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Abstract

Hyperspectral unmixing is a crucial preprocessing step
for material classification and recognition. In the last
decade, nonnegative matrix factorization (NMF) and its ex-
tensions have been intensively studied to unmix hyperspec-
tral imagery and recover the material end-members. As
an important constraint, sparsity has been modeled mak-
ing use of L1 or Lo regularizers. However, the full additiv-
ity constraint of material abundances is often overlooked,
hence, limiting the practical efficacy of these methods. In
this paper, we extend the NMF algorithm by incorporat-
ing the Ly 5 sparsity constraint. The Ly/o-NMF provides
more sparse and accurate results than the other regular-
izers by considering the end-member additivity constraint
explicitly in the optimisation process. Experiments on the
synthetic and real hyperspectral data validate the proposed
algorithm.

1. Introduction

Hyperspectral data is acquired by high spectral-
resolution imaging sensors, containing hundreds of contigu-
ous narrow spectral band images. Due to the low spatial res-
olution of the sensor, disparate substances may contribute to
the spectrum for a single pixel, leading to the existence of
“mixed” spectra in hyperspectral imagery. Hence, hyper-
spectral unmixing, which decomposes a mixed pixel into
a collection of constituent spectra, or end-members, and
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their corresponding fractional abundances, is often adopted
to preprocess hyperspectral data [14]. Several hyperspec-
tral unmixing methods have been proposed in recent years,
which include N-FINDR [30], vertex component analysis
[20], Independent component analysis [29], the minimum
volume enclosing simplex algorithm [2] and flexible simi-
larity measures [4].

Most of these methods assume a linear spectral mixture
model to be applied to the unmixing problem. Two con-
straints need to be considered when solving such linear mix-
ture model [3]. The first of these is nonnegativity of both
spectra and their fractional abundances. This is natural as
the contribution from end-members should be larger than or
equal to zero. The second constraint is the additivity of the
fractional abundances, which guarantees the addition of the
proportional contribution from the end members matches
the mixed observation.

Nonnegative matrix factorization (NMF) [24, 15], which
commonly adopts a Euclidean loss function and decom-
poses the data into two nonnegative matrices, is a natural
solution to the nonnegativity constraint [25, 26]. From the
data analysis point of view, NMF is very attractive because
it usually provides a part-based representation of the data,
making the decomposition matrices more intuitive and in-
terpretable [5, 12]. However, since the full additivity con-
straint of hyperspectral data is not considered, the solution
space is too large. This, added to the fact that the mini-
mization of the cost function is not convex can make the al-
gorithm prone to noise corruption and computationally de-
manding.

To reduce the space of solutions, sparsity constraints are
attractive since they allow exploiting the notion that most of
the pixels are a mixture of only a few of the end-members in
the scene [13, 33]. This implies that a number of entries in
the abundance matrix are zeros, in some cases with a large
degree of sparsity. Regularization methods are usually uti-

IEEE
computer
psoaety



lized to define the sparsity constraint on the abundance of
the end-members. Along these lines, the L regularizer ac-
counts for the number of zero elements in an abundance
matrix so as to yield the most sparse result given a cost
function. However, the application of the Ly regularizer
is an NP hard optimization problem that cannot be solved
in practice [22]. The Lo regularizer, on the other hand, gen-
erates smooth but not sparse results [1]. In general, the L;
regularizer is the most popular one for achieving sparsity of
the abundance matrix [9, 10, 23, 32, 18].

There are two limitations for the application of the L
regularizer. Firstly, enforcing a sufficiently sparse solu-
tion is not straightforward since the penalty imposed upon
the cost function is a linear one with respect to the devia-
tions of the abundance matrix from zero. Second, and more
severely, it conflicts with the full additivity unmixing con-
straint. Recall that the full additivity constraint requires that
the sum over the L regularization function be a constant.
This is often conflicts with the sparsity constraint imposed
by the regularizer which favours smaller, not constant, sum-
mations over the terms of the regularization function.

