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ABSTRACT 1 

Predicting how change will impact ecosystems requires the development of complex 2 

models. The complexity of ecosystem models often defies the power of analytical 3 

mathematical techniques so they are commonly solved using computers. A problem with this 4 

approach is the difficulty in assessing the credibility of model simulation results. 5 

We apply ecological axioms to the construction of complex model ecologies. The 6 

axioms ensure realistic ecological properties and internal consistency of a broad class of 7 

models that encompass many theoretical and applied models. A key new analytical result for 8 

our dynamical systems in ecospace is that extinctions can be studied without knowledge of 9 

either interior equilibrium points or their stability. By looking only at boundary extinction 10 

points we can immediately comment on the extinction behaviour without solving for any of 11 

the dynamics. This is a striking simplification, and even holds when the dynamics are chaotic.  12 

We demonstrate the approach by constructing three plankton ecosystem models that 13 

we design to have specific properties and show that the effect of change on plankton blooms 14 

and/or extinctions depends on the properties of the model chosen for the simulation. 15 

 16 

KEYWORDS:  Library of Lotka; ecosystem model; dynamical system; consistent 17 

normal ecologies; emergent properties; climate change 18 

 19 

1. Introduction 20 

A demand for construction of computer ecosystem models of increasing complexity is 21 

emerging from the need to predict the impacts of anthropogenic activities on natural systems. 22 
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In the marine field, these may include the impacts of climate change on resources such as 1 

fisheries, or on processes such as the exchange of gases between the ocean and the 2 

atmosphere (Moore et al., 2002; Le Quéré et al., 2005; Kishi et al., 2007). A fundamental 3 

constraint on the development of such models, and in particular their application to predict 4 

ecosystem responses to changing environments, has been the analytic intractability of 5 

complex dynamical systems. Analytic solutions to even simple nonlinear systems are rare, 6 

and geometric approaches to understanding what the solutions look like also become difficult 7 

for systems with more than three interacting populations as local stability analysis requires 8 

finding the roots of high-order polynomials (Kot, 2001). Predictions of ecosystem responses 9 

to external changes are generally obtained by calculating numerical solutions to computer 10 

models of the ecosystems. A vast number of solutions may be calculated from a model of a 11 

complex ecosystem by varying the complexity of the modelled food web, the process 12 

formulations and parameter values. A key challenge for the computer simulation approach is 13 

how to determine which of these solutions are useful. 14 

1.1 The Library of Lotka 15 

The solutions of complex ecosystem models define an ecological equivalent to the 16 

Library of Babel (Borges, 1941) that we name the Library of Lotka. The Library of Babel 17 

contains every possible version of a book of 410 pages, each page of 40 lines, each line of 80 18 

characters. Borges allowed only 25 characters, but the Library of Babel contains at least 19 

 251,312,000 !101,834,097  books (Bloch, 2011). The library contains all useful information on all 20 

topics, past present and future. It contains, for example, an accurate biography of every reader 21 

of this manuscript. However, the Library of Babel also contains all incorrect information and 22 

all variants in-between. So in addition to one accurate biography of the reader, it also contains 23 

many biographies with one error, two errors, etc. up to all possible completely incorrect 24 

biographies. Consequently the Library of Babel, although it is known to contain all correct 25 
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information, is a useless repository of knowledge because true information is 1 

indistinguishable from false information.  2 

We define the Library of Lotka as containing the solutions to a climate change 3 

scenario produced by an ocean plankton ecosystem model. We define the library in terms of a 4 

model of similar complexity to the PlankTOM10 model being developed to model 5 

biogeochemical cycles in the oceans (Le Quéré et al., 2005). This model contains 10 plankton 6 

populations: 6 autotrophs and 4 heterotrophs. We simplify the food web structure of this 7 

model considerably to facilitate a succinct discussion and assume that all heterotrophs graze 8 

all autotrophs and that there is no predation within either trophic level. 9 

Three processes determine the change in any population: growth, grazing and 10 

respiration/mortality, and we further simplify the consideration of these processes. We shall 11 

assume that all autotrophs grow on inorganic nutrient according to Michalis-Menten kinetics 12 

(equivalent to the Droop cell quota form). We shall use three generic functional forms to 13 

represent grazing interactions: linear, hyperbolic and sigmoidal (Holling Types I, II and III). 14 

Further, we shall consider mortality/respiration simply in terms of whether it is linear or 15 

nonlinear. The shape of each functional form may be described by two parameters. We 16 

assume that we know the real parameter values to  ±10%  accuracy, and that we estimate 17 

parameters with a precision of 1%, resulting in 21 values that may be used for each parameter 18 

(PlankTOM10 and similar models generally nominate parameter values to two or three 19 

significant figures, and on occasion to four). 20 

The six autotroph equations each contain six terms; one growth, four grazing, one 21 

mortality. Each of the grazing terms may have one of three forms, and the mortality term one 22 

of two forms, so there are 162 structurally different forms for each autotroph equation. The 23 

heterotroph equations each contain seven terms (six growth and one mortality), but the six 24 
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growth terms have been defined by the grazing terms in the autotroph equations, so there are 1 

only the two options for the mortality term, and hence only two possible forms for each of 2 

these equations. We may therefore construct 1626 ! 24 "1014  structurally different models 3 

within this template. 4 

Each autotroph equation has twelve parameters and each heterotroph equation has 5 

eight (two for mortality and we add one assimilation efficiency parameter to the grazing 6 

uptake from each autotroph) so each model requires 104 parameters, each of which may have 7 

21 values. Each model structure therefore has 21104  different parameterisations, and each 8 

parameterisation of each model structure will produce a different prediction of the ecosystem 9 

response to climate change. For a single climate change scenario, the Library of Lotka for this 10 

model then contains 1626 ! 24 ! 21104 "10151  different predictions. This is a lower bound on 11 

the size of the library as it is well known that complex nonlinear models typically have some 12 

chaotic parameterisations and may have alternate states, and therefore including uncertainty in 13 

the model initial conditions could substantially increase the number of different predictions.  14 

