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Abstract

Temporal information plays a crucial role in medicine, so that in medical informatics there is an increasing awareness

that suitable database approaches are needed to store and support it. Specifically, a great amount of clinical data (e.g.,

therapeutic data) are periodically repeated. Although an explicit treatment is possible in most cases, it causes severe

storage and disk I/O problems. In this paper, we propose an innovative approach to cope with periodic relational

medical data in an implicit way. We propose a new data model, representing periodic data in a compact (implicit)

way, which is a consistent extension of TSQL2 consensus approach. Then, we identify some important types of

temporal queries, and present query answering algorithms to answer them. Finally, we show experimentally that our

approach outperforms current explicit approaches.
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1. Introduction

Most clinical data (e.g., patients’ clinical records) are

naturally temporal. In order to be meaningfully in-

terpreted, patients’ symptoms, laboratory test results,

and, in general, all clinical data, must be paired with

the time in which they hold (called valid time hence-

forth). In many cases, medical data concerns events that

have to be repeated at periodic time. Such events in-

clude, e.g., routine activities that nurses have to perform

daily on hospitalized patients, as well as intrinsically re-

peated activities such as chemotherapy cycles, or dialy-

sis (which is usually an open-ended activity, since it has

to be performed for all the life of certain diabetic pa-
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tients). An explicit representation of all the repetitions

to be performed might be important, e.g., for schedul-

ing purposes and resource allocation. Nevertheless, it is

very costly, both in terms of storage allocation, and of

disk I/O when data have to be retrieved.

1.1. Periodic data in databases

Unfortunately, the research about temporal data has

widely demonstrated that the simple addition of some

timestamped attributes (e.g., the START and END times

for the valid time of a tuple) is not enough, since

many complex problems need to be tackled. ”<<Two

decades of research into temporal databases have un-

equivocally shown that a time-varying table, containing

certain kinds of DATE columns, is a completely different

animal than its cousin, the table without such columns.
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Effectively designing, querying, and modifying time-

varying tables requires a different set of approaches and

techniques than the traditional ones taught in database

courses and training seminars. Developers are natu-

rally unaware of these research results (and researchers

are often clueless as to the realities of real-world appli-

cation development). As such, developers often reinvent

concepts and techniques with little knowledge of the el-

egant conceptual framework that has evolved and re-

cently consolidated... >>” in [1], Section ”Preface”,

Subsection: ”A paradigm shift”, page XVIII.

For instance, Das and Musen have identified several

types of mismatches between the temporal support of

standard databases and the richness of clinical data [2];

analogously, James and Goble [3] have pointed out the

requirements that medical records impose on a tempo-

ral model. Designing, querying and modifying time-

varying tables requires a different set of techniques.

Such techniques have been studied in more than 25

years of research by the temporal database (TDB hence-

forth) community (consider, e.g., the overview [4]). Al-

though TDB is still an open area of research, many

researchers have already consolidated a ”basic core”

of results, by defining the TSQL2 consensus approach

[5]. In the medical area, several temporal database ap-

proaches have been devised. For instance, Chronus [6]

and Chronus II [7] have provided an implementation of

a subset of TSQL2 [5], with specific focus on valid time.

Terenziani and others have explored the impact of the

telic/atelic dichotomy [8] on medical data [9].

On the other hand, although periodic data1 are quite

frequent in the medical context, no approach has been

1It is worth mentioning that, according to the temporal Database

literature, we term periodic those data that have value-equivalent repe-

titions at periodic time (e.g., the periodic schedule of trains); data that

developed in order to cope with such data in an effi-

cient way. For instance, since periodic actions are an

intrinsic constituent of clinical guidelines, several ap-

proaches in the area have devised expressive languages

to represent complex periodic patterns (such as, e.g.,

those in chemotherapy treatments). Among others, As-

bru’s [10] and GLARE’s [11] [12] temporal languages

have been devised to model complex cases of periodi-

cally repeated actions. However, while in Asbru’s and

GLARE’s languages repetition patterns in the guide-

lines can be represented, to the best of our knowledge

no medical database approach has been devised to store

in a (relational) database the actual data modelling the

effective execution of repeated actions (e.g., dialysis) on

each specific patients on which it has to be physically

executed.

1.2. Explicit vs. implicit approaches

The trivial way to store a repeated action in a database

is to explicitly store all the repetitions of that ac-

tion. E.g., consider the following therapy for multiple

mieloma (such a therapy has been used as one of the

example of application of GLARE’s temporal represen-

tation language [11]).

Example 1 The therapy for multiple mieloma is made

by six cycles of 5-day treatment, each one followed

by a delay of 23 days (for a total time of 24 weeks).

Within each cycle of 5 days, 2 inner cycles can be distin-

guished: the melphalan treatment, to be provided twice

a day, for each of the 5 days, and the prednisone treat-

are acquired at periodic time, but may assume different values (e.g.,

periodic monitoring of blood pressure) are not taken into account in

this paper, as well as in all the approaches to periodic data referenced

in this paper.
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ment, to be provided once a day, for each of the 5 days.

These two treatments must be performed in parallel.

It may be important that such periodic actions (data)

are recorded in some way. For instance, such data are

important in order to schedule hospital personnel activ-

ities, and to manage resource allocation.

While GLARE’s representation language provides an

high-level language to represent such a periodic pattern,

a separate problem is to provide a proper support to

store the time of execution the actions on specific pa-

tients affected by multiple mieloma.

There is an obvious and trivial way to cope with peri-

odic data, namely by explicitly storing all of them. Such

an approach, usually called “explicit” (or “extensional”)

approach, basically reduces periodic data to standard

non-periodic ones. For instance, in a standard relational

database approach it would consist, for each patient, of

at least 90 tuples, modelling 60 melphalan applications,

and 30 prednisone applications. The obvious advantage

of such an approach is its simplicity: periodic temporal

data are simply coped with as standard temporal data,

so that any temporal Database approach in the literature

can suffice. Moreover, it makes all of the database im-

plementation simpler, from indexing to query process-

ing. However, the ”explicit” approach has a main disad-

vantages with respect to the implicit one:

• it is very expensive in term of physical disk I/O’s,

due to the high storage size. In many practical ap-

plication area, the number of repetitions (at peri-

odic time) of activities is high, and thus making ex-

plicit all the repetitions is space-demanding. Mak-

ing all such data explicit might rapidly reach a criti-

cal data size even for the most efficient commercial

DBMS, with dramatic consequences especially in

terms of physical disk I/O’s (see the experiments

in Section 5, considering the medical domain).

Additionally:

• the ”explicit” approach is not “commonsense” and

“human-oriented”: humans usually tend to ab-

stract, so that they usually prefer to manage peri-

odic data in an implicit way. For instance, in the

aforementioned example, the list of all 90 actions

is not probably the most user-friendly and perspic-

uous answer to a user wanting to know when activ-

ities must be performed;

• the ”explicit” approach is not feasible in the case of

“open ended” data (i.e., of data whose valid time is

open in the future, and for which there is no known

future end; consider, e.g. dialysis). Dealing with

open ended data one does not know the end point

of repetitions, so that no explicit elicitation of all

the data is possible.

However, an implicit treatment of periodic data in-

volves a major departure from traditional relational

database techniques, and a switch towards the Artificial

Intelligence techniques. Indeed, a common underlying

assumption of databases (with the exception of induc-

tive and logical databases) is that the data they con-

tain are explicit: tuples explicitly model all and only

the facts that one wants to consider. In such a context,

there is no need of any inferential mechanism to derive

new conclusions from the basic data: all conclusions

are already explicitly stated in the database. However,

if we move towards an implicit treatment of periodic

data, the above underlying assumption is no more valid:

not all data are explicit, and there must be some tech-

nique to ’make implicit knowledge explicit’ when re-

quired. As we will further discuss in section 3.1 in the
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following, symbolic manipulation techniques are thus

required, thus leading to the development of Artificial

Intelligence techniques.

For such reasons, in the area of temporal databases,

only few initial approaches have been devised to pro-

vide an implicit representation of periodically repeated

data (consider, e.g., [13], [14], [15]; see Section 6). In

such approaches, periodically repeated data are not ex-

plicitly elicited: on the other hand, the pattern of repeti-

tion is directly stored in the database, so that a compact

representation is achieved. However, to the best of our

knowledge, no ”implicit” approach to periodic data in

the literature has explicitly focused on issues related to

the efficient representation and management of period-

ical data. In this paper, we describe an approach over-

coming such a limitation, with specific focus on medical

data.