Recently, Xu et al have proposed fractional regularizers,
ie. Ly(0 < ¢ < 1) [31]. The authors have shown that
the L/, regularizer is a good choice to enforce the spar-
sity constraint due to the fact that its an unbiased one. In
this paper, we introduce the L/, regularization function
into NMF so as to characterize the sparsity of abundances.
The L />-NMF presented here is effected through the multi-
plicative update algorithm by Lee and Seung [16] by the ap-
plications of a rescaled gradient descent approach which, in
turn, ensures convergence. In our approach, the full additiv-
ity constraint is considered in the parameter update process.
The experiments on synthetic and real hyperspectral data
demonstrate the effectiveness of the L,,5-NMF approach
for unmixing hyperspectral data.

2. NMF with L, /, Sparsity Constraint

To commence, let the linear mixing model, which is clas-
sically used to model the spectrum of a pixel in the observed
scene [27], be expressed as

x=As+e (D)
where x denotes the L x 1 vector of the observed spectral
pixel, s is the K x 1, vector of the abundance fractions of
each end-member, e is a L x 1 vector of an additive noise
representing the measurement errors and A is the L x K
nonnegative spectral signature matrix whose columns cor-
responding to an end-member spectrum. In the dimension-
alities above, L is the number of bands and K is the number
of end-members.

Using matrix notation, the mixing model for the V pixels
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in the image can be written as

X=AS+E 2)
where the matrices X & RiXN, S e RfXN and E ¢
REXN represent, respectively, the hyperspectral data, the
end-member abundances and the additive noise. Note that,
in general, only X is known in advance, while the other two
matrices, A and S are our aims of computation. With these
ingredients, the Euclidean distance-based loss function of
NMF is as follows

C(A,S) 3)

1
=5IIX - ASs|3
When the regularization term is added to control the
sparsity, we get

1
C(A.S) = ZIX - ASB+AIS], @

where A is the regularization parameter and ||S||, =
(KN

keom—1 S¢ )1/4. In the case of L /5 regularization, ¢ =

§ .
2.1. Rescaled Gradient Descent Algorithm

Based on the cost function described in Equation (4),
and, making use of an auxiliary function similar to that used
in the Expectation-Maximization algorithm [9], we have de-
veloped a rescaled gradient descent algorithm by iterating
the following multiplicative update rules. The objective (4)
is nonincreasing under the update rules:

A « A xXST /ASST (5)

A
(6)

S « S.xATX/(ATAS+7S7%)
where (-)T denotes the transpose of the matrix, .* and ./ de-
note element-wise multiplication and division, respectively.
Likewise, S~ is the negative element-wise square root for
each entry in the matrix S.

The update rule for A in (5) is the same as that in [16].
For the sake of brevity, we focus our attention on the update
rule for S in (6). To make our ellaboration more clear, we
focus on each column of S alone. We can do this without
any loss of generality since the objective function (4) is sep-
arable in the columns of S. Let these columns be denoted s
for convenience. Similarly, the corresponding row of X is
denoted x. The column-wise objective function becomes

1 2
C(s) = 5lx — Aslls + Allsll; @)

We define an auxiliary function G(s,s') satisfying the

conditions G(s,s) = C(s) and G(s,s!) > C(s) such that



C(s) is nonincreasing when updated using the following
equation

st — arg msin G(s,s") (8)
This is guaranteed by
C(s)) < GstY sf) < G(st,st) =C(s)  (9)
Following [9], we define the function G as
G(s,s") = C(s") + (s — s")(VC(s") T+
+ %(S —sHK(s") (s —s")T  (10)

where the diagonal matrix K (s?) is defined as
t ; Taat | Njaty—1 t
K(s") =diag [ [ A" As +§(s) 2 )./s (11)

Here, diag(s) denotes the diagonalization of vector s. Be-
cause G(s,s) = C(s), the Taylor expansion of C(s) is

C(s)

+ %(s —s") <ATA - gdiag ((st)_

C(s') + (s = s")(VC(s") T+

3
2

)) (s —s")T+
+0O (v<"23>6(st)) (12)
where the function O denotes the Lagrange remainder term,

which can be omitted in the following derivation. There-
fore, the constraint G(s, s*) > C(s) is satisfied if