The Library of Lotka will contain the correct response of the ecosystem to the climate 15 

change scenario, and many responses that look very similar to the correct response. However, 16 

it will also contain many more completely incorrect responses, and as with the Library of 17 

Babel, there is no way of distinguishing correct predictions from incorrect predictions. This 18 

presents a formidable challenge to the computer experiment approach to predicting the 19 

response of marine ecosystems to changing environments. The common practice of using 20 

complex computer models that reproduce existing ecosystems ‘reasonably well’ to predict 21 

impacts of climate change does little to address the issue of how we differentiate true 22 

information from false information in the Library of Lotka. 23 
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We should abandon all hope that browsing the shelves of the Library of Lotka, as the 1 

computer simulation approach does, will produce any useful predictions of how ecosystems 2 

might respond to climate change. We suggest that understanding the properties of complex 3 

ecosystem models and why they produce the solutions they do is the first step to extracting 4 

useful information from the Library of Lotka, and is the topic of this paper. 5 

1.2 Cataloguing the Library of Lotka 6 

Recent theoretical work (Cropp and Norbury, 2012a, b) has shown that there exists a 7 

very general class of complex ecosystem models that are both ecologically realistic and 8 

somewhat amenable to mathematical analysis. We argue that the construction of computer 9 

ecosystem models should commence with the application of ecological axioms that ensure the 10 

populations in the models have ecologically realistic and consistent properties. These 11 

consistent normal ecologies have properties that allow certain attributes to be predicted and 12 

also facilitate the design of models to have particular attributes. These predictable attributes 13 

include whether:  14 

• a species will coexist with other species and persist in an environment,  15 

• a species can invade an established ecosystem,  16 

• a species will go extinct if the environment changes,  17 

• the extinction of one species will cause a cascade of extinction in other species, 18 

and  19 

• in some cases whether a model will have equilibrium dynamics, or even an 20 

extreme non-equilibrium dynamical behaviour called pinball dynamics (May, 21 

1973; Cropp and Norbury, 2012b). 22 
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Knowledge of these attributes a priori means that some attributes that might currently be 1 

described as ‘emergent’ properties of simulation models can now be cast in their correct 2 

context as resulting from assumptions and choices made during the construction of the model. 3 

This understanding of the basic properties of complex models provides a much more robust 4 

basis for prediction of the impacts of climate and other change on natural living systems. 5 

1.3 Generic Climate Change Scenarios 6 

Here we apply the rules for normal ecologies to nutrient – phytoplankton – 7 

zooplankton (NP1P2Z1Z2) ecosystem models in generic climate change scenarios. These 8 

models are designed to demonstrate the different outcomes that can arise from different 9 

choices made in model construction, but do not simulate a particular ecosystem or climate 10 

scenario. We do not investigate the influence of changes in parameter values other than a 11 

‘climate change induced’ increase in mortality rate. 12 

We use models that are sufficiently complex to defy the usual analytical dynamical 13 

systems analysis, but are sufficiently simple to succinctly demonstrate the efficacy of our 14 

approach. We allow mixotrophy and omnivory so that the models may represent any food 15 

web connectance but note that the presence or absence of these processes has no effect on the 16 

model properties we consider here. 17 

We show that some attributes of the responses of complex models to changes in their 18 

environment may be pre-determined during their construction. We construct three models 19 

with different properties to demonstrate the importance that choices in process formulations 20 

have in determining the responses of the models to change: structural coexistence with 21 

equilibrium dynamics; conditional coexistence with equilibrium dynamics; and conditional 22 

coexistence with pinball dynamics. We simulate the effects of climate change by modifying 23 
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the mortality rate of one phytoplankton population and demonstrate the (predictable) 1 

responses of the different models. 2 

 3 

2. Theoretical Basis 4 

We first articulate the rules for construction of ecosystem models. These rules impose on the 5 

models ecological constraints that have neat mathematical descriptions, which allow them to 6 

be easily applied to existing models or used to construct models that have particular 7 

properties. 8 

2.1 Rules for Normal Ecologies 9 

Normal ecologies comply with the following rules: 10 

2.1.1 Rule 0: Population variables: 11 

Measurements   x̂i t( )  of the populations    i = 1,2,!,n  are taken at time  t  in terms of a 12 

limiting resource, say the limiting nutrient   N̂ , which has the total amount   N̂T  available to 13 

and being used in the ecology under study. Then our population variables in this marine 14 

ecology are the fractions 
  
xi t( ) = x̂i t( )

N̂T

 of limiting nutrient in each population, and the 15 

remaining (mineral) available nutrient fraction is 
  
N t( ) = N̂ t( )

N̂T

, so that the initial (measured) 16 

values satisfy    x1 0( ) + x2 0( ) +…+ xn 0( ) + N 0( ) = 1. 17 
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Note that we will only consider (see later rules)   0 ! xi t( ), N t( ) !1 , and that the per 1 

capita growth rates of the active variables 
   

1
xi

!xi := 1
xi t( )

dxi t( )
dt

 are measurement scale 2 

invariant at any given time. 3 

2.1.2 Rule 1: Per Capita Growth Function: 4 

Each population interacts with the others and the available nutrient according to the 5 

growth function   f̂i  as follows: 6 

 
   

1
xi

!xi t( ) = f̂i x1,x2 ,",xn; N( ) for t > 0 . (1) 7 

Here each growth function   f̂i  is continuously differentiable in its arguments   xi , N ! 0 . Each 8 

solution   xi t( ) > 0  is a population life history starting at   xi 0( ) > 0 .  9 

The growth functions   f̂i  are usually estimated from laboratory or shipboard 10 

experiments or observed in the field, and are often known only approximately. There is 11 

seldom compelling empirical or theoretical evidence to choose one functional form over 12 

another, for example Holling Type II grazing over Holling Type III. A key point of this paper 13 

is to demonstrate that such uncertainties in the exact nature of the growth functions can lead 14 

to fundamentally different model outcomes. Note that the dependence of   f̂i  on parameters, on 15 

other quantities such as salinity, oxygen content, sunlight and temperature, and on micro-16 

nutrients such as iron, vitamin B and so on, is ignored when applying the rules for 17 

conservative normal ecologies.  18 
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2.1.3 Rule 2: Limiting Nutrient Mass Conservation: 1 