1.3. Goals and methodology

In summary, although there seems to be a gen-

eral agreement within the Database and Artificial In-

telligence literature that general-purpose implicit ap-

proaches are needed in order to cope with user-defined

periodic data, and despite the fact that a lot of such

approaches have been devised in the last two decades,

none of such approaches focus specifically on the def-

inition of a comprehensive relational approach coping

with user-defined periodic data efficiently, considering

• a relational implicit representation

• additional temporal operators, to ask, e.g., range

queries

• indexing and access

However, all such issues are fundamental for the

practical applicability of any medical Database consid-

ering periodic data. In our approach, we merge rela-

tional database and Artificial Intelligence techniques in

order to devise such a comprehensive approach and in

a “principled way”. Specifically, our approach has been

designed in such a way that

(1) our data model has the expressiveness to capture all

”periodic granularities”, as defined in the Database

literature [16], [17] (see property 1 defined further

on in the paper),

(2) our data model is a consistent extension of the

TSQL2 consensus model [5] (see property 2 de-

fined further on in the paper), and

(3) our temporal query operators are correct with re-

spect to conventional explicit approaches, in which

all the repetitions of periodic data are explicitly

stored (see property 3 defined further on in the pa-

per).

Property 1 grants that the expressiveness of our data

model is the one requested by the temporal Database

literature. On the other hand, property 2 grants that our

approach can be added on top of TSQL2 as a support

to cope with periodic data. In turn, it is worth noticing

that TSQL2 has been proven to be a consistent extension

of the standard relational model, and can be reduced to

it in case time is disregarded. Therefore, property 2 is

essential, since it grants the interoperability of our ap-

proach with pre-existent TSQL2 and with standard re-

lational data. Finally, property 3 grants that, although

periodic data are only implicitly stored, we get the same

(correct) results obtained with traditional (i.e., fully ex-

plicit) models. Moreover, in this paper we also provide

testing, to show the advantages of our approach with re-

spect to conventional explicit approaches, especially in
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terms of disk I/O’s and query response time.

On the other hand, in this paper:

• We do not address the treatment of the transaction

time of events (i.e., the time when events are ‘in-

serted in, or deleted from’ the database [18]) since

no periodicity issue is usually involved by it. As

a matter of fact, transaction time is orthogonal to

valid time (i.e., the time when the fact described by

the tuples takes place). As a consequence, the ap-

proach dealing with the (periodic) valid time pro-

posed in this paper can be trivially extended to deal

also with transaction time, by coping with transac-

tion time in the standard way proposed in the tem-

poral database literature.

• Although in this paper we cope with user-defined

periodic granularities we assume that each periodic

granularity is directly expressed in terms of a “bot-

tom” granularity (e.g., “seconds”; as we will see,

this is not a limitation, given the definition of pe-

riodic granularity). Therefore, in this paper, we

are not interested to cope with issues concerning,

e.g., conversions between periodic granularities, or

properties of relations between them (except that

to the bottom one), which is, on the other hand, a

main focus of other approaches dealing with multi-

ple (possibly periodic) granularities (consider, e.g.,

[5], [15], [19], [20]).

1.4. Summary

The rest of the paper is organized as follows. Section

2 is a preliminary one, in which we first briefly recall

TSQL2 approach, and then we report the basic defini-

tions of periodic and quasi-periodic temporal granulari-

ties [16] (where quasi-periodic granularities extend pe-

riodic granularities to cope with finite exceptions). In

Section 3 we first propose an abstract implicit represen-

tation of quasi-periodic granularities, and then we pro-

pose an extended relational temporal data model coping

with it. Temporal range queries are particularly impor-

tant in the temporal Database context [21]. In Section 4

we identify different types of temporal range queries in

the context of periodic data, and we devise algorithms

to cope with them, showing that they are correct. In

section 5, we present an experimental evaluation of our

approach, showing its advantages with respect to the

“traditional” explicit approach. In section 6, we present

related works and comparisons. Finally, section 7 ad-

dresses conclusions, comparisons and future work.

A preliminary and short version (5 pages) of the work

reported in this paper has been published in the Proceed-

ings of the Medinfo’2010 Conference [22].

2. Preliminaries

In order to set the stage, we first briefly introduce

TSQL2. We then introduce the basic definitions in the

Database literature on which our approach is grounded.

2.1. TSQL2 data model

In general, (temporal) databases are used to store both

the non-temporal data (in the form of tuples belonging

to relations, if the relational model is used) and the tem-

poral aspects (e.g., the valid times) concerning it. In

many approaches (and, in particular, in TSQL2), valid

time is associated to relational tuples, in the form of a

pair of timestamps (the first denoting the starting point

of the valid time, and the second its ending point).

Definition 1 (TSQL2 valid time relation). Given any

schema R = (A1, . . . ,An) (where A1, . . . ,An are stan-

dard non-temporal attributes), a valid time relation r
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in TSQL2 is a relation defined over the schema RV =

(A1, . . . ,An | V TS,V TE) where V TS and V TE are times-

tamps representing the starting and the ending time of

the valid time period respectively.

In this paper, we propose a generalization of such an

approach, in order to cope also, in an “implicit” way,

with “quasi-periodic” data.

Definition 2 (Quasi-periodic data). In the following,

we use the term “quasi-periodic” data (tuple) to refer

to data (tuples) holding at periodic valid times (i.e., to

data holding on (quasi-) periodic granularities).

2.2. (Quasi)-Periodic granularities

In this preliminary section, we give the definition of

granularity taken from the temporal database glossary

[17], and its successive extension to cover periodic and

quasi-periodic temporal granularities [16]. Such defi-

nitions are the basis for our treatment of periodic data

(i.e., data whose validity time can be described by user-

defined periodic granularities).

Definition 3 (Time domain) A time domain is a pair

(T,≤), where T is a non-empty set of time instants and

≤ is a total order on T .

The time domain can be (Z,≤), (N,≤), or (R,≤).

Definition 4 (Granularity) A granularity is a mapping

G from the integers (the index set) to subsets of the gen-

eral time domain such that:

(i) if i < j and G(i) and G( j) are not empty, then each

element of G(i) is less than all elements of G( j),

and

(ii) if i < k < j and G(i) and G( j) are not empty, then

G(k) is not empty.

Basically, condition (i) grants that the granules in a

granularity do not overlap in time, and that their indexes

are ordered consistently with the time domain; condi-

tion (ii) states that the elements of the index domain

that map onto non-empty subsets of the time domain

are contiguous.

Definition 5 (Granule) Each nonempty subset of the

time domain in the image of a granularity is called gran-

ule.

Granules have a specific topology induced by the

granularity function. In particular, the granularity de-

fines a distinguished origin granule, e.g., G(0). Granu-

larities provide a formal representation of abstract cal-

endric concepts. In this paper, we restrict our attention

to periodic and quasi-periodic granularities. The formal

definition requires the definition of some relationships

between granularities.

Definition 6 (groups into) A granularity G groups into

a granularity H, if for each index j of H there exists a

subset S of the integers such that H( j) =
⋃

i∈S G(i).

Intuitively, G groups into H if each granule of H is

the union of a set of granules of G (e.g., days groups

into weeks). Periodic and quasi-periodic granularities

can now be defined. For the sake of clarity, we will

adopt Example 1 to exemplify them, but we stress that

our methodology is general. In particular, we focus on

the administration of prednisone to a specific patient,

starting, e.g., at DAY 100 (we call PRED such a granu-

larity).

Definition 7 (periodically groups into) A granularity G

periodically groups into a granularity H if

(i) G groups into H, and
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(ii) there exist positive integers n and m, where n is

less than the number of nonempty granules of H,

such that for all i ∈ Z, if H(i) =
⋃k

r=0 G( jr) and

H(i+n) , /0, then H(i+n) =
⋃k

r=0 G( jr +m).

In the definition, each granule H(i) of H is consti-

tuted by k+ 1 granules of G, n is the cardinality of the

repetition pattern (i.e., the number of periods it con-

tains), and m is its duration. For instance, let us con-

sider the user-defined granularity PRED in Example 1.