(s— sf)(K(st) ~ATA+

3
2

+ gdiag(st)_ >(s —-shH?'>0=

(s —s") (K’(st) + %diag(st)_%—i—
+ %diag(st)%> (s—sHT >0 (13)

where K'(s?) is defined as

K'(s") = diag (AT As"./s") — ATA (14)
Lee and Seung has proved the positive semidefiniteness of
K'(s'). Due to the nonnegativity of s, the other two terms
in (13) are obviously nonnegative. Because the sum of two
positive semidefinite matrices is also positive semidefinite.
Equation (13) holds by replacing G(s,s') in (8) by (10),
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which results in the update rule

t41)

s st — VC(shHK™1(s)

st — (ATAst A

—ATx+ %

567
)

[SIE

.xs'./ (ATAst + g(st)_

)

Note that the update rule above is the matrix form of Equa-
tion (6).

st.x ATx

./ (ATAst + %(st)_

(S

(15)

2.2. Implementation Issues

As long as the initial values of A and S are all chosen
strictly positive, the update rules guarantee that the elements
of the two matrices remain nonnegative. In order to satisfy
the full additivity constraint of end-member abundances we
employ the method in [8]. The data matrix X and the signa-
ture matrix A are augmented by a row of constants defined

Tone[&] ae[]

where § controls the impact of the full additivity of the
abundances. The larger the 4, the closer the columns of S
to the full additivity constraint. In each iteration, these two
matrices are taken as the input of the update rule of S given
in Equation (6) as an alternative to X and A.

Note that the initialization of the signature matrix A
can be computed by applying the end-member extraction
method [21] or using directly chosen data [19]. For L /»-
NMF, A and S are both initialized uniformly via randomly
selecting a value in the interval [0, 1]. Also, note that the es-
timation of the number of end-members present in the scene
is crucial in the unmixing process. Here we resort to the
HySime algorithm [7], which is one of the most reliable es-
timators for signal subspace dimensionality. We have also
adopted two stopping criteria for our iterative optimisation.
The first of these is the maximum iteration number, which is
set to be 3000 due to the slow convergence of the multiplica-
tive update [17]. The second one is the gradient difference
of the cost function C between the current iteration and the
starting value, i.e.

X

16)
5L (

IVC(A", S5 < e Ve(AL, Sh]I3

where ¢ is a small value, which is set to 1073, Once either
of these criteria is met, the optimisation ends. The value
of parameter )\ is dependent on the sparsity of the material
abundances that cannot be obtained from the prior informa-
tion. Following [11], we use a rough estimator for A based
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Figure 1. Selected spectral signatures from USGS.

on the sparseness criteria in [10] given by

VN = |Ixi|l1/]1x]l2
VN -1

where x; denotes the /th image band in hyperspectral im-
agery.

1
A= — 17
\/Zzl: 17)

3. Experiments on Synthetic Data

In this section, the proposed L;/,-NMF algorithm is
compared against three alternatives. These are the NMF al-
gorithm with the full additivity constraint, the L; constraint
in [9] and Lo constraint in [25]. From now on, we denote
these NMF, L;-NMF and L,-NMF. It is worth mentioning
that the full additivity constraint is also added to the L-
NMF and L,-NMF. Moreover, to evaluate the performance
of the algorithms, the spectral angle distance (SAD) is used
to compare the similarity of the kth true end-member signa-
ture Ay and its estimate A, which is defined as

)

We have also used the root mean square error (RMSE) to
evaluate the similarity of true versus estimated abundances,
which is defined as

AT A,

k2 (18)
[ Al Akl

SAD, = arccos <

2.

n

RMSE;, = (% (Skn — §;m)2> (19)

The mean error values in Equations (18) and (19), denoted
as SAD and RMSE are hence computed to compare the
performance of the algorithms under consideration.

For our synthetic data experiments, we have chosen six
spectral signatures from the United States Geological Sur-
vey (USGS) digital spectral library [6]. These are shown
in Figure 1. The creation of abundances takes three steps:
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Figure 2. Performance comparison at various noise levels.
SAD and (b) RMSE.