As the life histories unfold according to (1), the total amount of limiting resource, or 2 

nutrient, is conserved in the ecology. That is, 3 

 

   

x1 t( ) +…+ xn t( ) + N t( ) = 1 for all t > 0

! !x1 +…+ !xn = " !N with initial condition.
 (2) 4 

Then the dynamical system (1) becomes, on using  5 

 
   
fi x1,x2 ,!,xn( ) := f̂i x1,x2 ,!,xn;1! x j

j=1

n

"
#

$%
&

'(
, 6 

for    i = 1,2,!,n : 7 

 
   

1
xi

dxi

dt
= fi x1,x2 ,!,xn( ) for t > 0  (3) 8 

where   xi t( ) > 0  for   t > 0 . 9 

2.1.4 Rule 3: Lid Condition: 10 

To ensure   N t( ) ! 0  for   t > 0  we impose the Lid Condition: 11 

 
   
 !N ! 0 whenever N t( ) = 1" x j

j=1

n

# t( ) = 0 for t ! 0 . (4) 12 

Then    x1 t( ) + x2 t( ) +…+ xn t( ) = 1! N t( ) "1  for   t ! 0 . So we define an ecospace  E  by the 13 

positive simplex 14 

    E = x1,x2 ,!,xn :0 < xi ,0 < x1 + x2 +…+ xn !1{ }  15 
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since all life histories of (3) that satisfy (4) will lie in  E . Rules 1 and 2 ensure that   xi t( ) > 0  1 

for all   t > 0  given   xi 0( ) > 0 . Rule 3 ensures that these solutions lie in  E , and that the 2 

(hidden) variable  N t( )  is physically reasonable.  3 

2.1.5 Rule 4: Resource Dependence: 4 

Let each population  xi ,   i !1 , consume resource  Ri  that is either another population 5 

 
x j , with  j < i , or is the available nutrient  N , which we label   x0  for this discussion. (When 6 

 xi  has resource   N = x0  it is known as an autotroph.) Note that   0 ! Ri !1 . We define normal 7 

ecologies as those in which each population  xi : 8 

a) Requires	
  resource	
    Ri > 0 	
  to	
  thrive,	
  so	
  that	
  
  
fi Ri=1> 0 > fi Ri=0 ;	
  and	
  9 

b) Grows	
  better	
  when	
  there	
  is	
  more	
  resource	
    Ri 	
  available.	
  That	
  is,	
  when	
  we	
  move	
  10 

directly	
   through	
    E 	
   from	
   the	
   vertex	
   where	
     
Ri = x j = 1 	
   to	
   the	
   face	
   where	
  11 

  
Ri = x j = 0 ,	
  the	
  corresponding	
  growth	
  function	
   fi 	
  decreases	
  monotonically.	
  12 

This condition 4(b) can be checked using the following ray condition: for each  fi , we check 13 

that the derivative of  fi  in the ray direction is negative, where the rays have the resource 14 

vertex (  
Ri = x j = 1) as origin, and extend through  E  to the face   

Ri = x j = 0  for some  j < i . 15 

So checking for all    x1,x2 ,!,xn( )!E , that, for each   i !1: 16 

 
 
x1
! fi
!x1

+…+ x j"1
! fi
!x j"1

" 1" x j( ) ! fi!x j
+ x j+1

! fi
!x j+1

+…+ xn
! fi
!xn

# 0  (5) 17 

where the resource  Ri  vertex is at (  
x j = 1 ,   xk = 0  for all  k ! j ), gives 4(b). 18 
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2.2 Properties of Normal Ecologies 1 

Normal ecologies have several properties that improve their analytical tractability. All 2 

n-species normal ecologies have at least 2n !1  sets of equations that describe potential 3 

extinction equilibrium points where one or more species are extinct (i.e. xi
* = 0{ }  for some i) 4 

including the origin of the ecospace, defined by xi
* = 0{ }  for all i where all species are 5 

extinct. They also have one set of equations, defined by xi
* ! 0 = fi{ }  for all i, that may 6 

describe a coexistence equilibrium point, where all species coexist. The number, location and 7 

stabilities of the equilibrium points that exist in the ecospace depends on both the 8 

formulations of the life functions ( fi ) and the values assigned to their parameters. Normal 9 

ecologies do not guarantee that all possible equilibrium points reside in the ecospace E, but as 10 

noted above we will require that a specific set of boundary equilibrium points must exist in E 11 

for a particular parameterisation to be considered valid. 12 

The stabilities of the extinction equilibrium points are crucial to coexistence, where 13 

we define the stability of an equilibrium point to be the Lyapunov stability. This is 14 

determined by the eigenvalues of the Jacobian (or community) matrix (J) of the system 15 

evaluated at the equilibrium point (Kot, 2001). Equilibrium points, which may have complex 16 

eigenvalues, are stable in the Lyapunov sense if the real parts of all the eigenvalues are 17 

negative. Unstable equilibrium points have at least one eigenvalue with a positive real part.  18 

Extinction in mathematical models of ecosystems occurs if a model has an extinction 19 

point that is stable. Generally, analytic expressions for the eigenvalues (!i ) of the Jacobian 20 

matrix of a system, that determine the stability of equilibrium points, are available only for 21 

very simple ecosystem models. However, normal ecologies have the property that we can 22 

always find an analytic expression for the eigenvalue ! j  associated with a population x j  at 23 



       Roger CROPP and John NORBURY 

       13 

an extinction point, where x j
* = 0 . This “competition eigenvalue” is given by the value of its 1 

life function evaluated at the extinction point, that is ! j = f j
*
x j
*=0

. The condition for 2 

coexistence or persistence in normal ecologies is therefore that no extinction equilibrium 3 

point is stable, i.e. that an eigenvalue there satisfies ! j = f j
*
x j
*=0

> 0 . 4 

Normal ecologies may have structural coexistence, where all equations have the 5 

property that ! j = f j
*
x j
*=0

> 0  for all reasonable parameter choices (i.e. such that Rule 4 above 6 

is satisfied), or they may have conditional coexistence, where parameter values are carefully 7 

chosen so that at least one competition eigenvalue is positive at each extinction point. 8 