Each granule in PRED is composed by a set of gran-

ules of DAY (i.e., DAY groups into PRED). Indeed,

this is a specific case with respect to the general defi-

nition 7, since each granule in PRED is composed by

exactly one granule of DAY (i.e., k = 0 in the above

definition). For instance, the first granule PRED(0) of

PRED is the granule DAY(100). The second condi-

tion in definition 7 demands that such a “group into”

relation must be characterized by a periodic repetition

of the “grouping pattern”. An instance of the “group-

ing patters” (e.g., the instance concerning PRED(0)) is:

PRED(0) = {DAY (100)}

PRED(1) = {DAY (101)}

PRED(2) = {DAY (102)}

PRED(3) = {DAY (103)}

PRED(4) = {DAY (104)}

This pattern repeats every 28 granules of DAY (e.g.,

each four weeks). Therefore, considering definition 7,

for example 1 we have n=5 (since the periodic pattern

contains 5 periods) and m=28, since its duration is four

weeks (i.e., 28 days). For instance, from the defini-

tion 7 above, we trivially have that (PRED(0 + 5) =

{DAY(100+28)}.

Intuitively, the quasi-periodic groups-into relation is

basically a periodic groups-into relation, but with the

addition of some “additional granules”, which are not

periodic. For example, let us suppose that two ad-

ditional administrations of prednisone have to be per-

formed on the patient at days 268 and 269 (henceforth

we call PRED+ such a granularity).

Definition 8 (quasi-periodically groups into) A granu-

larity G quasi-periodically groups into a granularity H

if

(i) G groups into H, and

(ii) there exists a finite set of finite intervals E1, . . . ,Ez

(the granularity exceptions) and positive integers n

and m, where n is less than the minimum of the

number of granules of H between any two excep-

tions, such that for all i ∈ Z, if H(i) =
⋃k

r=0 G( jr)

and H(i+ n) , /0, and i+ n < min(E), where E is

the closest existing exception after H(i) (if such

exception exists; otherwise E = max(k|H(k) , /0),

then H(i+n) =
⋃k

r=0 G( jr +m).

E1, . . . ,Ez represent the additional granularities to be

added to the periodic pattern (i.e., the positive excep-

tions). Intuitively, with respect to definition 7 above,

this definition restricts the periodical behavior of the

granules of H, characterized by n and m, to hold only

between pairs of consecutive exceptions. I.e., it states

that the relation H(i+ n) =
⋃k

r=0 G( jr +m) holds only

for those granules such that there are no exceptions be-

tween them. This is trivially true in our example (again,

with n = 5 and m = 28), where the exceptions occur af-

ter all the granules of PRED+ that repeat in a periodic

way. Thus, from definition 8 we have that DAY quasi-

periodically groups into PRED+.
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Finally, the definition of periodic and quasi-periodic

granularities is given in [16] in terms of a bottom gran-

ularity.

Definition 9 (Quasi-periodic granularity) A periodic

(resp. quasi-periodic) granularity is a granularity pe-

riodic (resp. quasi-periodic) with respect to the bottom

granularity.

As a consequence, taking days (or hours, or minuts,

etc.) as the bottom granularity, we have that that (from

definition 9) PRED is a periodic granularity and PRED+

is a quasi-periodic granularity.

3. Representing (quasi)-periodic granularities

In this section, we propose a representation of

(quasi)-periodic granularities, based on the above gen-

eral definitions.

3.1. Symbolic manipulation on databases

Before moving towards the representation, it is worth

considering the implications of the move towards an im-

plicit representation of periodic data.

In Figure 1, we graphically show the basic notions

underlying our representation. The “Explicit Represen-

tation” part of the figure shows what periodic data ac-

tually is: a sequence of time periods which repeat reg-

ularly on the time line. Usually, only a part (henceforth

called Frame Time) of the whole timeline is considered

(i.e., repetitions are bounded). Given some (bounded

or unbounded) periodic activity, a range query may ask

whether such an activity has to be performed within a

specific time period Q or not (Q has been delimited

by dotted vertical bars in Figure 1). If we have in the

database an explicit representation of all the time pe-

riods for the periodic activity, the range query can be

easily answered by looking whether there is an intersec-

tion between those periods and Q (see the upper part of

Figure 1).

However, as discussed in the introduction, an ex-

plicit representation of periodic data has several limi-

tations. An implicit representation can be used to over-

come them. In an implicit definition, one can isolate

the pattern of periods that repeat regularly in time, and

the duration ‘P’ at which they repeat. Only one pattern

must be explicitly represented, with the intended mean-

ing that such a pattern is a sort of “prototype” that re-

peats regularly every ‘P’ in time. In other words, an im-

plicit representation is a compact representation, whose

explicit meaning is the corresponding explicit model.

The implicit representation is space-effective, but an-

swering the above range query Q on the basis of the

implicit representation is more complex with respect to

the conventional explicit case, since data are not explic-

itly available. Indeed, a trivial strategy could be to con-

vert all implicit data into explicit ones before answering

queries. However, such a strategy is inefficient, both

from the space and the time complexity points of view.

A more efficient strategy requires that query answer-

ing operates directly on the implicit representation, per-

forming some form of symbolic manipulation on it. In

such a way, one can operate on the compact represen-

tation, saving space and, hopefully, time. This strategy

involves the development of a typical Artificial Intelli-

gence approach, operating symbolic manipulation and

inferences on implicit (and compact) representations of

data. Also, it requires a form of theoretical validation:

we to prove that the results we obtain by operating sym-

bolically on the implicit representation are the same that

would be obtained (in a much less efficient way) by

operating on explicit data (as in the usual database ap-
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proaches). Such a correctness property has been proved

as regards our symbolic approach to query answering.

Figure 1: Representations of Periodic data

We first provide a suitable “abstract” representation

of quasi-periodic granularities (subsection 3.2), and

then we identify its counterpart in a relational environ-

ment (subsection 3.3).

3.2. An implicit representation of quasi-periodic gran-

ularities

In order to provide an ‘abstract” implicit representa-

tion of quasi-periodic granularities, we start from the

below property, taken from [16]:

Property 1 (finite representation)

The groups periodically into relation guarantees that

granularity H can be finitely described in terms of gran-

ules of G providing the following information:

(i) the finite sets S0, . . . ,Sn−1 of indexes of G each one

describing the composition of one of the n repeat-

ing non-empty granules of H;

(ii) the value m;

(iii) the indexes of the first and last non-empty granules

in H, if their value is not infinite.

Terminology & Notation. In the following, we term

“periodic pattern” the indexes of G describing the com-

position of the n repeating granules of H; we call the

value m “duration of the periodic pattern”; additionally,

we term “frame time” the period of time spanning from

the first and last non-empty granules in H. For gener-

ality, we also admit (minus and plus) infinite as legal

extremes of a frame time.

Applying Property 1 to our periodic granularity

PRED (i.e., substituting H = PRED and G = DAY) we

could have the following representation for PRED:

(i) PRED(0) = {DAY (100)}

PRED(1) = {DAY (101)}

PRED(2) = {DAY (102)}

PRED(3) = {DAY (103)}

PRED(4) = {DAY (104)}

(ii) m = 28

(iii) 100, 244

The property above is the starting point for devising

our implicit representation for periodic data. We no-

ticed that such an initial representation can be simplified

along the following lines.

(a) First of all, if all granularities are expressed in

terms of the bottom granularity, the bottom gran-

ularity may be left implicit. For instance, in our

example, the representation of item (i) may be sim-

plified, stating, e.g., PRED(0) = {100} and so on.

(b) Second, contiguous granules of the bottom granu-

larity can be more compactly represented as (con-

vex) periods. For instance, the set of the days

{100,101,102,103,104,108,109,110} can be com-

pactly represented by {[100,104],[108,110]}. This

simplification does not apply to our (simple) exam-

ple.
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(c) Third, it is worth remembering that any “periodic

pattern” can be chosen in order to represent it.

Thus, if, without any loss of generality, we adopt

the convention that the chosen “periodic pattern”

is the first one starting at (or immediately after) the

granule “0” of the bottom granularity (DAY(0) in

our example). In such a way in our representation

also indexes of the granules of the quasi-periodic

granularity may be left implicit.

Notice that simplifications (a) and (c) together are

very important, since they allow us to keep all the in-

dexes implicit in the representation, making it much

more compact and easy.

Finally, in the case of quasi-periodic granularities, a

further component must be considered into the repre-

sentation, namely, the list of the non-periodic repeti-

tions.

