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Ramsey interferometry allows the estimation of the phase ϕ of rotation of the pseudospin vector
of an ensemble of two-state quantum systems. For ϕ small, the noise-to-signal ratio scales as the
spin-squeezing parameter ξ, with ξ < 1 possible for an entangled ensemble. However states with
minimum ξ are not optimal for single-shot measurements of an arbitrary phase. We define a phase-
squeezing parameter, ζ, which is an appropriate figure-of-merit for this case. We show that (unlike
the states that minimize ξ), the states that minimize ζ can be created by evolving an unentangled
state (coherent spin state) by the well-known 2-axis counter-twisting Hamiltonian. We analyse these
and other states (for example the maximally entangled state, analogous to the optical “NOON” state
|ψ〉 = (|N, 0〉 + |0, N〉)/

√
2) using several different properties, including ξ, ζ, the coefficients in the

pseudo angular momentum basis (in the three primary directions) and the angular Wigner function
W (θ, φ). Finally we discuss the experimental options for creating phase squeezed states and doing
single-shot phase estimation.
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I. INTRODUCTION

A spin squeezed state (SSS) [1, 2] is a collective (en-
tangled) state of many individual spin-systems such that
a parameter ξ2 is less than unity. The value ξ2 = 1 is
known as the standard quantum limit, as it is the value
it would have if all of the individual spin vectors were un-
entangled, and oriented in the same direction: a coherent
spin state (CSS) [1, 2].

Various authors have suggested that spin squeezed
states could improve the precision of various measuring
devices [1, 2]. In particular, there is a reduction of quan-
tum noise in Ramsey interferometry [2] by a factor ξ2,
as verified experimentally by Meyer et al [3]. One may
be inclined to think that the parameter ξ2 is the only
one that matters for spin squeezed states. Here we argue
that its generality has been over stressed.

To be specific, if we wish to use a state for a single-
shot measurement of the angle ϕ of rotation of the state
around some axis of the Bloch sphere, and there is no
prior information about ϕ, then the maximally spin-
squeezed state is not the best state. This point has been
previously made in Ref. [4]. Here we delve into this issue
in more detail, defining a new parameter, ζ2, which we
call phase-squeezing. We investigate this, ξ2, and several
other characteristics of the CSS and five different entan-
gled spin-states. Through this we elucidate the relation
between concepts such as spin squeezing, phase squeez-
ing, NOON states, and phase estimation.

The states that give optimal single-shot precision were
identified in Ref. [5], where a practical near-optimum
single-shot estimation scheme was also proposed. A
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method for engineering these optimal states for optical
interferometry was also suggested in the same reference,
but it would be extremely challenging to implement. In
this paper we have investigated a more realistic proposal,
to produce near optimal states for single shot quantum
interferometry in an ensemble of spins using the well-
known 2-axis counter-twisting Hamiltonian (2ACT) [1]
(also see section III B) . The results are quite encour-
aging for the experimental realization of optimal phase-
squeezed states, in contrast to the situation for maxi-
mally spin-squeezed states.

The structure of this paper is as follows. In Sec. II we
review phase estimation by interferometry, and the lim-
itations of ξ2 as a figure of merit for this purpose. This
motivates our introduction of a new parameter, ζ2. In
Sec. III we review the states we wish to consider: co-
herent spin states, Yurke states, NOON states, optimal
phase-squeezed states, 2ACT spin-squeezed states, and
2ACT phase-squeezed states. The last of these is in-
troduced here for the first time. In Sec. IV we quanti-
tatively investigate various properties for each of these
states: ξ2, ζ2, the canonical phase probability distribu-
tion, the state coefficients in the angular momentum basis
(in the x, y, and z directions), and the angular Wigner
function W (φ, θ). We emphasize the trends that can be
seen across the various states, especially using the Wigner
function. We conclude in Sec. V with a discussion of the
experimental options for creating phase squeezed states
and doing near optimal single-shot phase estimation.