(a)

firstly, the scene, with a size of 49 x 49 pixels, is divided
into 7 x 7 regions. Each region is initialized with the same
type of ground cover, randomly selected as one of the end-
member classes. Secondly, a simple 8 x 8 spatial low pass
filter is used to generate mixed pixels. Thirdly, to further re-
move pure pixels, all the pixels whose abundance is larger
than a threshold 6 (0 < 6 < 1) are replaced with a mixture
made up of only two end-members, where 6 controls the
abundance level of the end-members in the data. The added
noise item in Equation (1) is zero-mean white Gaussian and
the SNR is defined as

E[(As)" (As)]

SNR = 10log; FleTe]

(20)
where E[-] denotes the expectation operator. Two exper-
iments are conducted to demonstrate the efficiency of the
proposed L1 /o-NMF algorithm. Firstly, the four algorithms
are evaluated with respect to the SNR. Then the perfor-
mance for each of the alternatives is measured as a function
of the parameter 6.

Figure 2 shows the performance results as function of
the SNR for the interval (oo, ...,15) in steps of 5 dBs.
The parameter 6 is set to 0.7. As expected, the decrease
of SNR incurs in a reduction of the performance for all the
four algorithms. From the figure, we can see that Lo-NMF
displays the worst results in the two measurement metrics.
The performance of L;-NMF is slightly better than that of
NMEF. Meanwhile, Ly /o-NMF not only shows the best per-
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Figure 4. Scene of the AVIRIS Cuprite Nevada dataset (band 80).

formance, but also is robust to noise corruption.

Figure 3 illustrates the unmixing results with different
purity levels € (1,0.9,...,0.6). Here, if 8§ = 1, there are
“pure” pixels for each end-member. The SNR is set to
30 dB. From the figure, we can see that the performance
improves as ¢ increases. This is expected, since the end-
member abundances become sparser with the growth of 6,
making the added sparseness constraint more effective. As
with the first experiment, Lo-NMF shows the worst per-
formance followed by L;-NMF and NMF with L, /,-NMF
producing the best results.
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Substance SAD

Alunite 0.1318
Andradite 0.0554
Buddingtonite 0.1690
Dumotierite 0.0817
Kaolinite 0.1441
Montmorillonite | 0.1174
Muscovite 0.1124
Nontronite 0.0827
Pyrope 0.0516
Sphene 0.0663

Table 1. SAD between extracted end-members and library spectra
recovered by L, o-NMF.

4. Experiments on Real Data

Now we turn our attention to real-world data. The real
hyperspectral data used here is acquired by the AVIRIS
sensor over Cuprite, which contains abundant minerals in
southern Nevada [28]. In recent years, the Cuprite dataset
has been widely used for hyperspectral unmixing research
[20, 19] and, hence, our results can be readily compared
with other experiments reported elsewhere in the literature.
Figure 4 displays the 80th band, as a subimage (250 x 190
pixels) of the original data. For our experiments we have
removed low SNR and water-vapor absorption bands (1-2,
104-113, 148-167 and 221-224), which yields 188 bands
out of the original 224.

According to [20], there are 14 types of minerals present
in the scene. Its worth mentioning that variants of the same
mineral with slightly different spectra are not considered
as dissimilar end-members and, hence, the number of end-
member is set to 10, i.e., K = 10. In Figure 5, we compare
the estimated L /o-NMF end-member signatures with the
USGS library spectra. Clearly, the extracted signatures are
close to the USGS library spectra. Table 1 quantifies the
spectral similarity using the SAD criterion.

5. Conclusion

In this paper, we have extended unmixing methods based
upon nonnegative matrix factorization by incorporating the
L5 sparseness constraint over the end-member abun-
dances for hyperspectral data. In contrast with previous
approaches which used the L,, (p > 1) regularizer our
method based upon the Ly, regularizer produces sparser
unmixing results, making the extracted end-member spectra
and abundance maps more accurate. We have illustrated the
utility of our unmixing method on synthetic and real-world
data and compared our method to a number of alternatives.
In our experiments, our L; /o-NMF algorithm exhibited bet-
ter performance, specially in the presence of noise corrup-
tion and low end-member purity levels.
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Figure 5. Comparison of the USGS library spectra (solid line) with the signatures extracted by L;,o-NMF (dotted line). a) Alunite,
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Discontinuity in L, /o-NMF results is due to the band removal.
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