In other words, besides time periods which repeats

periodically in time, we also optionally add a set of pe-

riods that do not follow such periodic pattern (the re-

moval of some periods from the pattern is also possible,

as discussed in the concluding section). Such additional

periods constitute an explicit part of our representation,

and model the possible positive exceptions to the peri-

odic pattern. For such a reason, such additional peri-

ods may be during the periodic pattern (i.e., during the

frame time), and also before or after it.

Remark Even in case additional non-periodic repeti-

tions are considered, we retain the original definition for

the frame time: in our approach, the frame time bounds

the periodic pattern, and additional non-periodic repeti-

tions may be inside and/or outside it.

To summarize, we propose the following implicit rep-

resentation of a quasi-periodic granularity G:

Definition 10 In our approach, given a bottom granu-

larity B, a quasi-periodic granularity G is represented

by a quadruple

G = 〈P, IP, IE ,FT 〉

where P is an integer representing the duration of the

periodic pattern; IP is the set of the convex periods in

the first “periodic pattern” (after the granule “0” of the

bottom granularity); IE is the set of the convex periods

constituting the aperiodic part; FT is a period consti-

tuting the frame time. (In turn, a period having as first

granule the bottom granule B(i) and as last granule the

bottom granule B( j) is represented by “[i, j]”.)

Example 2 Coming back to our working shift example,

PRED and PRED+ are represented in our formalism as

follows:

PRED = 〈28,{100,101,102,103,104},{}, [100,244]〉

PRED+= 〈28,{100,101,102,103,104},{268,269},

[100,244]〉

3.3. A relational representation of quasi-periodic data

Let us now analyze how such an abstract representa-

tion can be modelled in the relational context.

3.3.1. Data model for implicit periodic data

The abstract representation of quasi-periodic granu-

larities we presented in subsection 3.2 is the basis to

define our extended model, coping with quasi-periodic

data in a relational environment. However, several as-

pects need to be investigated, and choices done. For

instance, we could associate a unique identifier to each

user-defined quasi-periodic granularity, and extend the

data model with just an additional attribute, used in or-

der to pair each tuple with the identifier of the granular-

ity. One (or more) dedicated tables could then be used in
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order to associate with each identifier the “implicit” de-

scription of the granularity they denote. Although quite

simple, such a solution presents several drawbacks. In

particular, from the theoretical point of view, such a so-

lution is not a “consistent extension” of the usual repre-

sentation of valid time (e.g., the one adopted in TSQL2),

in which, as sketched above, valid time is represented by

a pair of timestamps. Devising a “consistent extension”

of the model used in a “consensus” approach such as

TSQL2 is one of the main desiderata of our approach,

since it guarantees that the “consensus” approach can

be seen as a subcase of our general framework, so that it

can be still used in order to deal with simple (i.e., non-

periodic) cases. Moreover, our model is also based on

the two considerations below:

• Given a periodic tuple, its “frame time” can be in-

terpreted, roughly speaking, as a rough approxima-

tion of its “valid time”, in the sense that it contains

all the time periods in which the tuple holds.

• Given a quasi-periodic tuple, the “non-periodic”

part of its granularity can be simply represented by

a set of time periods, i.e., of “standard” valid times

in the “consensus” approach.

We can now define our new data model (called “peri-

odic” data model) as follows:

Definition 11 (periodic relation). Given any schema

R = (A1, . . . ,An) (where A1, . . . ,An are standard non-

temporal attributes), a periodic relation r is a re-

lation defined over the schema RP = (A1, . . . ,An |

V TS,V TE ,Per,Perid) where

• V TS is a timestamp representing the starting point

of the “frame time”

• V TE is a timestamp representing the ending point

of the “frame time”

• Per is an interval, representing the duration of the

repetition pattern

• Perid is an identifier, denoting a periodic pattern

In addition, in order to code periodic patterns, an ad-

ditional dedicated relation (a valid-time relation, in the

sense of TSQL2) is needed (called Periodicity rela-

tion henceforth).

Definition 12 (Periodicity relation). The periodicity

relation Periodicity is a relation over the schema

(Periodicity ID, Start, End), in which

• Periodicity ID is a textual attribute containing

identifiers denoting periodic patterns, Perid in Def-

inition 11

• Start and End are temporal attributes (timestamps)

denoting the starting and the ending points of the

periods in the periodic pattern.

It is important to notice that, by construction, the tem-

poral attributes of our periodic relations, in conjunction

with the Periodicity relation, allow us to capture the im-

plicit definitions of periodic and quasi-periodic granu-

larities, so that the following property holds:

Property 1. [Expressiveness] Our extended relational

data model can represent periodic and quasi-periodic

granularities, as defined in [16].

Moreover, it is worth noticing that the non-periodic

part of quasi-periodic data can be easily represented as

a degenerate case of the periodic one. In fact, consider

a quasi-periodic tuple t belonging to a periodic rela-

tion r, and having as aperiodic part a set of the con-

vex periods p1, . . . , pk. Its aperiodic part can be simply
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coded in r, by using k tuples value-equivalent [5] to t

(i.e., having the same values as t as concerns the non-

temporal values), each one having as V TS and V TE the

starting and ending point of one of the periods (i.e., one

of {p1, . . . , pk}), and NULL values for the other tempo-

ral attributes (i.e., Per, and Per id are set to NULL;2).

As a consequence, a database in our model can be

defined as follows:

Definition 13 (database) In our extended model, a

database is a set of periodic relations (see definition 11),

plus a dedicated periodicity relation.

Notice that, for the sake of efficiency, in our ap-

proach a database can also contain valid-time relations

and standard non-temporal relations (even if this is not

strictly necessary, from the theoretical point of view;).3

However, since our treatment of such relations is the

standard one, in the rest of this paper, we just focus on

periodic relations.

As an example, let us suppose to consider a periodic

relation Activity, coping with the scheduled activi-

ties in an hospital. Each activity is simply represented

by an activity identifier (attribute ActID), a textual de-

scriptor of the activity type (attribute Act) and by the

(identifier of the) patient for which the activity is per-

formed (attribute PatientID), plus the temporal part. As

an example, let us suppose that the prednisone treat-

ment discussed in example 1 has to be performed on

patient ‘John’ at the quasi-periodic time PRED+ de-

fined above. The corresponding representation in our

extended relational model is shown in Tables 1 and 2.

2In order to avoid to overload the NULL value, we could also

choose to represent aperiodic tuples by specifying Per as the duration

of their valid time, and Per id as a pre-defined default value
3Moreover, we can also deal with transaction time [5].

ActID Acr PatientID V TS V TE Per Perid

1 A John 100 244 28 P1

2 A John 268 268 Null Null

3 A John 269 269 Null Null

Table 1: Activity periodic relation – Implicit model

Pattern ID Start End

P1 100 100

P1 101 101

P1 102 102

P1 103 103

P1 104 104

Table 2: Periodicity relation – Implicit model

3.3.2. Relations between our implicit model and TSQL2

data model

It is interesting to analyze the relationships between

our extended model and the TSQL2 data model (which,

in turn, is an upward compatible extension of the stan-

dard SQL non-temporal one [5]).

Actually, a TSQL2 valid-time relation can be seen as

a degenerate case of a periodic relation in our approach,

in which:

• the valid time corresponds to the frame time

• the (periodic) pattern exactly covers the whole

frame time

In other words, we may interpret a TSQL2 valid-time

tuple starting at V TS and ending at V TE as a degenerate

tuple of a periodic relation, having as frame time the pe-

riod starting at V TS and ending at V TE . Such a tuple is

degenerate, in the sense that its periodic pattern covers

exactly the frame time (i.e., there is exactly one repe-

tition of the tuple, holding exactly on the whole frame

12



ActID Act PatientID V TS V TE

1 A John 100 100

2 A John 101 101

· · · · · · · · · · · · · · ·

30 A John 244 244

31 A John 268 268

32 A John 269 269

Table 3: Activity Expl relation – Explicit model

time).

As a consequence, valid-time TSQL2 relations can be

modelled (although not efficiently) as periodic relations

having NULL values for the Per and Perid attributes.

As a desirable side effect, we can easily code non-

periodic valid-time tuples in our model, as periodic

tuples having NULL values for the Per and Perid at-

tributes. Therefore, standard TSQL2 tuples (and rela-

tions) can be modelled in our approach. In this sense,

we can say that the following property holds:

Property 2. [consistent extension] Our data model is a

“consistent extension” of TSQL2 data model.