II. SPIN SQUEEZING AND

INTERFEROMETRY

The equivalence between Ramsey interferometry and
Mach-Zehnder (MZ) interferometry has been discussed
at length [6]. In the latter case a field is introduced to
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the input ports of a MZ interferometer, then the inter-
ferometer transforms the change in phase in one arm (ϕ)
to changes in intensity of the field at the output ports.
If the N quanta entering the input ports are entangled
the minimum detectable phase change scales as 1/N , the
Heisenberg limit [7]. This an increase in the signal to
noise ratio (SNR) when compared to a non entangled
states (e.g. all quanta entering at one port) of order√
N . The non-entangled scaling of 1/

√
N is known as

the standard quantum limit.
Ramsey interferometry also measures a phase ϕ: the

angle of rotation of all spins about some axis. Spin
squeezing, a form of entanglement, enables this phase
to be estimated better than the standard quantum limit
[2]. In principle this could enable a better atomic clock,
where an initial state is allowed to evolve (rotate) and
then the phase is estimated to give a measure of the time
elapsed from preparation. We shall now revisit the logic
that led to the formulation of the spin squeezing param-
eter as treated in [6].

A. Spin Squeezing Parameter ξ2

Consider a ensemble of N two level atoms, a spin J
system, where N = 2J . The angular momentum opera-

tors are Ji = (1/2)
∑N
k=1 σ

k
i where σi ∈ {x, y, z}. For a

precision measurement on this system we are interested
in the sensitivity of our chosen input state to rotation.
Following Wineland et al [6], let the mean collective spin

of the system be in the x̂ direction, i.e. 〈 ~J〉 = x̂|〈Jx〉|.
An interaction between a field and the spin system takes
place, causing a rotation in the initial state about the z
axis, of ϕ.

For ϕ small, its value may be estimate by measuring
Jy, since

〈Jy〉 = |〈 ~J〉| sinϕ. (1)

If M ≫ 1 measurements of Jy are taken, then from the
central limit theorem the uncertainty in determining ϕ
from the results is ∆ϕ = ∆Jy/(

√
M∂〈Jy〉/∂ϕ). Using

Eq. (1) the precision in ϕ is

∆ϕ =
∆Jy

|〈J〉| cosϕ
√
M
. (2)

By inspection the minima of Eq. (2) occur when cosϕ is
maximized. That is, for |ϕ| ≪ 1.

Naively one would expect a minimum uncertainty co-
herent state

|ψ〉coh = |J, J〉x (3)

to be a good state to use for phase estimation as all the
spins have their mean spin vectors aligned. Here the
notation |J, µ〉k indicates the egienstates of Jk (where
typically k = x, y, z) with eigenvalue µ. The result that
the CSS gives us is the standard quantum limit (SQL). So

a ratio of the uncertainty in the state under examination
to the SQL will be defined as the squeezing parameter
ξ. The uncertainty for the coherent state is ∆ϕcoh =
(J/2M)1/2/J = 1/

√
NM . Using this SQL, the squeezing

parameter becomes

ξ = |∆ϕ|/|∆ϕ|coh =
√

2J
∆Jy

|〈 ~J〉|
. (4)

A system with a parameter ξ2 less than unity is spin
squeezed and necessarily entangled [8].

Although states with small ξ2 are good for estimating
a small ϕ from multiple (M → ∞) measurements, they
are not necessarily optimal for single-shot measurements,
or for measurements where ϕ is not known to be small.
Consider the case where N is even so that J = N/2 is an
integer. Then a state which comes close to minimizing
ξ2 is the Yurke like state [6, 9],

|ψ〉yur =
sinα√

2
|J, 1〉y + cosα|J, 0〉y +

sinα√
2
|J,−1〉y. (5)

The minimum ξ2 ∼
√

2/N is achieved as α→ 0. In this
limit the state is invariant under a rotation of π around
the z axis. That is, in a single shot measurement it would
be impossible to distinguish between a rotation of ϕ and
one of ϕ + π. An even more extreme example is the
so-called NOON states [10], defined as

|ψ〉NOON = (|J, J〉z + |J,−J〉z)/
√

2. (6)

These states are so-called because in the field represen-
tation the state is described as a superposition of Fock
states: (|N, 0〉+ |0, N〉)/

√
2. Like the Yurke states, these

states allow a measurement of phase with a sensitivity
O(

√
N) times better than a coherent state [10, 11]. How-

ever they are are invariant under a z-rotation of 2π/N .
Thus, in a single shot ϕ would already have to be known
to an accuracy of O(1/N) for these states to be useful at
all.

