fig. 3. From Fig. 3, it is 



seen that the system is stable for all values of 18
domT . The role of the critical parameters on 

a large system is considered in the next section. 

 

4. Role of Critical Parameters on Large System 

      The sensitivity of large power system to the critical parameters is analyzed in this section. 

For this analysis, a 10-generator, 39-bus New England system shown in Fig. 4 is considered. 

      The system is unstable and the eigenvalues of dominant unstable mode are 

0.35031±2.8725i. In this mode, the voltage states as well as the angle states of generators at 

bus-34 and bus-38 have the highest participation in the system instability. 

      Next, the induction motor loads are connected at bus-4, bus-8 and bus-20. After 

connecting these dynamic loads, the system is unstable with dominant eigenvalues 

0.31730±3.3886i. For this mode, the voltage state of generator at bus-38 and the voltage 

states of induction motor connected at bus-20 have higher participating factor than that of 

generator at bus-34 and induction motors at other buses. 

      When the same critical parameter as in the previous section i.e., the direct axis open 

circuit time constant of the induction motor domT  , is changed, still the system is unstable with 

eigenvalues 0.29444±3.4030i. Finally, a stable system is obtained by varying domT   only. At 

some lower values of domT  , 100 times less than the nominal values, all the eigenvalues of the 

system are in the left-half complex plane. In this case, the variation of domT   is more as 

compared to that of in the previous section. This is due to the large inertia of the system. 

However, the main concept for critical parameter investigation is true for a large system. 

 

 



5. Overview of PODC Design 

      A PODC is designed to damp electromechanical oscillations caused by the large 

generator inertia and very low damping. The control objective in the PODC design is to 

increase damping of the electromechanical mode by controlling the synchronous generator 

excitation systems using an auxiliary signal to the automatic voltage regulator (AVR). Fig. 5 

shows the block diagram of excitation system, including the AVR and PODC [5] which is 

considered in this section. 

      The dynamics of PODC can be described by the following two equations [5]: 
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where STABK  is the gain of power oscillation damping controller, wT  is the time constant of 

the washout block, 1T  and 2T are the time constants of the phase compensation block, 2v  is 

the output of the washout block and sv  is the stabilizing signal which is the output of the 

phase compensation block. 

The PODC is designed in a very similar way to the power system stabilizer (PSS) [5]. The 

parameters of the designed PODC are as follows: 

0.0823=1T s,  0.0141=2T s, 1=wT s, and .7.5STABK  

The eigenvalues of the SMIB system as shown in Fig. 1 are shown in Table 4 when a PODC 

is applied to the synchronous generator. In this case, the amount of induction motor load is 

1000 MW. From Table 4, it is seen that the system is stable which was unstable without a 



PODC as shown in Table 1.  This happens due to the supply of additional damping through 

the PODC. 

Table 4: Eigenvalues with PODC 

Eigenvalues 

-70.9220 

-0.0076±46.5101i 

-1.4797±30.1252i 

-19.1221 

-1.0305 

-4.3125±5.4705i 

 

Table 5: Participation factors with PODC when the dynamic load is 1000 MW 

States of the system        
qE   

0V  r  mE  m  

Participation factor of 

unstable mode (Mode 2) 

0.013 0.0921 0.6625 0.059 0.30 0.6210 0.1672 

 

 

 

 



Table 6: Participation factors with PODC when the dynamic load is 1250 MW 

States of the system        
qE   

0V  r  mE  
m  

Participation factor of 

unstable mode (Mode 2) 

0.147 0.1281 1 0.048 0.30 0.815 0.1824 

 

At this stage, the state participation factor is shown in Table 5 from where it can be seen that 

the application of PSS reduces the participation of the rotor angle of the synchronous 

generator. But the voltage mode of the synchronous generator and induction motor is 

dominating the stability as their participation is more. When the induction motor load is 

varied from 1000 MW to 1250 MW, the participation factors are given in Table 6. From 

Table 6, it can be seen that the participation of voltage modes are increasing and still 

dominating. Thus electrometrical mode is no longer dominating mode for the stability with 

the variation of dynamic loads.  

 

6. Overview of RPODC Design 

To design RPODC, a linearization scheme is proposed in [13] which includes the bound 

of the Cauchy remainder in Taylor series expansion as uncertain term in the controller design. 

Let ( 0x , 0u ) be an arbitrary point in the control space, using mean-value theorem [24], the 

system (1)-(7) can be rewritten as follows: 
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Here ( px* , pu* ), 7,,1 p  denote points lying on the line segment connecting ),( ux  

and ),( 00 ux ,  Tfff 71=   denotes the vector function on the right-hand side of the vector 

differential equation (1)-(7). The nonlinearity of the system (1)-(7) is captured through the 

nonlinear dependencies ),,,(= 001

* uxuxx p
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Letting ),( 00 ux  be the equilibrium point about which the trajectory is to be stabilized 

and defining 0= xxx   and 0= uuu  , it is possible to rewrite (12) as follows 
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. The equation (13) does not include higher order terms of 

Taylor series which depend on u  because the system is linear with respect to the control 

vector. Although it is difficult to obtain the exact value of )],(),([ ** pppp uxfuxf   i.e., 

)( AL , it is possible to obtain a bound on ||)(|| AL   over a range of ),( ** pp ux . This bound 

is used in the control design. We rewrite system (13) in terms of the block shown in Fig. 6.  
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 .  