3.3.3. Explicit representation of periodic data

In the experimental part of this paper, we will use

range queries to compare our approach based on im-

plicit modelling with the explicit approach. In the fol-

lowing, we show an explicit (TSQL2-style) representa-

tion corresponding to the implicit representation (called

Activity Expl) in relation Activity above. Table 3

explicitly represents a part of the data implicitly repre-

sented in Tables 1 and 2 above.

4. Range Queries about Implicit Periodic Data

In this and in the following sections, we focus on the

issue of providing an efficient query answering method-

ology operating on our implicit data model. To the best

of our knowledge, no implicit approach in the literature

about user-defined periodic data has addressed such a

fundamental issue. We identify three different types of

range queries, and, for each of them, we propose effi-

cient query answering algorithms. We also show that

our approach is corrrect, in the sense that it provides the

same results of standard querying on the explicit stan-

dard model for periodic data.

Range queries are particularly relevant in the context

of temporal databases [21]. Specifically, the type of

query we deal with is the following: given a set of quasi-

periodic data (e.g., activities in the Activity table) and

a period denoting the span of time one is interested in in

the query (e.g., from DAY 110 to DAY 120), one wants

to know which data holds during such a time period.4

In the context of periodic data, we identify three dif-

ferent types or range queries, depending on whether:

• one is interested in the non-temporal part of the

tuples only (e.g., What activities have to be per-

formed from DAY 110 to DAY 120 and on which

patients? These queries will be called “atemporal

range queries” henceforth)

• one is interested in the tuples and in their implicit

time (e.g., What activities have to be performed

from DAY 110 to DAY 120, on which patients, and

when? Here the time in the output must be still

reported following the implicit representation used

4Point queries are an easiest version of range queries, in which

only a time point is taken into account in the query.
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in the input data. These queries are called “implicit

temporal range queries” henceforth)

• one is interested in the tuples and in their explicit

time (e.g., what activities have to be performed

from DAY 110 to DAY 120, and on which patients?

For each activity, list all the periods they have to be

performed - within the query period; Called “ex-

plicit temporal range queries” henceforth).

4.1. Atemporal Range Queries

In the following, we describe at an abstract level the

algorithm for atemporal range queries. The algorithm

takes in input

• a periodic relation r

• a period PQ (the range of time requested by the

query)

and gives as output a non-temporal relation containing

all the (non-temporal part of the) tuples occurring (at

least partially) during PQ.

Notation. In Atemporal range and in the following al-

gorithms, we denote by t[Atemp] the non-temporal part

of a (periodic) tuple t, and by t[X ] the value of the tem-

poral attribute X in the tuple t.

First, non-periodic tuples (i.e., “standard validity-

time” tuples, if any, and the non-periodic part of pe-

riodic tuples) are considered. If the period starting

from V TS and ending in V TE intersects the query pe-

riod PQ, they (or, better, their non-temporal part) are re-

ported in output. Then, periodic tuples are taken into

account. While Intersects implements standard check

of intersection between two periods, in the case of pe-

riodic tuples (i.e., tuples such that PID , NULL) the

Input: r: periodic relation, PQ: period

Output: r′: atemporal relation

r′←⊘;

raper ← Select * From r Where PerID=NULL;

rper ← Select * from r Where PerID , NULL;

foreach tuple t ∈ raper do

if NOT (t[Atemp] ∈ r′) then

Let Pt be the period [t[V TS], t[V TE ]];

if Intersects(Pt ,PQ) then

r′← r′∪{t[Atemp]}

end

end

end

foreach tuple t ∈ rper do

if NOT (t[Atemp] ∈ r′) then

if Check Periodic Intersection(t,PQ) then

r′← r′∪{t[Atemp]}

end

end

end

return (r′)
Algorithm 1: Atemporal range queries

valid time is expressed only in an implicit way, so that

Check Periodic Intersection has to be called.

Notice that the algorithm is optimised in such a way

that:

• Easier cases (i.e., cases in which the valid time is

not implicit) are considered first

• Whenever a tuple is inserted in the output rela-

tion, its value-equivalent tuples (i.e., tuples with

the same values for the non-temporal attributes)

are no more analyzed (since they couldn’t add any-

thing to the output relation)
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Check Periodic Intersection has as input a periodic

tuple (such that PerID , NULL), and the query period

PQ, and checks whether there is an intersection.

Input: (t: periodic tuple; PQ:period)

Output: boolean

let Pt be the period [t[V TS], t[V TE ]];

if Intersects(Pt , PQ) then

Let P′← Pt

⋂
PQ;

if duration(P′) ≥ t[Per] then

return (TRUE);

else

Pset ←

get periods(t[PerID], Periodicity);

if

G Intersects(circular module(P’, t[Per]),

circular module(Pset, t[Per])) then

return (TRUE);

else

return (FALSE);

end

end

end

Algorithm 2: Check Periodic Intersection

First, the Frame Time Pt = [t[V TS], t[V TE ]] is checked:

the data can be in the answer just in case the Frame

Time intersects the query interval PQ. In such a case,

however, we have to further check if there is an inter-

section between some of the repetitions and the query

interval. Henceforth, only the part of the query period

that intersects the Frame Time must be considered (i.e.,

P′, which is set to Pt

⋂
PQ), since the other part cannot

obviously overlap any of the repetitions. A first short-

cut check might be done by comparing the temporal

duration of P′ to the duration of the repetition pattern

t[Per]. If P′ is longer, then it will obviously contain at

least one of the repetitions, so that the check evaluates to

TRUE (in the following, we will call “OPT” such an op-

timization of the algorithm). Otherwise, since periods

repeat regularly, with period t[Per], we have to check

for intersections “modulo t[Per]”. In fact, both the peri-

ods in the periodic pattern (identified by t[PerID], and

retrieved from the Periodicity system table by the

get periods function) and P′ must be “shifted” onto a

common period. For the sake of simplicity and effi-

ciency, we choose to shift them to the period identified

by the first possible occurrence of the periodic pattern

after the reference time. This operation is performed by

the “circular module” operation, and then intersections

can be checked.5 The “circular module” operation is

basically a standard module operation which operates

on the endpoints of all the input periods, with the cau-

tion that, since the pattern is periodic, it must be inter-

preted in a “circular” fashion with respect to the com-

mon period. Finally, notice that G Intersects is a trivial

generalization of the Intersects predicate, in case the

second argument is a set of periods.

4.2. Implicit temporal range queries

The algorithm for implicit temporal range queries is

quite an easy adaptation of the algorithms above. In

particular, the only difference is the fact that also the

temporal part of the tuples must be reported in the

output. Therefore, as regards the non-periodic tuples,

value-equivalent tuples (with different values for V TS

and V TE ) must be reported in the output. Periodic tuples

5Alternatively, all the periods identified by t[PerID] could be

shifted towards P′. However, such a procedure is less efficient.
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are analysed independently of whether value-equivalent

tuples are already part of the output: if their valid time

intersects the query period, they are reported in the out-

put, with their implicit temporal part. Notice that the

values of the V TS and V TE temporal attributes are mod-

ified, in such a way that only the part of the original

frame time that intersects the query period is reported

in the output. On the other hand, the input pattern that

implicitly represents the periodicity of the tuples is re-

ported unchanged in the output.

4.3. Explicit temporal range queries

The algorithm for explicit temporal range queries is

an adaptation of the algorithms above. The only concep-

tual shift is the following: whenever a periodic tuple has

to be reported in the output, it has to be converted into

a set of value-equivalent tuples, having as non-temporal

part the non-temporal part of the periodic tuple, and as

temporal part (i.e., as values of the V TS and V TE compo-

nents) one of the periods obtained by generating explic-

itly all the periods that intersect the query period that are

denoted by the implicit representation. Basically, such

an algorithm interprets the periodic pattern as a circular

list, and generates only the periods which are included

in the intersection between the frame time and the query

period. However, several cases have to be taken into ac-

count, and several optimizations can be used.

4.4. Correctness of the method

The algorithms above operate on the implicit model,

to answer range queries. Our method is correct, in the

sense that it provides the same results provided by the

explicit approach (on explicit data). Only the algorithms

for atemporal range queries and explicit temporal range

queries have been considered here, since implicit tem-

poral range queries have no correspondent in the explicit

approach (since the explicit approach cannot provide

implicit output).

Property 3. [Correctness] Range query answering al-

gorithms, operating on the extended temporal model,

are correct with respect to the explicit approach.