Structural coexistence occurs if all life functions ( fi ) have vanishing loss terms, that is, terms 9 

that tend to zero as the population   xi ! 0 . (In general, ecosystem models have non-vanishing 10 

per capita growth terms that do not tend to zero as   xi ! 0 .) Conditional coexistence occurs 11 

when the equations have one or more non-vanishing loss terms, and relies on values being 12 

chosen for the parameters that ensure that the competition eigenvalue condition is met. In 13 

practice, it can be quite difficult to find parameter sets for conditional coexistence models 14 

with the property that all populations remain extant (Cropp and Norbury, 2012b). 15 

2.3 Coexistence in the Library of Lotka 16 

Of the approximately 1014  structural forms in the Library of Lotka as we have defined 17 

it above, only one form has the property of structural coexistence, and only approximately 18 

10137  of the 10151  predictions in the Library will be produced by models with this property. 19 

However, we need to interpret these figures with care. For example, we distinguished only 20 

between linear and nonlinear mortality terms when constructing the library, but note that there 21 



       Roger CROPP and John NORBURY 

       14 

is only one way in which a mortality term can be exactly linear, but an infinite number of 1 

ways in which it could be nonlinear. 2 

We also don’t know what fraction of the other models in the Library have the property 3 

of conditional coexistence as this depends on their parameter values, but we gain some insight 4 

into their rarity for our example models in §3.4 below. This paucity of coexistence solutions 5 

in the Library of Lotka places into clear relief the ‘Paradox of the Plankton’ articulated by 6 

Hutchinson (1961) in response to the difficulty of finding models that could reproduce the 7 

coexistence of multiple species on the few resources obvious in real plankton ecosystems. It 8 

would appear that Hutchinson and those that followed were browsing the Library of Lotka 9 

looking for a solution, and we see now that their probability of success was extremely low. 10 

 11 

3. Simulation Methods 12 

3.1 Example Ecosystem Models 13 

We use a simple   NP1P2Z1Z2  ecosystem as a basis to construct examples of plankton 14 

models commonly used in climate change and fisheries applications. These example models 15 

are sufficiently complex that the usual geometric techniques used to understand the solutions 16 

(Kot, 2001) are of little practical use. We design two versions of the   NP1P2Z1Z2  model to have 17 

different properties using different process representations as described by Cropp and 18 

Norbury (2012b). One version has the property of structural coexistence, where all 19 

populations coexist for all time for any parameter set that complies with our rules. This model 20 

is constructed using non-vanishing growth terms and vanishing loss terms when the model is 21 

written in consistent normal form: 22 
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dxi

dt
= xi growthNV ! grazingV ! mortalityV( ) . (6) 1 

Here,  growthNV  indicates any non-vanishing growth formulation such as Michalis-Menten or 2 

Droop,  grazingV  indicates any vanishing grazing formulation such as Holling Type III, and 3 

 mortalityV  indicates a vanishing mortality/respiration formulation such as any nonlinear 4 

mortality. 5 

The alternate model also complies with the consistent normal criteria but has the 6 

property of conditional coexistence, where all populations coexist only for particular carefully 7 

chosen parameter sets. This model is constructed using non-vanishing growth terms and non-8 

vanishing loss terms: 9 

 
 

dxi

dt
= xi growthNV ! grazingNV ! mortalityNV( ) . (7) 10 

Here,  grazingNV  indicates any non-vanishing grazing formulation such as Holling Type I or 11 

II, and  mortalityNV  indicates a non-vanishing mortality/respiration formulation such as linear 12 

mortality. 13 

3.2 Structural Coexistence Model 14 

The example Structural Coexistence model is defined by equations (8) - (11): 15 

dP1
dt

= P1
µ1N
N +!1

" #̂12P1 P2
P1
2 + !̂12

" #11P1Z1
P1
2 +!11

" #12P1Z2
P1
2 +!12

"$ P1P1 "$ P1
*%

&'
(
)*

,  (8) 16 

dP2
dt

= P2
µ2N
N +! 2

+
"̂12 1#$̂ 12( )P12

P1
2 + !̂12

# "21P2Z1
P2
2 +! 21

# "22P2Z2
P2
2 +! 22

#% P2P2
&
'(

)
*+

,  (9) 17 

 

dZ1
dt

= Z1
!11 1"# 11( )P12

P1
2 +$11

+
!21 1"# 21( )P22

P2
2 +$ 21

"
!!12Z1Z2
Z1
2 + !$12

"% Z1Z1
&
'(

)
*+

,  (10) 18 

 

dZ2
dt

= Z2
!12 1"# 12( )P12

P1
2 +$12

+
!22 1"# 22( )P22

P2
2 +$ 22

+
!!12 1" !# 12( )Z12
Z1
2 + !$12

"% Z 2Z2
&
'(

)
*+

,  (11) 19 
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where   N = 1! P1 ! P2 ! Z1 ! Z2 . Note that structural coexistence models cannot include a 1 

linear mortality term. The linear mortality term   ! P1
*  has been added to the   P1  equation in this 2 

structural coexistence model solely to facilitate simulation of the effect of climate change, that 3 

is   ! P1
*  increases with ‘global warming’ and the remaining populations   P2 ,   Z1  and   Z2  then all 4 

respond to this variation through   P1 . The application of the rules for a consistent normal 5 

ecology for the structural coexistence model is shown in Appendix One. 6 

3.3 Conditional Coexistence Model 7 

The example Conditional Coexistence model is composed of equations (12) - (15): 8 

dP1
dt

= P1
µ1N
N +!1

" #̂12P2
P1 + !̂12

" #11Z1
P1 +!11

" #12P1Z2
P1 +!12

"$ P1
%
&'