B. Phase squeezing parameter ζ2

If we wish to estimate the phase shift ϕ from a single
measurement, with no prior information about the phase,
the quantity we wish to minimize is the uncertainty in
that single shot estimate, not the signal to noise ratio or
ξ. We consider minimizing the uncertainty in an optimal

measurement, which requires a generalized measurement
[12], (although see Ref. [13]). If arbitrary unitaries can be
implemented (as in a quantum computer) and projective
measurements are possible, then such generalized mea-
surements can be done [14]. Even without such power
(effectively that of a quantum computer), a measurement
that performs almost as well as an optimal measurement
(on any state) can be achieved by adaptive projective
measurements on single spins (or quanta) [4, 5].
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The optimal or canonical measurement scheme [12, 15]
involves projection of the state onto the phase states

|J, φ〉 = (2J + 1)−1/2

µ=J
∑

µ=−J

e−iµφ|J, µ〉z. (7)

The probability operator measure (POM) for such phase
measurements is

E(φ)dφ =
2J + 1

2π
|Jφ〉〈Jφ|dφ

=
1

2π

µ=J
∑

µ,µ′=−J

ei(µ−µ
′)φ|J, µ〉z〈J, µ′|dφ. (8)

Provided there is no prior phase information, such
measurements are optimal for all states for which the ar-
guments of the coefficients in the |J, µ〉z basis are linear
in µ [16] (as, for example, in the phase state |J, φ〉). This
includes all states that have been considered for quan-
tum interferometry. Assuming that the initial state |ψ〉
is oriented in the x direction, the POM (8) defines the
probability distribution for φ, the best estimate for the
phase shift ϕ, via

P (φ)dφ = 〈ψ|e+iϕJzE(φ)e−iϕJz |ψ〉dφ. (9)

In the canonical measurement scheme it is sensible, for
cyclic variables, to define uncertainty is in terms of the
sharpness [5]

S = 〈ei(ϕ−φ)〉 =

∫

dφP (φ)ei(ϕ−φ) (10)

=

µ=J
∑

µ=−J

z〈J, µ+ 1|ψ〉〈ψ|J, µ〉z. (11)

As long as |ψ〉 is oriented in the x direction, S is real and
positive, and it is always less than 1. Unlike the variance,
the sharpness respects the periodicity of the phase φ. A
state with a S close to 1 has a low phase uncertainty,
and vice versa. For such states, the variance of P (φ),
∫ φ0+2π

φ0

P (φ)φ2dφ, is given by the approximate formula

V ≃ 2(1 − S), (12)

provided that φ0 is not near the peak of P (φ). (Another
variance can be defined using S, the Holevo variance [16]
S−2−1 but for our purposes it is simpler to take a quan-
tity linear in S.)

Now that we have a measure for phase uncertainty, we
can define a new figure of merit, appropriate to a single-
shot phase estimate with no prior information:

ζ2 = 4J(1 − S). (13)

Similar measures have been considered before; see for
example [17]. It could also be asked, why not scale this
equation with respect to the coherent state i.e.

ζ2
rc = (1 − S)/(1 − Scoh). (14)

The reason Eq. (13) was chosen over Eq. (14) is that
it is a more elegant definition and with small exceptions,
discussed in section IV, the two expressions are equal.
That is, ζ2 ≈ 1 for coherent states.

III. STATES

To obtain a better understanding of phase squeezing
and the short comings of spin squeezing a number of
properties across six test states will be compared. The
test states are a coherent state (3), a Yurke state (5),
a NOON state (6), plus three new states we define be-
low in this section: the optimal phase squeezed state,
the optimal 2ACT-spin squeezed state, and the optimal
2ACT-phase squeezed state. All of the states considered
the mean spin direction is in the x̂ or (θ, φ) = (0, π),
with the exception of the NOON state, and all except
this state and the coherent state are spin-squeezed states,
with ‘squeezing’ in the ŷ direction. The properties to be
examined across all states include the phase and spin
squeezing parameters as a function of the number of par-
ticles; the Wigner function; state coefficients; and the
phase distribution.