5. Empirical testing

In order to show the practical relevance of our im-

plicit approach to efficiently manage periodic data, we

have performed an extensive experimental evaluation.

In particular, we have compared the performance of our

approach with respect to the one of the standard explicit

one.

We remark here that, with the term “explicit” ap-

proach, we mean the approach in which periodic data

are explicitly stored (see e.g., table Activity Expl in

Section 3), so that queries operate directly on such a

representation.

All experimental results presented in this section are

computed on a four 450MHZ CPU - SUN UltraSparc

II processor machine, running Oracle 10.2.0 RDBMS,

with a database block size of 8K and SGA size of

500MB. At the times of testing the database server did

not have any other significant load. We used Oracle

built-in methods for statistics collection, analytic SQL

functions, and the PL/SQL procedural runtime environ-

ment.

We chose to compare our results considering the fol-

lowing parameters: space usage, physical I/O, CPU us-

age, and query response time. We will especially focus

on physical I/O, since it is usually considered to be the
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most important one while evaluating efficiency of ac-

cessing data [32].

We run two different sets of experiments, on two dif-

ferent data sets. In the first, we compare our approach

to the explicit one, showing that we outperform current

explicit approaches, even of a factor of 20 as regards the

Disk I/O. The first set of experiments also shows that

there is a trade-off: our implicit approach save space

and physical disk accesses, at the prize of expending

relatively more CPU time. In the second set of exper-

iments, we explore such a trade-off, showing that the

results of our approach improve when the ratio between

the size of the implicit representation and the size of the

explicit one becomes smaller.

5.1. Data sets

For the testing, we have chosen to run two different

types of experiments:

• One type of experiments takes advantage of pre-

vious experiences in the medical informatics do-

main.

• The second type of experiments takes into account

completely ad-hoc data, artificially generated in

order to study the impact of different parameters

(and, in particular, of the explicit/implicit ratio -

see subsection 5.5).

As a matter of fact, many activities are routinely ex-

ecuted at periodic time by nurses on hospitalized pa-

tients. Additionally, many medical therapies are a sig-

nificant example of activities to be repeated at a periodic

time [11]. There are also cases of open-ended repeated

activities (e.g., dialysis on diabetic patients must usually

be performed twice or three times each week, for all the

life of the patient). Moreover, data in hospitals are nec-

essarily historical, since hospitals need to maintain the

past history of their patients (as well as to store future

data to schedule part of patients’ future treatments).

Figure 2: Average number of new periodic activities per day over the

Frame time start

Privacy motivations impose that we do not have cur-

rently available real medical data. However, based on

our experience in the area, we have generated periodic

data to simulate real applications scenarios. The follow-

ing data distributions parameters have been considered

(we used hour as the basic granularity):

• Number of Patients 16,824

• Average number of periodic activities per patient

8.30

• Average number of periods in a periodic pattern =

4.86

• Average duration of period of periodic patterns =

87.56

• Average duration of the frame time 1169

• Distribution of the frame time – see Figure 2 where

we assume NOW=January 1, 2009; It can be seen

that during the past the number of new activities
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Duration Pecentage

Hour %

1 2.00

2 1.57

4 2.07

6 5.08

12 9.29

24 37.94

48 6.09

168 31.12

720 2.53

Random 2.30

Table 4: Distribution of duration of period of repetition.

is slightly increasing, while future data are reduc-

ing (in fact, it is likely to know new activities in

next week or month but not much more far in the

future).

• Distribution of the duration of periodic pattern; this

parameter is shown in Table 4, where it can be seen

that the majority of periodic activities are repeated

daily or weekly.

• Non periodic tuples constitute about 5% of the

data.

Despite the fact that periodic data in a hospital in-

clude also open ended data (since the ending time of the

frame time may be unknown, as in the case of patients

needing a therapy for all the rest of their life) in this test-

ing we could not include such data because the explicit

representation cannot support it.

5.2. Data Indexing

Different indexing methods can be applied in order to

retrieve data avoiding to scan the full data space. When

more than one dimension exist, as in the case of tem-

poral interval data (e.g., when both a starting and an

ending time are present for each tuple), different access

methods have been presented in the literature and some

of them have been recommended for handling temporal

data [27], [28], [29]. The effectiveness of the majority

of these index structures has been theoretically evalu-

ated [30].

Since it has been shown in the literature that the

RI-Tree [31] has the best performance considering the

Physical disk I/O and the query response time and at

the same time can be employed within commercial

RDBMS, we decided to employ the RI-tree in our im-

plementation. Specifically, we index the V TS and V TE

temporal attributes of periodic relations using the RI-

tree.

For the sake of fairness, in the experiments we used

RI-tree also to index the valid times in the explicit ap-

proach.

5.3. Experiment: description

In order to carry on the experiments, the same pe-

riodic activities concerning hospitalized patients have

been represented both in the implicit and explicit model.

In the implicit model, the representation of data re-

quired 353,367 records in the Activity table and

about 2 million records in the Periodicity table. In

order to represent the same activities in the explicit

model, more than 194 million records are required in

the Activity Expl table, as shown in Tables 5 and 6.

As expected, the adoption of an implicit representa-

tion provides clear advantages as regards storage. For

our medical real world scenario, the explicit method re-

quires more than 160 times more storage space for effi-

cient management comparing to our implicit method, as
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it can be seen in Tables 5 and 6.

As discussed above, we used RI-tree for indexing for

both Activity and Activity Expl tables.The RI-tree

method requires that initial tables are altered with col-

umn node, which is calculated for every row of data

by algorithm [33]. Also, two B+-tree composite in-

dexes have been created LowerIndex (node, V TS) and

UpperIndex (node, V TE ). Range queries are performed

by calling the dedicated procedure that collects leftn-

odes and rightnodes into temporary tables and then per-

forms the transformed SQL statement as instructed in

[31].

To ensure that we can collect accurate information

about physical disk reads on data and index structures

and also CPU usage, we used Oracle built-in meth-

ods for statistics collection and queried V$FILESTAT,

V$DATAFILE and V$SYSTAT system views. Space

usage for Tables and Index structures are collected from

the data dictionary view User Segments.

5.4. Range Queries: Results and Analysis

First, let us describe our results as regards the treat-

ment of range queries.

In Tables 7, 8, 9 we show physical disk I/O’s, CPU

time and response time for atemporal range queries con-

sidering two parameters: query duration and answer

size. Different range queries duration are considered

in order to investigate the effect of execution of the

circular-module function. Different answer sizes are

considered to see the effect of clustering the data, aging

of database buffers and effect of trade between Physical

disk I/O and CPU usage. Each value in the tables (here

and in the following) is the average value obtained af-

ter ten runs and every run was on empty database buffer

cache in order to avoid effect of logical read of data.

Moreover, the temporal location of the query period

along the timeline has been chosen randomly in order

to eliminate the effects of distribution of data.

The experimental results clearly show the advantages

of our implicit approach. For instance, considering 168

hours (query duration) and atemporal range queries with

answer size 29,455, the implicit approach requires about

1/20 of Disk I/O and CPU time and about 1/35 response

time with respect to the explicit method.

Looking at the experimental results in more details,

one can notice that, in case the duration of the query is

short (e.g., 1 hour) and the answer size is small (e.g.,

580; See Table 7), the explicit approach behaves better

than our implicit one, especially as regards CPU time.

This fact is basically caused by the overhead of the im-

plicit approach due to the evaluation of circular-module

onto the periods retrieved from the Periodicity table,

which (given the small answer size), mostly do not con-

tribute to the result.

Obviously, disk I/O, CPU time and response time

of both the implicit and the explicit approach increase

when the answer size increases. However, the increase

of the implicit approach is much slower, especially as

regards disk I/O and response time. For instance, with

a short query duration (1 hour) and answer size 17,738

(see Table 7), the implicit approach requires about 1/3

disk I/O (due to the fact that less records need to be

fetched) and 3 times CPU time (due to the computation

of the circular-module) of the explicit approach, and the

overall balance (response time) is about three times bet-

ter than the explicit approach.