(
)*

,  (12) 9 

dP2
dt

= P2
µ2N
N +! 2

+
"̂12 1#$̂ 12( )P1

P1 + !̂12
# "21Z1
P2 +! 21

# "22Z2
P2 +! 22

#% P2

&
'(

)
*+

,  (13) 10 

 

dZ1
dt

= Z1
!11 1"# 11( )P1

P1 +$11
+
!21 1"# 21( )P2

P2 +$ 21

"
!!12Z2

Z1 + !$12
"% Z1

&
'(

)
*+

,  (14) 11 

 

dZ2
dt

= Z2
!12 1"# 12( )P1

P1 +$12
+
!22 1"# 22( )P2

P2 +$ 22

+
!!12 1" !# 12( )Z1
Z1 + !$12

"% Z 2

&
'(

)
*+

,  (15) 12 

where again   N = 1! P1 ! P2 ! Z1 ! Z2 . The application of the rules for a consistent normal 13 

ecology for the conditional coexistence model is shown in Appendix Two. 14 

We apply the axioms for the construction of normal ecological models described in 15 

Cropp and Norbury (2012a) to ensure that the models are consistent computer ecologies. We 16 

define competition eigenvalues and parameterise the models by randomly sampling a large 17 

parameter space using criteria on the signs of the competition eigenvalues.  18 
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3.4 Parameters 1 

We chose parameter sets for the models by randomly generating 106 sets of parameter 2 

values from a parameter space described in Cropp and Norbury (2012b). For all models, the 3 

parameter sets were required to comply with the criteria that the set of boundary equilibrium 4 

points, 
  

P1
*,0,0,0{ } , 

  
0, P2

*,0,0{ } , 
  

P1
*,0,Z1

*,0{ } , 
  

0, P2
*,Z1

*,0{ } , 
  

P1
*,0,0,Z2

*{ }  and 
  

0, P2
*,0,Z2

*{ } , 5 

existed within the ecospace E ! 0 < P1 + P2 + Z1 + Z2 <1; 0 " P1,P2,Z1,Z2 "1{ } . We refer to 6 

parameter sets that comply with this condition as reasonable. 7 

The properties of normal ecologies mean that any reasonable parameter set for a 8 

model with structural coexistence typically results in the model having equilibrium dynamics, 9 

where the coexistence equilibrium point is locally stable. The parameter search for the 10 

structural coexistence model found 813,145 reasonable parameter sets, each with the property 11 

that the competition eigenvalues (
  
!i = fi xi

*=0
) at each extinction equilibrium point   xi

* = 0  for 12 

some    i = 1,!,4  are all positive. One parameter set was arbitrarily chosen from the reasonable 13 

parameter sets for the structural coexistence model for use in the simulations (Table 1, 14 

Structural Coexistence). We will refer to this parameterisation of the Structural Coexistence 15 

model as the SCE model. 16 

Reasonable parameter sets for the conditional coexistence model do not necessarily 17 

result in coexistence solutions, and further conditions must be applied to find these solutions. 18 

We searched the reasonable parameter sets to obtain conditional coexistence models with 19 

different dynamical properties. We first required that all the competition eigenvalues of all the 20 

required boundary equilibrium points were positive; this parameterises the conditional 21 

coexistence model to have equilibrium dynamics similar to the structural coexistence model 22 

(Table 1, Conditional Equilibrium). We then searched for a parameter set that produced 23 
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pinball dynamics in the conditional coexistence equations by stipulating that each of the 1 

required boundary equilibrium points had one positive and one negative competition 2 

eigenvalue (Table 1, Conditional Pinball). 3 

The parameter search for the conditional coexistence model found 484,568 valid 4 

parameter sets of which 9,095 parameter sets complied with our coexistence criteria. 5 

Reasonable parameter sets with all competition eigenvalues positive, that endow the 6 

conditional coexistence model with equilibrium dynamics, comprised 0.02% of valid 7 

coexistence parameter sets; one of these that provided a solution similar to the parameter set 8 

chosen for the structural coexistence model was selected for the numerical simulations (Table 9 

1, Conditional Equilibrium). We will refer to this parameterisation of the Conditional 10 

Coexistence model as the CCE model. 11 

The remainder of the valid coexistence parameter sets produced pinball dynamics. We 12 

chose a parameter set with a competition eigenvalue structure such that the dynamics of the 13 

system will visit the vicinity of each boundary equilibrium point in the sequence 
  

P1
*,0,Z1

*,0{ }  14 

!  
  

P1
*,0,0,Z2

*{ }  !  
  

0, P2
*,0,Z2

*{ }  !  
  

0, P2
*,Z1

*,0{ }  !  
  

P1
*,0,Z1

*,0{ }  (Table 1, Conditional 15 

Pinball). We will refer to this parameterisation of the Conditional Coexistence model as the 16 

CCP model. 17 

3.3 Seasonal Forcing and Climate Change 18 

A forcing, which notionally simulates seasonal variations in light, was applied to 19 

demonstrate that models with the same properties can exhibit different dynamic outcomes 20 

when subjected to environmental forcing of different amplitudes. The seasonal forcing was 21 

represented by a simple sine function (
  
R = 1+ Asin 2! t

100
"
#$

%
&'

) operating on the phytoplankton 22 
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growth rates ( µ1  and  µ2 ). This function had a period of 100 time units and amplitude of 1 

  A = 0.10  to represent weak amplitude seasonal light forcings typical of the tropics or 2 

  A = 0.50  to represent the larger amplitude seasonal light forcings typical of temperate and 3 

polar regions.  4 

Climate-induced mortality was applied only to one phytoplankton (  P1 ) as an increase 5 

in the coefficient of the linear mortality term. The change in mortality due to the changing 6 

climate was modelled as a simple linear increase with temperature ( Mi t( ) = ci + mit ) where  t  7 

is time and the change in temperature over time is implicit. As the models used random 8 

parameter values we tuned the mortality functions to produce extinctions at approximately 9 

two-thirds of the way through the simulation in all models. For the SCE model   ci = 0  and 10 

  mi = 0.05; for the CCE model   ci = 1  and   mi = 0.001 , and for the CCP model   ci = 1  and 11 

  mi = 0.002 . 12 

 13 

4. Results and Discussion 14 

The simulation results with no seasonal forcing or mortality change (Figure 1) show 15 

the endogenous dynamics of the three models. Figure 1 shows the constant population levels 16 

of the SCE and CCE models that are typical of the endogenous dynamics of these models. In 17 

contrast the CCP model has an endogenous cycle of approximately 450 time units, with 18 

extended periods when the system is in the vicinity of the boundary equilibrium point 19 