A. Optimal Phase Squeezed

The maximally phase squeezed states can be found an-
alytically [5]. These states, that minimize ζ2, are given
by

|ψ〉opt =
1√
J + 1

2J
∑

µ=0

sin

[

(µ+ 1)π

2J + 2

]

|J, µ〉z. (15)

B. 2ACT Squeezed States

So far we have not been concerned about how to create
squeezed states. One of the earliest suggestions was to
start with a coherent state |ψcoh〉 and to evolve accord-
ing to the so-called two-axis countertwisting (2ACT) [1]
Hamiltonian

H2ACT = ~γ(JyJz + JzJy) (16)

Here γ is the strength of the interaction (A generalized
Hamiltonian for spin squeezing has been devised by Wang
and Sanders [7]). This generates the unitary evolution
operator

U(ν) = exp
[

ν
(

J2
+ − J2

−

)

/8
]

. (17)

Here ν = 4γt is a scaled time (we use ν rather than µ as
in [1] to avoid confusion with the |J, µ〉 basis states), and
J± = Jy ± iJz are the raising and lowering operators in
the x̂-direction. This Hamiltonian produces squeezing in
the ŷ-direction, and the mean spin remains aligned along
the x̂ axis.
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As is well known [1], the state

|ψ(ν)〉 = U(ν)|ψcoh〉 (18)

has a minimum in ξ for an optimal value ν = νss. This
is shown in Fig. 1. We denote the state for this value as

|ψ〉sss = |ψ(νss)〉 (19)

and call it the 2ACT spin-squeezed state. As we show
here (for the first time), this phenomenon also occurs for
ζ2. That is, ζ is minimized for an optimal value ν = νps.
We denote the state for this value as

|ψ〉pss = |ψ(νps)〉 (20)

and call it the 2ACT phase-squeezed state.
As shown in Fig. 1, the optimal value νps for phase

squeezing is less than that for spin-squeezing, νss. We
have numerically determined the optimal times ν for
these two types of squeezing and plotted the result in
Fig. 2. It has been previously shown that νss scales
as log2(N)/N [18] in [19]. We find specifically that
νss ≈ 1.25 log2(N)/N . As Fig. 2 shows, νps appears to
remain smaller than νss even for large N , although the
scaling law for the former is not known.

As is well known, and as we will show in the next
section, the 2ACT spin-squeezed states do not achieve
the minimum ξ2 for a fixed N , and are not close to the
states that do. By contrast, we have found that the
2ACT phase-squeezed states are almost identical to the
optimal phase squeezed states defined in Eq. (15). As
we will show in the next section, the minimum ζ2 from
the 2ACT-generated states is practically indistinguish-
able from the minimum possible ζ2.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

ν  

ξ2
, 
ζ2

FIG. 1: The parameters ξ2 (solid line), ζ2 (dashed line) are
plotted for the state |J,−J〉 evolving in time (ν = 4γt) under
the two axis counter twisting Hamiltonian. N = 20.

IV. PROPERTIES

A. Spin Squeezing

Before discussing ξ2 for our various states, we review
the simple proof in Ref. [6] for a lower bound. Starting

20 40 60 100
0.05

0.1

0.3

N

ν

FIG. 2: A log log plot of the time (ν) at which the maximal
squeezing occurs for phase (dashed line) and spin squeezing
(solid line) parameters evolving under the 2ACT.

with the uncertainty relation

∆Jx∆Jy ≥ 〈Jz〉2 /4 (21)

and noting that 〈J2
y 〉 ≤ J2, we get

〈J2
x〉 ≥

〈Jz〉2
4J2

.