The advantages of our implicit approach become

larger and larger in case the query period increases. In

such a case, in fact, thanks to the optimization OPT

(which applies whenever the duration of the repeti-
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Table Number o f Table size Primary Index U pper Index Lower Index Total

Name records MBytes MBytes MBytes MBytes MBytes

Activity 353,367 16.25 8.00 8.00 5.19 37.44

Periodicity 2,108,495 43.08 37.00 0 0 80.08

TOTAL 117.52

Table 5: Space requirements for the Implicit model

Table Number o f Table size Primary Index U pper Index Lower Index Total

Name records MBytes MBytes MBytes MBytes MBytes

Activity Expl 194,671,463 7,331.82 3,520.00 4,288.00 4,288.00 19,427.83

TOTAL 19,427.83

Table 6: Space requirements for the Explicit model

Implicit model Explicit model

Answer size
Disk I/O CPU Response time Disk I/O CPU Response time

580 2,273 151 2 1,002 28 1

2,068 6,049 477 5 3,031 73 3

3,721 8,304 753 8 6,336 168 8

7,471 10,831 1,431 12 12,872 315 30

17,738 12,364 3,186 32 31,904 930 154

Table 7: Average CPU usage, Physical disk I/O and Query response time for 1 Hour atemporal range queries depending on the answer size
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tion pattern is smaller than the query period) the im-

plicit approach needs to fetch less periods from Table

Periodicity, and, consequently, also to perform less

computations of the circular-module function. For in-

stance, with query duration 168 hours (one week), and

with answer size 2,887, the implicit approach uses 1/4

disk I/O, 1/3 CPU time, and 1/17 response time of the

explicit approach, and with answer size 29,455 the ad-

vantage arise to 1/20 (I/O), 1/20 (CPU), and 1/35 (re-

sponse time).

The case of temporal range queries is quite similar.

The only qualitative difference is due to the fact that,

in the implicit approach, all the periods intersecting the

query period must be generated. This means that the op-

timization OPT above does not apply to temporal range

queries. As a consequence, results are not sensitive of

the query period, except for the fact that it may influ-

ence the answer size. Results, for different answer sizes,

are reported in Table 10. Table 10 shows that there is a

trade-off between CPU computation and disk I/O: our

implicit approach is more CPU demanding, but saves

on disk I/O. As in the case of atemporal range queries,

the benefits of our implicit approach become more ev-

ident when answer size increases. For instance, with

answer size 17,738, the implicit approach requires 1/3

disk I/O and 3 times CPU of the explicit one, and the

total response time is 1/5.

In other words, there is clearly a trade-off between

storage requirements and computation: our implicit ap-

proach save space and physical disk accesses, at the

prize of spending relatively more CPU time. This is

in itself a positive result, since, in the area of databases,

physical disk accesses are considered to be the bottle-

neck (while, e.g., CPU time might be reduced through

the introduction of more powerful CPU’s, and/or with

an extension of the number of CPU’s), and therefore

physical disk accesses is the most important aspect to

be taken into account [34].

The core result emerging from the experiments de-

scribed so far is that the overall balance of our approach

with respect to the explicit one is widely positive: we

gain in response time, and our gain increases with the

increase of the size of the answer.

In the following subsection, we propose additional

experiments, in order to further explore the above trade-

off.

5.5. Range Queries: Exploring the trade-off

To summarize, since our approach proposes an im-

plicit representation of periodic data, it saves space and

disk accesses, at the prize of being more computation-

demanding. In the previous subsection, we have drawn

a real-world experiment in the hospitalization context,

which has shown the advantage of adopting our ap-

proach. In other domains, such as manufacturing, few

activities (which can be specified through very simple

periodic pattern, whose duration may be very small –

sometimes in the order of seconds) can be repeated for

very long frame times (sometime in the order of years).

Clearly, our approach is even more advantageous in

such domains. In other words, the greater is the num-

ber of periodic repetitions of data, the greater is the gain

of our approach. In this subsection, we draw additional

experiments to substantiate such a claim.

Specifically, we have generated artificial data, in such

a way that we get different values for the ratio be-

tween the size of the implicit representation and the

size of the corresponding explicit one (henceforth called

“explicit/implicit” ratio; in this experiment, we do not

take into account the size of the indexes). For in-

21



Implicit model Explicit model

Answer size
Disk I/O CPU Response time Disk I/O CPU Response time

580 966 88 1 2,726 85 2

2,068 2,466 192 3 8,379 255 6

3,721 3,368 277 4 9,851 308 9

7,471 5,361 683 8 13,028 703 32

17,738 8,896 1,134 22 41,854 1,236 162

Table 8: Average CPU usage, Physical disk I/O and Query response time for 24 Hour atemporal range queries depending on the answer size

Implicit model Explicit model

Answer size
Disk I/O CPU Response time Disk I/O CPU Response time

2,887 1,838 200 3 7,970 601 52

4,620 2,114 260 5 12,913 1,232 116

29,455 9,490 1,375 26 183,073 26,460 944

Table 9: Average CPU usage, Physical disk I/O and Query response time for 168 Hour atemporal range queries depending on the answer size

Implicit model Explicit model

Query duration
Disk I/O CPU Duration Disk I/O CPU Duration

1 156 309 4 1,688 66 11

24 646 3,143 12 17,292 705 92

168 1,246 22,752 45 156,231 21,460 912

Table 10: Average CPU usage, Physical disk I/O and Query response time for explicit temporal range queries depending on range query duration
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Approach Ratio Disk I/O CPU Resp. Time

Impl. 1 57 100 4

Expl. 1 52 14 1

Impl. 5 96 76 5

Expl. 5 814 109 8

Impl. 50 331 161 5

Expl. 50 2,696 280 16

Impl. 100 347 221 5

Expl. 100 5,778 542 26

Table 11: Tradeoff between the implicit (Impl.) and the explicit

(Expl.) approaches, considering different “explicit/implicit” ratios

stance, the value 50 for the ratio copes with the case

in which the explicit representation is 50 times the size

of the implicit one). Implicit tables Activity and

Periodicity for all ratios in our experiments contain

10,000 and about 50,000 records respectively (For in-

stance, the Activity Expl table contain about 3 mil-

lions rows for explicit/implicit ratio of 50 (50*(10,000 +

50,000))). We have generated the data for the desired ra-

tio’s simply by changing the duration of the Frame time

and the duration of the repetition pattern. As a conse-

quence, in our experiments the CPU and response time

of the implicit approach are quite non-sensitive with re-

spect to the changing of the ratio (since the dimension of

the implicit tables remain quite constant). On the other

hand, the explicit method is significantly influenced by

the increasing ratio. This is due to fact that the number

of rows in the tables of the explicit approach linearly in-

crease with the ratio (while in the implicit approach we

basically maintain the same rows, only increasing the

duration of the frame time). All the experiments in ta-

ble 11 have been run with a query duration of 168 hours.

The experiments have shown that already at Ex-

plicit/Implicit ratio of 5 our implicit method starts to

gain significant advantages as regards both disk I/O and

response time. Of course, advantages become greater

and greater when the ratio increases. With ratio 100,

the implict approach needs 1/15 disk I/O, less than 1/2

CPU, and less then 1/5 response time of the explicit ap-

proach.

5.6. Other issues

In the above experiments, we have compared the per-

formance of our approach with respect to the traditional

explicit one, showing its advantages. Finally, however,

it is worth stressing that there are also additional advan-

tages, in that the implicit approach we propose can deal

with aspects that cannot be coped with by the explicit

one:

• Implicit temporal range queries cannot be coped

with in the extensional approach, since it does not

provide any implicit description of periodic data;

only the whole list of repetitions can be provided

as output;

• Open-ended periodic data cannot even be repre-

sented in the explicit approach. Notice that such

data are relevant in many application domains, in-

cluding the medical one we have discussed in this

paper (in the medical domain, chronical diseases

such as diabetes require treatments to be carried on

for all the life of patients).

6. Related works

Several medical activities, as well as many other hu-

man activities (consider, e.g., office activities, schedul-

ing of train, airplanes, lessons, . . .), are scheduled at

periodic time. Due also to such a wide range of dif-

ferent contexts of application, it is widely agreed that
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adopting a “standard” and fixed menu of granularities

(e.g., minutes, hours, days, weeks, years and so on in

the Gregorian calendric system) is not enough in or-

der to provide the required expressiveness and flexibil-

ity. For instance, Soo and Snodgrass [35] emphasized

that the use of a calendar depends on the cultural, le-

gal and even business orientation of the users, listed

many examples of different calendric systems and user-

defined periodic granularities (e.g., the academic vs le-

gal vs financial year) and stressed that different user-

defined periodic granularities are usually used even in

the same area (consider, e.g., the definition of holidays

in different companies, or in different school institu-

tions). Moreover, the number of repetitions of peri-

odic data may be very large (in some cases, repetitions

may also be “open-ended”-e.g., therapies for chronical

patients may be repeated all life long). Therefore, in

the Computer Science literature (and, in particular, in

the areas of Databases, Logics, and Artificial Intelli-

gence), there is a common agreement that formalisms

are needed in order to cope with user-defined periodic

data in an implicit (elsewhere termed intensional) way

(i.e., without an explicit storing of all the repetitions),

and a large number of approaches has been defined to

such a purpose (e.g., the survey by Tuzhilin and Clif-

ford [36], dating back to 1995, focuses on the Database

area, and takes into account 34 different approaches).