  
P1

*,0,0,Z2
*{ }  interspersed with shorter periods when the system visits the other points in turn 20 

as described above. 21 
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When a weak forcing is applied to the growth rates of   P1  and   P2  to simulate small 1 

seasonal variations in irradiance (Figure 2), the SCE model responds with all populations 2 

showing low amplitude oscillations with a period approximately the same as the forcing. The 3 

CCE model similarly responds with population oscillations of 100 time units, the same as the 4 

forcing, but with much larger amplitude oscillations. In contrast, the dynamics of the weakly 5 

forced CCP model are almost identical to that of the unforced model, with the amplitude of 6 

the oscillation reducing slightly and the period reducing (for   P1  from about 450 to 320 time 7 

units). 8 

The dynamics of the CCP model do respond to the application of a stronger seasonal 9 

forcing (Figure 3), with the endogenous dynamics now becoming entrained into the 100 time 10 

unit period of the exogenous forcing. The responses of the SCE and CCE models to the 11 

stronger exogenous forcing are just to increase the amplitude of the population oscillations, 12 

which remain with the same 100 time unit period of the forcing. As for the weak forcing, the 13 

amplitude of the oscillations in the CCE model is much larger than in the SCE model. 14 

The application of ‘climate change’ dependence to the mortality rate of   P1  is 15 

calculated to result in extinction of   P1  (
  
!P1 = fP1 P1

*=0
< 0  at one or more boundary equilibrium 16 

point where   P1
* = 0 ) at about time unit 500 in the simulations for each model (Figures 4-6). 17 

The impact of these extinctions is known from the properties of the models (Cropp and 18 

Norbury, 2012b). The SCE and CCE models both initially had the property that the 19 

competition eigenvalues were all positive at every boundary equilibrium point. This means 20 

that when   P1  goes extinct, when   !P1  becomes negative, the only impact is that the models 21 

will become attracted to a new coexistence equilibrium solution 
  

0, P2
*,Z1

*,Z2
*{ }  where   P1

* = 0 . 22 

In contrast, only one competition eigenvalue is positive at each boundary equilibrium point in 23 
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the CCP model, and the extinction of   P1  will cause the system to attract to one of the 1 

boundary equilibrium points (Cropp and Norbury, 2012b).  For the parameterisation of the 2 

CCP used in this case, this will result in the 
  

0, P2
*,Z1

*,0{ }  point becoming the new, and in this 3 

case equilibrium, solution to the CCP model. This means that the extinction of   P1  as a result 4 

of climate change will also lead to the extinction of   Z2  in the CCP model, that is, a cascade of 5 

extinctions will occur. 6 

While the changes to the food web structure as a result of the increasing mortality of 7 

  P1  may be predicted precisely from knowledge of the model properties, and may in fact be 8 

designed for where the model is constructed as we have done here, the dynamical responses to 9 

the changing climate are not so explicitly known or as explicitly defined by the model 10 

properties. Figures 4 and 5 show that the gradual reduction, and eventual change in sign, of 11 

  !P1  produces quite different dynamical responses in the three models. The most gradual and 12 

predictable response occurs in the SCE model in both the weak (Figure 4) and strong (Figure 13 

5) seasonal forcing scenarios. Here, the   P1  population gradually reduces in size until it 14 

eventually reaches zero at about time unit 500. At this point a trans-critical bifurcation occurs 15 

where the stable 
  

P1
*, P2

*,Z1
*,Z2

*{ }  interior equilibrium point collides and exchanges stability 16 

with the previously unstable 
  

0, P2
*,Z1

*,Z2
*{ }  equilibrium point. The CCE model behaves 17 

similarly to the SCE model, as expected, because they have identical competition eigenvalue 18 

structures. The major difference between these models is their sensitivity to the external 19 

seasonal forcing, and in both cases the amplitudes of the CCE population oscillations are 20 

greater than those of the equivalent SCE populations. 21 
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The dynamical response of the CCP model is quite different to those of the SCE and 1 

CCE models in both the weak and strong seasonal forcing cases. In the weak case (Figure 4) 2 

the   P1  population responds to the changing climate by dominating the system until it 3 

precipitously goes extinct at about 450 time units. At this point the 
  

0, P2
*,Z1

*,0{ }  boundary 4 

equilibrium point attracts the dynamics and   Z2  goes extinct as a result of   P1 ’s extinction. The 5 

same process occurs in the strong seasonal forcing (Figure 5), but in this case the dynamics 6 

are quite different. Here, the seasonal cycle forces a series of   P1  blooms that increase in size 7 

until the population fails to recover and manages only a small bloom at about time 420 before 8 

it goes extinct shortly after. Although the new system has a stable equilibrium point at 9 

  
0, P2

*,Z1
*,0{ }  on the boundary, as it does for the weak forcing case, the system does not settle 10 

down quickly to an equilibrium solution as in the weak case. Instead, a series of short blooms 11 

and busts (“breathers”) are observed with both the   P2  and   Z1  populations reducing to very 12 

low levels between blooms. 13 

The differing scenarios presented in Figures 1-5 might variously be viewed as 14 

‘plausible’ outcomes of a modelling exercise by different observers. Our point is not whether 15 

these outcomes are realistic or not, but that the outcomes are determined by decisions made 16 

during the construction and parameterisation of the computer model. In particular, the 17 

‘climate change’ simulations of Figures 4 and 5 reveal significant differences in ‘predictions’ 18 

due to differences in the model equations (SCE vs. CCE), different parameterisations of the 19 

same equations (CCE vs. CCP), and different environments for the same model, most obvious 20 

in the CCP model for weak and strong forcings. These differences can determine whether a 21 

system has a predictable route to extinction (SCE, weak and strong) or a catastrophic collapse 22 