Now substituting this into Eq. (4) gives

ξ2 ≥
( 〈Jz〉2

4J2

)

N

〈Jz〉2
≥ 1

N
, (22)

which is sometimes called the Heisenberg limit (HL).
There is of course no upper limit on ξ2. Note that
Sørensen and Mølmer [20] produced a definitive paper
on maximal squeezing for a state with given 〈Jx〉. The
absolute minimum is obtained as 〈Jx〉 → 0, essentially
reproducing the result of Yurke [9], which is

ξ2 = (1 +N/2)−1/ cos2 α→ 2/N. (23)

where the limit is taking α→ 0 and N → ∞.
A plot of ξ2 versus N for our test states is shown in

Fig. 3. Recall that for a coherent state ξ2 = 1. For all
the other states, ξ2 scales as N−1 for large N , but with
different coefficients. The worst are the optimal phase
squeezed states (which as mentioned above are practi-
cally identical to the 2ACT phase squeezed states), for
which ξ2 ≈ 10/N for large N . Note also that for N < 5
the optimal phase-squeezed state is not significantly spin
squeezed at all. The NOON state is not included as ξ is
undefined for this state.

B. Phase Squeezing

The absolute limit to phase squeezing is easy to ana-
lytically obtain as a function of N . The maximally phase



5

10
0

10
1

10
210

−2

10
−1

10
0

10
1

N

ξ2  

FIG. 3: The parameter ξ2, plotted for our test states: dotted
line for |ψcoh〉, dashed line for |ψopt〉, solid line for |ψsss〉, and
+s for |ψyur〉 (plotted only for N even). The dash-dotted line
is 1/N .

squeezed states |ψopt〉 have a sharpness given by [4]

S = cos

(

π

N + 2

)

. (24)

For large N this gives a phase-squeezing parameter

ζ2 → π2

N
. (25)

As a comparison, the case for coherent states will be
presented. In the large 〈Jx〉 regime, Jy/J ≈ φ and 〈Jy〉 =

0. For coherent states ∆Jx = ∆Jy =
√

J/2 so we obtain

|〈eiφ〉| ≈ |〈eiJy/J〉|

≈ 〈1 + i
Jy
J

− 1

2

J2
y

J2
〉

≈ 1 − 1/4J. (26)

The phase squeezing parameter in the large N limit is
thus

ζ2 → 4J(1 − (1 − 1/4J) = 1. (27)

A plot of ζ2 versus N for our test states is shown in
Fig. 4. Note that unlike ξ2, ζ2 for the coherent state does
not exactly equal one — It is noticeably larger than one
for states with less than seven particles. For large N it
asymptotes to 1 (from above) as expected from the above
analysis. From the linearity of Eq. (13) in the state ρ,
it follows that ζ2 > 1 for all mixtures of coherent states.
Thus ζ2 < 1 indicates phase squeezing (i.e. better than
the standard quantum limit) and hence entanglement (at
least for states of well-defined J). This is similar to the
way ξ2 < 1 indicates spin squeezing and hence entan-
glement, although that has been shown even for states
without well-defined J [21]. However, unlike ξ2, ζ2 does
not drop below 1 even for the optimal state until N > 5.
The large N scaling of 1/N is evident for the optimal

state, and the 2ACT phase squeezed state gives almost
identical results. But in contrast to the ξ2 calculation, in
this case all other entangled states actually have ζ2 in-

creasing with N . For the NOON state ζ2 = 2N and for
the Yurke state this is very nearly true. This is because
of the the symmetry (or near symmetry) of these state
implies that the sharpness S is zero for the NOON state
and approaches zero for the Yurke state. The result for
the 2ACT-SSS will be explained in the next subsection.
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FIG. 4: The parameter ζ2, plotted for our test states: dotted
line for |ψcoh〉, dashed line for |ψopt〉, dash-dotted line for
|ψpss〉, solid line for |ψsss〉, •s for |ψNOON〉 and +s for |ψyur〉
(plotted only for N even). The inset plot is a close up of the
same figure showing how close |ψpss〉 is to |ψopt〉.

C. Phase distribution

Recall that the phase squeezing parameter ζ2 is a mea-
sure of the spread of the phase distribution P (φ) of an
optimal measurement of the phase shift. To understand
the results obtained above for ξ2 we have plotted P (φ)
as the second row of Fig. 5 with N = 20. In this figure
we have included all our states except |ψopt〉 as it almost
identical to |ψpss〉.