       The value of  is chosen such that 

                     1)( 2|||| t                                                           (21) 



       For any value of 
*** ,,, mmq EE   *
; we can conclude that 

   2

1

2 ||
~

|||||| xC                                                              (22) 

      We also define xC  1 . Hence we recover the IQC (integral quadratic constraint) given 

in 

22 ||||||||                                                                              (23) 

      To facilitate control design, the power system model is written as 

 )()()()(=)( 221 twBtBtuBtxAtx                   (24) 

   )()()(=)( 222 twDtDtxCty                                 (25) 

     )(=)( 1 txCt                                                              (26) 

where  Tmmq EE ***   * is the uncertainty output, )(t is the uncertainty input, )(ty  is the 

measured output, and )(tw represents a disturbance input.  

       Since the transducer time constant rT  is very small, we are able to make the 

approximation tVV 0 and therefore, output matrix 2C  is defined as 

    00010002 C                                                (27) 

        This new formulation presented in this is used to design the robust excitation controllers 

for the underlying nonlinear power systems to improve voltage stability. The performance of 

the PODC and RPODC with the variation of dynamic loads are discussed in the following 

section. 

 



7. Effects of Large Dynamic Loads with PODC and RPODC 
 

      The effects of load variation on power system stability without any controller are shown 

in Fig. 7. The dashed line in Fig. 7 shows the effects of constant impedance load variation 

and the solid line shows the effects of induction motor load variation on power system 

stability. It can be seen from Fig. 7 that the system retains stable operation even with a 1200 

MW constant impedance load but becomes unstable for 950 MW dynamic loads. 

 

       The designed PODC is simulated on a SMIB system with constant impedance loads and 

dynamic loads and the robust PODC is simulated with dynamic load. The dynamic load on 

the system is varied from 0 MW to 1250 MW and the per unit (pu) damping torque provided 

by the PODC, through the excitation system of the generator is calculated in each variation of 

loads with pu changes of speed. 

 

       The dashed line and solid line in Fig. 8 show the effectiveness of RPODC with the 

variation of constant impedance loads and dynamic loads, respectively. Here, the 

effectiveness of PODC does not vary for a wide range for the power system with constant 

impedance loads but the effectiveness of PODC reduces a lot with the variation of dynamic 

loads as shown by the solid line in Fig. 8. The RPODC provides more damping as compared 

to the conventional PODC which is shown by the solid line with star. The effectiveness of 

RPODC also reduces with increasing dynamic loads but the rate of reduction is much less as 

compared to the conventional PODC. 

 

8. Conclusion 
 

      To investigate the effects of dynamic loads on power systems stability, the linearized 

model of the synchronous machine and induction motor system is presented in this paper. 



Since most of the nonlinearities in the system occur due to the interconnections, therefore the 

effects of interconnections are also considered in the linearization process. Then by using the 

concept of eigenvalues and participation factors and by varying some elements of the state 

matrix, the direct-axis open circuit time constant of the induction motor, 
domT   is found as the 

parameter that affects the stability of the system. The system is also sensitive to other 

parameters such as the exciter gain. It is shown in this paper that the critical parameter also 

affects the stability of large power systems. 

 

      The effectiveness of power oscillation damping controller (PODC) on an interconnected 

power system with the variation of dynamic load is also demonstrated in this paper. Though 

the conventional PODC provides better operation for power systems with constant impedance 

loads, but it gets worse for power systems with dynamic loads. The RPODC has better 

performance as compared to conventional PODC but the effectiveness of this controller also 

decreases with the variation of dynamic loads. So, it can be concluded that dynamic loads 

have significant effect on the stability of power systems. The aim of the future research is to 

design a controller that can provide better performance with the variation of dynamic loads. 
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Fig. 1.  Test System 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sensitivity of damping with respect to the induction motor direct axis rotor open 

circuit time constant 
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Fig. 3. Sensitivity of damping with respect to the exciter gain 
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Fig. 4. 10-generator, 39-bus New England System 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig. 5. Excitation System with AVR and PODC 

 

 

 

 

 

 

 

 

 

 

Fig.6. Robust Control Scheme 
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Fig. 7. Effects of load variation without PODC (Solid line–Dynamic load variation, dashed 

line-Constant impedance load variation) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Effectiveness of PODC (Solid line with star–RPODC with dynamic loads, the dashed 

line- Conventional PODC with constant impedance loads, solid line- Conventional PODC 

with dynamic loads 
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