(CCP, weak); an equilibrium post-extinction state (CCP, weak) or apparent chaos (CCP, 23 

strong).  24 
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We know that the SCE model will respond to climate change by moving from its 1 

original equilibrium state to a new equilibrium that does not include the extinguished 2 

population because this is a structural property of the equations, and will occur for any 3 

parameter set. We know that the CCE model will exhibit the same behaviour, despite it being 4 

composed of different equations, because we have parameterised the equations to have the 5 

same competition eigenvalue structure as the SCE model. And we know that the CCP model, 6 

despite having the same equations as the CCE model, will exhibit a cascade of extinctions in 7 

response to climate change because we have parameterised it to have a competition 8 

eigenvalue structure that leads to this outcome. In this case, we know that the outcome of 9 

extinction of   P1  will be an ecosystem composed only of   P2  and   Z1 , but the competition 10 

eigenvalues give us no information on the dynamics of this new state.  11 

 12 

5. Conclusions 13 

Complex ecosystem models are generally constructed from the “bottom-up”, that is, 14 

from a best (but imperfect) understanding of the important interactions between populations. 15 

Choices must be made between the different functional forms used to represent interactions 16 

between populations, often with little theoretical or empirical justification. In such 17 

circumstances we argue that modellers should consider very carefully what formulation they 18 

choose, and be aware of the impact that such choices can have on the properties of the model. 19 

A key new analytical result for our dynamical systems in ecospace is that extinctions can be 20 

studied without knowledge of either interior equilibrium points or their stability. By looking 21 

only at boundary extinction points, and the sign of the relevant life function there, we can 22 

immediately comment on the extinction behaviour without solving for any of the dynamics. 23 

This is a striking simplification, and even holds when the dynamics can become chaotic.  24 
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We have shown that this is especially important when making choices between non-1 

vanishing and vanishing loss terms, such as Holling Type II and III grazing interactions and 2 

linear and nonlinear mortality. The latter distinction has received substantial attention from 3 

marine ecosystem modellers (Steele and Henderson, 1992; Edwards and Brindley, 1999; 4 

Morozov, 2010), but we have shown (Cropp and Norbury, 2012b) that the full implications of 5 

this choice only become evident when considered in conjunction with the form of the other 6 

loss terms. 7 

It is sometimes assumed, when faced with significant uncertainty in experimental 8 

measurements of per capita mortality rates that the “least biased assumption” is to calculate 9 

the average per capita mortality and apply it in a linear term. We suggest that in fact linear 10 

mortality should be considered a special case, and propose that a better modelling practice is 11 

to include both a linear and a nonlinear mortality term. This suggests that experimental per 12 

capita mortality data should be fitted with a regression line with nonzero slope and intercept. 13 

We note that Gross et al (2009) also argue for a combination of linear and nonlinear mortality 14 

coefficients, although from a different perspective. 15 

The key message that we wish to convey in this manuscript is that the ‘answer’ to how 16 

ecosystems will respond to climate, or any other, change that will be obtained from complex 17 

simulation models will depend on the known properties of the ecosystem model, and that 18 

these properties are determined when the model is constructed and parameterised. The 19 

choices available to modellers for food web complexity, process functional forms and 20 

parameter values mean that the interpretation of model predictions must recognise the Library 21 

of Lotka and the intrinsic difficulty of ascribing credibility to model predictions without a 22 

priori information. We argue that the first step to winnowing incorrect predictions from the 23 
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Library of Lotka is to utilise the rules for consistent normal ecologies to construct models 1 

with at least some known properties. 2 

This should not be interpreted to mean that we recommend that ecosystem models 3 

should be constructed from the “top-down” as we have done in this manuscript. (However, we 4 

observe that this is a better pragmatic solution to the problems of population extinctions in 5 

simulations than the common practice of setting artificial minimum population levels.) 6 

Ecosystem models should continue to be constructed from the “bottom-up” by considering the 7 

nature of the process interactions between populations, but this should be done in cognizance 8 

of the ecological axioms and analysis techniques that we summarise here and provide in more 9 

detail in Cropp and Norbury (2012a, b).  10 

The analysis techniques demonstrated here provide a powerful tool that helps us to 11 

understand the properties of ecosystem models of any complexity, and hence the basic 12 

characteristics of their predictions of ecosystem responses to a changing world. A key new 13 

analytical result for our dynamical systems in ecospace is that extinctions can be studied 14 

without knowledge of either interior equilibrium points or their stability. By looking only at 15 

boundary extinction points, and the sign of the relevant life function there, we can 16 

immediately comment on the extinction behaviour without solving for any of the dynamics. 17 

This is a striking simplification, and even holds when the dynamics can become chaotic. We 18 

have presented this work in the context of plankton ecosystems, partly to justify ignoring 19 

spatial inhomogeneity, but we note that the theoretical basis for this work is applicable to any 20 

ecosystem.  21 

 22 

6. Final Comment 23 
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The Library of Lotka provides a useful metaphor within which to evaluate the 1 

meaning of the results of simulation models of ecosystems. When constructing the library we 2 

have used a reasonable model structure (essentially that of PlankTOM10), used a few widely 3 

accepted functional forms to represent the processes that control the dynamics of the 4 

populations (Holling Type I, II and III grazing; linear and nonlinear mortality), and used a 5 

very small range of uncertainty ( ±10% ) around known parameter values with a reasonable 6 

precision (1%). The Library of Lotka for this model contains at least 10151  model predictions, 7 

only one of which is correct, but all of which are plausible.  8 

We all know that 10151 is a large number, but it is useful to consider whether this 9 

presents a fundamental constraint on browsing the Library of Lotka or just a temporary 10 

impediment that will soon be overcome by the apparently inexorable increase in computing 11 

power. Imagine that we construct a very large parallel computer, and that it requires one 12 

kilogram of matter to construct each processor, its memory and its amortised power supply. 13 

Assume we construct 'state of the art' processors that can calculate one model solution every 14 

second. To put 10151 in context, if we used all the matter in the universe we could construct a 15 

computer with 1054 processors. If we used that computer to compute solutions for as long as 16 

the universe has existed (approximately 1017 seconds) we could compute about 1071 solutions. 17 