Periodic data play an important role in Databases, so

that, for instance, a specific entry (see [37]) has been

devoted to such a topic in the out-coming Encyclopedia

of Database Systems by Springer [38]). In the Ency-

clopedia [37], three main classes of Database (implicit)

approaches to user-defined periodicities have been iden-

tified: Deductive rule-based approaches, using deduc-

tive rules (e.g., [39] and approaches in classical tem-

poral logics), constraint-based approaches, using math-

ematical formulae and constraints (e.g., [13]), and al-

gebraic (also termed symbolic) approaches, providing a

set of “high-level” and “user-friendly” operators (e.g.,

[14], [15], [16], [40], [41], [42], [43] [44], [45], [46]).

A comparison among such classes approaches is out

of the scope of this paper (the interested reader is re-

ferred, e.g., to [37]). However it is worth stressing that,

in most approaches in the literature (and, in particu-

lar, in all algebraic approaches), the focus is on the de-

sign of high-level formalisms to model (in an implicit

way) user-defined periodicities in a “commonsense” or

at least “user-friendly” way.

In the following, we focus on the approaches that are

more closely related to our one. The idea of proposing

an implicit representation formalism based on the

“consensus” definition of periodic granularities has

been pursued also by Ning et al [15]. However, they

mostly focused on the representation formalism to deal

with periodic granularities, and on the definition of

the language operators needed in order to define new

granularities on the basis of other granularities. In [47]

it is shown how the user-defined periodic granularities

in Ning et al.’s formalism can be translated into the

notation used for the ”consensus” definition (in [16]).

In particular, also the algebraic operations of union,

intersection and difference have been considered. On

the other hand, neither [15] nor [47] have focused

on the core issues of representing periodic data in

the relational context, and of coping efficiently with

range queries (which, on the other hand, constitute

the central focus we have faced in our implicit ap-

proach). Terenziani also provided an extended temporal

algebra operating on the new formalism, as well as

symbolic and semi-symbolic algorithms to implement
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the algebraic operations on the new data model. The

complexity of the extended algebraic operations is

shown to be exponential, since the number of ”terms”

defining in a implicit way the valid time of tuple grows

exponentially in the number of algebraic operations

being performed [14]. Kabanza et al. [13] have defined

a constraint-based formalism based on the concept

of linear repeating points (henceforth lpr’s). A lrp

is a set of points {x(n)} defined by an expression

of the form x(n) = c + kn where k and c are integer

constants and n ranges over the integers. A generalized

tuple of temporal arity k is a tuple with k temporal

attributes, each one represented by a lrp, possibly

including constraints. For instance, the generalized

tuple (a1, . . . ,an|[5+4n1,7+4n2]∧X1 = X2−2) (with

data part a1, . . . ,an) represents the infinite set of tuples

{(a1, . . . ,an|[1,3]),(a1, . . . ,an|[5,7]),(a1, . . . ,an|[9,11]),

. . .} or, in other words, a tuple (a1, . . . ,an) having an

infinite periodic valid time. A generalized relation is a

finite set of generalized tuples of the same schema. In

[13], the algebraic operations have been defined over

generalized relations as mathematical manipulations of

the formulae coding lrp’s, and the complexity of such

operations has been proven to be exponential. More-

over, the expressiveness of the proposed formalism has

been analysed, in terms of Presburger’s Arithmetics.

Niezette and Stevenne [41] have proposed a symbolic

extension to Kabanza’s approach, mostly providing a

symbolic formalism as an interface language, whose

meaning is defined in terms of the underlying lrp

expressions.

On the other hand, periodic data have also been coped

with in the Object Oriented context. For example, [48]

defined an extension of SQL3 based on the temporal

type of periodic elements. Periodic elements consist of

both an aperiodic part (represented by an extensional set

of time periods) and a periodic part, represented by the

repetition pattern and the period of repetition (roughly

corresponding to our frame time). They also defined the

set-operations of union, intersection, complement and

difference, which are closed with respect to periodic el-

ements, and used them in the definition of a periodic

temporal extension of object oriented SQL (SQL3).

In summary, it is worth noticing that none of the

above relational approaches is based on the “consensus”

definition of periodic granularity, and none of them is a

consistent extension of the “consensus” TSQL2 model.

In our approach, we have overcome such a general

limitation of implicit relational approaches to periodic

temporal data. Additionally, the extensive experimental

comparison between our implicit approach and the “tra-

ditional” explicit one is one of the core contributions of

our work, showing the computational advantage of our

implicit approach with respect to the explicit one.

7. Conclusion and Future Work

Periodically-repeated data play an important role in

medicine (for instance, in the scheduling of periodic ac-

tivities on patients). In this paper, we apply Artificial In-

telligence symbolic manipulation techniques to the ap-

plication context of relational databases to propose a

new approach to cope with periodic data in databases.

Specifically:

• we have proposed an “implicit” relational data

model for user-defined periodic data, which is

based on the “consensus” definition of granular-

ity in the temporal database glossary [17] and its

extension to cover periodic granularities in [16],
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which is a “consistent extension” of TSQL2’s one

[5].

• we have taken into account range queries, provid-

ing query answering algorithms for them; the algo-

rithms operate as much as possible in a symbolic

way on the implicit representation, and are correct,

in the sense that they provide (in a more efficient

way) the same results that would be obtained by a

direct treatment of the explicit data.

• we have developed an extensive experimentation

of our model and methodology, showing that our

“implicit” and symbolic approach overcomes the

performance of traditional “explicit” approaches

both in terms of space and disk I/O’s, and in terms

of answer response time. Moreover, we have also

analysed to what extent our implicit approach is

advantageous, depending on the “explicit/implicit”

ratio.

In this paper, we have focused on periodic patterns

of events, but we have also considered the possibility

of having ”positive” exceptions (i.e., additional events

that are not part of the periodic pattern). Indeed, this

is in the style of database approaches, in which only

facts that actually occur are considered (while there is

no mention of facts that never occurred - consider, e.g.,

the definition of quasi-periodic granularity in the litera-

ture [16], and [48]). However, in the context of periodic

repetitions, ”negative” exceptions may also be relevant.

For instance, a treatment may be scheduled each day for

a month, with the exception of a specific day. From the

representation point of view, the extensions required to

cope with ”negative” exceptions are minimal. We can

still regard the periodic pattern (represented in an im-

plicit way) as the ”core” of the representation, and cope

in an explicit way with two types of exceptions: the list

of positive exceptions and the list of negative ones. (Of

course, by definition, negative exceptions must be dur-

ing the frame time of the periodic pattern). In the re-

lational representation, negative exceptions can be rep-

resented by explicit tuples. However, an additional at-

tribute must be considered, in order to distinguish ”pos-

itive” versus ”negative” exceptions. Modifications must

be also operated on the query answering algorithms.

For instance, as regards atemporal range queries, the al-

gorithm Check Periodic Intersection must be modified.

First of all, the optimization OPT must be removed,

since the fact that the query period is longer than the du-

ration of the repetition pattern does no longer imply that

there is at least one repetition in the query period (in-

deed, all such repetitions may be explicitly excluded as

negative exceptions). Additionally, G Intersects must

be modified in order to take into account also negative

exceptions.

Finally, in this paper, we have focused on the inter-

nal representation of (quasi)-periodic granularities. On

top of such a representation, high-level algebraic (also

called symbolic) languages, such as the ones in [14]

, [15], [16], [43], [40], [41] could be added, in order

to provide a high-level, user-friendly and (hopefully)

commonsense interface to help users in defining user-

defined (quasi)-periodic granularities in a user-friendly

and compositional way. The construction of such an ad-

ditional layer is outside our current goals, and will be

addressed as future work.
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