The coherent state does not contain any surprises — it
is quite broad, corresponding to the standard quantum
limit. The next state, |ψpss〉 has a much narrower peak
as expected. The third state, |ψsss〉 has an even narrower
central peak but it also has significant side lobes and
wings. It is these wings that have such a deleterious effect
on the performance of this state in a phase measurement,
with ζ2 larger than that for a coherent state. Unlike the
first three phase distributions, that of the Yurke state
|ψyur〉 is bimodal. This shows clearly that this state can
only determine ϕ modulo π. Even taking this into ac-
count, the side lobes in this distribution (like that of the
spin-squeezed state |ψsss〉) also make this state inferior
to the coherent state for single-shot phase estimation, as
demonstrated in Ref. [4]. Finally, the NOON state has
N peaks, and is the worst state of all in this context,
allowing only an estimate of the phase modulo 2π/N .
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D. State Coefficients

Again in Fig. 5, the bottom three rows are the state co-
efficients x〈µ|ψ〉, y〈µ|ψ〉, and y〈µ|ψ〉 respectively. In each
case the state has been multiplied by an overall phase
factor to ensure that the coefficients are positive. It is
instructive to examine the trends (across the states) in
the coefficients in the three cardinal directions separately.

For the x coefficients, the coherent state has a sin-
gle non-zero coefficient, at µ = −J . Moving across, the
phase squeezed state develops other non-zero coefficients,
and this is further developed in the spin-squeezed states,
where the non-zero coefficients stretch almost to µ = +J .
In the Yurke state this goes even further, with the coeffi-
cients being bimodal, with peaks at µ = ±J . The NOON
state does not fit obviously into this trend, as now there
is a single peak at µ = 0. In all of these states the coef-
ficients are zero for µ odd.

For the y coefficients, the trend is even clearer from
the coherent state to the Yurke state: an initial sym-
metric Gaussian-like distribution becomes narrower and
narrower until it reaches a single non-zero coefficient at
µ = 0. Again, the NOON state appears anomalous, be-
ing a broad distribution. Note however that unlike those
for the other states, these coefficients are zero for µ odd.
In fact, these coefficients are identical to those for the
x direction, because the NOON state has no preferred
phase.

It is only for the z coefficients that a single trend ap-
pears to explain the distribution for all states. To begin,
the coherent state has a symmetric Gaussian-like distri-
bution (the same as that for its y coefficients). In opposi-
tion to the case of the y coefficients, as the state becomes
more phase squeezed, this distribution becomes broader.
This is the expected phenomenon of antisqueezing. For
the phase squeezed state the distribution is sinusoidal [see
Eq. (15)]. For the spin squeezed state it becomes almost
flat. Note however that at the ends of the distribution we
see the beginning of new trends: the even coefficients are
larger than the odd ones, and the largest coefficients are
at µ = ±J . This trend is amplified in the Yurke state,
where all odd coefficients are zero, and the curve for the
even coefficients is concave up. Finally, in the NOON
state it is taken to the extreme where only the µ = ±J
coefficients are non-zero.

E. Wigner function

The final property we discuss is actually the first one
(top row) plotted in Fig. 5: the Wigner function. This
is a complete representation of the quantum state, (like
the coefficients in a particular direction for a pure state).
It has the advantage of showing all the properties of the
different states in a dramatic and graphical way.

The spin Wigner function W (θ, φ) is a pseudoprob-
ability distribution on the Bloch sphere, with θ and φ
the usual Euler angles. For spin systems it is defined in

Ref. [22] as

W (θ, φ) = Tr[ρ∆(θ, φ)] (28)

Here θ ∈ [−π/2, π/2] and φ ∈ [0, 2π) and

∆(θ, φ) =

J
∑

µ,µ′=−J

Zµ,µ′(θ, φ)|J, µ〉z〈J, µ′|, (29)

Here

Zr,s(θ, φ) =

√
4π

2j + 1

2j
∑

l=0

√
2l+ 1〈j, l, r, (s− r)|j, s〉

×Yl,s−r(θ, φ), (30)

where 〈j, l, r, (s−r)|j, s〉, are Clebsch-Gordan coefficients
and Yl,s−r(θ, φ) is the usual spherical harmonic function.

We plot the Wigner function using the equal-area pro-
jection (described by Euclidean co-ordinates φ and cos θ).
The original Wigner function [23] W (x, p) for position
and momentum has the property that the marginal dis-
tribution for x is the true position distribution P (x), and
likewise for p. It might be thought that the marginal

distribution
∫ 1

−1 d(cos θ)W (φ, θ) should equal the phase

distribution P (φ). Unfortunately this is not the case, as
it follows from Ref. [22] that the phase distribution for
state |ψ〉 is actually

Pψ(φ) ∝
∫ 1

−1

d(cos θ)dϕWψ(ϕ, θ)Wφ(ϕ, θ) (31)

where Wφ(ϕ, θ) is the Wigner function for a phase state,
Eq. (7). Because of the finiteness of the Hilbert space
(unlike the x-p case), Wφ(ϕ, θ) is not proportional to
δ(ϕ−φ). However, for J large it becomes very narrow in
ϕ−φ and so the marginal distribution does approximate
the true phase distribution.

In the Wigner representation, the trends are quite
clear. The coherent state is approximately Gaussian with
standard deviation of order 1/N . In the optimal state,
the distribution is squeezed in φ, and so antisqueezed
in z ∝ cos θ. In the optimal 2ACT spin-squeezed state,
the phase squeezing has become so pronounced that the
antisqueezing has produced a significant disrtribution at
cos θ = ±1. This indicates that there is a part of the state
in a superposition of |J,−J〉z and |J, J〉z. This leads to
the small ripples in the Wigner function which alternate
between positive and negative values (as a function of
φ), characteristic of the superposition in the conjugate
variable Jz. This explains the oscillations seen in the
wings of the P (φ) distribution. In the Yurke state the
squeezing has become so large that the state has com-
pletely wrapped around the Bloch sphere: the distribu-
tion is equally weighted at φ = 0 and φ = π, and also
at cos θ = ±1. The ripples are now very pronounced,
but not equal in size. Finally, in the NOON state the
distribution is confined to cos θ = ±1. The ripples are
again very pronounced, and are equal in size, giving the
sinusoidal shape of P (φ) for this state.
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V. DISCUSSION

We have shown that for single shot measurement about
which there is no prior information, the spin squeezing
parameter ξ2 is not a good figure of merit. This mo-
tivated out introduction of a new parameter, ζ2, which
we call the phase squeezing. Like ξ2, it can scale in-
versely with the number of particles. We have also shown
that the optimal states (minimum ζ2) can be simply pro-
duced in an ensemble of spins by starting with a coher-
ent state (all spins pointing in the same direction) under
the well-known 2-axis counter-twisting (2ACT) Hamilto-
nian. This state is different from the optimal state for
spin squeezing as produced by this Hamiltonian, which
is also different from the globally optimal spin-squeezed
states.

There have been a variety of proposals for designing
a system with a non linear Hamiltonian [21, 24, 25]. So
far, however the greatest degree of spin (or phase) squeez-
ing observed has been created using quantum measure-
ment and feedback [26], as proposed in Refs. [27, 28].
As pointed out in Ref. [28], the feedback produces an
effective system Hamiltonian proportional to the 2-axis
counter-twisting Hamiltonian. Thus we expect that in
the ideal limit feedback based on a QND spin measure-
ment could also produce a state very close to the optimal
phase squeezed state. We note that for N ≫ 1 and mod-
erate degrees of squeezing (1 > ξ2 ≫ 1/N), the phase
squeezing is identical to the spin squeezing. Finally, it is

actually easier to produce optimal phase-squeezed states
than optimal spin-squeezed states because it requires a
lesser amount of squeezing.

To end, we comment on another method for creating
entangled states [29, 30] that has recently been imple-
mented experimentally [31]. What was done in this ex-
periment was to use “mode mashing” to create a (post-
selected) NOON state for photons. Specifically, the two
polarization modes of each photon play the role of the
two spin states. The procedure in this experiment can be
very simply modified to produce other entangled states
such as Yurke states and optimal phase-squeezed states.
At present experiments are limited to N = 3 photons, for
which the advantages of phase squeezed states are mini-
mal. However, it should be possible in the relatively near
future to produce a phase squeezed state with N > 5.
Using adaptive measurement techniques [4, 5] it would
then be possible to perform single shot optical phase es-
timation substantially better than the standard quantum
limit.

Acknowledgments

We wish to thank A. Steinberg and D. Pegg for dis-
cussions. This work was supported by the Australian
Research Council and the State of Queensland.

[1] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[2] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore,

and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).
[3] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett,

W. M. Itano, C. Monroe, and D. J. Wineland, Phys.
Rev. Lett. 86, 5870 (2001).

[4] D. W. Berry, H. M. Wiseman, and J. K. Breslin, Phys.
Rev. A 63, 053804 (2001).

[5] D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85,
5098 (2000).

[6] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J.
Heinzen, Phys. Rev. A 50, 67 (1994).

[7] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71,
13551358 (1993).

[8] X. Wang and B. C. Sanders, arXiv: quant-ph 0302014

(2003).
[9] B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).

[10] J. J. Bollinger, W. M. Itano, D. J. Heinzen, and D. J.
Wineland, Phys. Rev. A 54, R4649 (1996).

[11] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert,
M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865
(1997).

[12] B. C. Sanders, G. J. Milburn, and Z. Zhang, J. of Mod.

Opt. 44, 1309 (1997).
[13] S. M. Barnett and D. T. Pegg, Phys. Rev. A 41, 3427

(1990).
[14] S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. A

55, 1683 (1997).
[15] B. C. Sanders and G. J. Milburn, Phys. Rev. Lett. 75,

2944 (1995).
[16] A. S. Holevo, Probabilistic and Statistical Aspects of

Quantum Theory (North-Holland, Amsterdam, 1982).
[17] Z. Hradil and J. Rehacek, Acta. Phys. Slov. 46, 405

(1996).
[18] A. Andre and M. D. Lukin, Phys. Rev. A 65, 053819

(2002).
[19] J. K. Stockton, J. M. Geremia, A. C. Doherty, and

H. Mabuchi, Phys. Rev. A 67, 022112 (2003).
[20] A. S. Sorensen and K. Molmer, Phys. Rev. Lett. 86, 4431

(2001).
[21] A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Na-

ture 409, 63 (2001).
[22] J. C. Varilly and J. M. Gracia-Bondia, Annals of physics

190, 107 (1989).
[23] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[24] J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, Phys.



8

Coherent Phase Squeezed Spin Squeezed Yurke NOON

W (θ, φ)

P (φ)

−2 0 2
0

0.5
1

1.5
2

2.5
3

3.5

φ
−2 0 2

0
0.5

1
1.5

2
2.5

3
3.5

φ −2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

φ
−2 0 2

0
0.5

1
1.5

2
2.5

3
3.5

φ
−2 0 2

0
0.5

1
1.5

2
2.5

3
3.5

φ

x〈µ|ψ〉

−10 0 10
0

0.5

1

µ

−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ

y〈µ|ψ〉

−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ

z〈µ|ψ〉

−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ
−10 0 10
0

0.5

1

µ

FIG. 5: In this figure the five test states (plotted for N = 20) are in the columns; from left to right: |ψcoh〉 from Eq. (3),
|ψopt〉 from Eq. (15), |ψsss〉 from Eq. (19), |ψyur〉 from Eq. (5), and |ψNOON〉 from Eq. (6). The rows contain the properties of
these states that are of interest. The first row is an equal-area plot of the Wigner function W (φ, θ), the second is the phase
distribution (φ, P (φ)), while the final three rows are the angular momentum coefficients 〈J, µ|ψ〉 in the x,y and z directions
respectively.

Rev. Lett. 83, 1319 (1999).
[25] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev.

Lett. 85, 1594 (2000).
[26] J. M. Geremia, J. K. Stockton, and H. Mabuchi, Science

304, 270 (2004).
[27] L. Thomsen, S. Mancini, and H. M. Wiseman, Phys. Rev.

A (Rapid Comm.) 65, 061801 (2002).
[28] L. K. Thomsen, S. Mancini, and H. M. Wiseman, J. Phys.

B: At. Mol. Opt. Phys. 35, 4937 (2002).
[29] P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 65,

052104 (2002).
[30] J. Fiurasek, Phys. Rev. A 65, 053818 (2002).
[31] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg,

Nature 429, 161 (2004).