Our universal metaphor turns out to be serendipitous because there are approximately 1080 18 

atoms in the universe. Hence, if we build a computer the size of the universe and use it to 19 

calculate solutions for as long as the universe has existed we can compute a fraction of the 20 

possible solutions equivalent to only one atom in the entire universe. It is safe to assume that 21 

we will never find a correct solution by browsing the Library of Lotka. 22 

We suggest that chiseled into the portico of the Library of Lotka should be the 23 

warning to those intending to browse the shelves: “Abandon all hope ye who enter here”. The 24 
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correct solution to a climate, or any other, change scenario cannot be found by naively 1 

browsing the Library of Lotka looking for sensible predictions – we must instead create a 2 

catalogue to the library that will direct us to the correct solutions. This catalogue can only be 3 

created from better information about the functional forms of, in particular, grazing 4 

interactions and mortality processes; from more accurate and complete measurements of 5 

parameters; and from a better analytic understanding of the properties of complex ecological 6 

models. 7 

 8 

9 
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Tables 1 

 2 

Table 1. Parameters values used in the simulations for the structural coexistence 3 
model and the conditional coexistence models with equilibrium and pinball dynamics. 4 

PA
R 

Structural Conditional Conditional 

Coexistence Equilibrium Pinball 

µ1  1.086 1.6684 1.8255 

µ2  0.982 2.0227 1.9068 

!1  1.833 0.2037 1.5008 

! 2  1.471 0.9215 1.6399 

! P1

 0.379 0.4748 0.3468 

! P2

 0.174 0.1576 
0.4011 

! Z1

 0.3726 0.0055 0.1918 

! Z 2

 0.0091 0.2471 0.4487 

! P1
*

 
0.01 - 

- 

!̂12  9.384 3.3076 2.6684 

!̂12  1.400 1.3999 1.3999 

!̂ 12

 
0.088 0.1949 

0.6084 

!11  5.630 8.1719 2.6386 

!12  1.388 4.2469 7.2484 

!21  2.611 8.1293 9.7025 

!22  1.083 6.9113 9.7548 
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 !!12  2.835 3.4365 4.0366 

!11  1.466 1.4656 1.4656 

!12  1.920 0.4636 0.4636 

! 21  0.464 1.9197 1.9197 

! 22  0.161 0.1608 0.1608 

 !!12  1.408 1.4077 1.4077 

! 11

 0.129 0.7508 0.5448 

! 12

 0.447 0.8324 
0.7581 

! 21

 0.257 0.2662 0.4713 

! 22

 
0.607 0.5965 0.5926 

 !! 12

 0.088 0.1275 
0.4025 

 1 

2 
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 1 

Figure Legends 2 

 3 

Figure 1. Solutions to models with no external forcings. Ecology with structural coexistence 4 

(top panel) and ecologies with conditional coexistence with equilibrium dynamics (centre 5 

panel), and pinball dynamics (bottom panel). Thick solid line is P1, thin solid line is P2, dotted 6 

line is Z1, and dashed line is Z2. 7 

 8 

Figure 2. Solutions to models with weak external forcings (10% annual variation in light). 9 

Panels and lines as for Figure 1. 10 

 11 

Figure 3. Solutions to models with strong external forcings (50% annual variation in light). 12 

Panels and lines as for Figure 1. 13 

 14 

Figure 4. Solutions to models with weak external forcings and increasing temperature 15 

dependent mortality on P1. Panels and lines as for Figure 1.    16 

 17 

Figure 5. Solutions to models with strong external forcings and increasing temperature 18 

dependent mortality on P1. Panels and lines as for Figure 1. 19 

20 
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 1 

Figures 2 

Figure 1. 3 

 4 

 5 

Figure 2. 6 
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 1 

 2 

Figure 3. 3 

 4 

 5 

Figure 4. 6 



       Roger CROPP and John NORBURY 

       34 

 1 

 2 

Figure 5. 3 

 4 

5 
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 1 

Appendix One: Checking the Rules for Structural Coexistence 2 

Rule 0: equations (8) - (11) are measurement independent as 
   

1
xi

!xi  is defined and   NT = 1 , 3 

then populations are fractions of the limiting nutrient. 4 

Rule 1: the per capita growth function derivatives 
 

! fi

!x j

 exist smoothly for all   xi ! 0  with the 5 

initial condition   xi t( ) > 0 . 6 

Rule 2: 
  

xi
i
! = 1" N  defines  N t( ) , hence we may eliminate N. (In practice, we retain N in 7 

the notation for parsimony of expression.) 8 

Rule 3:    !N ! 0  on   N = 0  and the initial condition ensures that   N t( ) ! 0  where,  9 

 

 

dN
dt

= ! µ1NP1
N +"1

! µ2NP2
N +" 2

+# P1P1
2 +# P2P2

2 +# Z1Z1
2 +# Z 2Z2

2

+ $̂12%̂ 12P1
2P2

P1
2 + "̂12

+ $11% 11P1
2Z1

P1
2 +"11

+ $12% 12P1
2Z2

P1
2 +"12

+ $21% 21P2
2Z1

P2
2 +" 21

+$22% 22P2
2Z2

P2
2 +" 22

+ $11% 11P1
2Z1

P1
2 +"11

+
!$12 !% 12Z1

2Z2
Z1
2 + !"12

,  (16) 10 

and 
  
N = 0! xi

i
" = 1 and 

  
dN
dt

> 0  (i.e. the Lid exists). 11 

Rule 4: we consider the resources  Ri  independently to properly define the system. The 12 

resource for   P1  is   R1 = x0 = N ; then f1 R1=1
= µ1
1+!1

> 0 , and 13 
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f1 R1=0
= ! "̂12P1 P2

P1
2 + #̂12

! "11P1Z1
P1
2 +#11

! "12P1Z2
P1
2 +#12

!$ P1P1 < 0 , so the   f1  resource ray sign conditions are 1 

satisfied when N is the resource. The directional derivative (5) for   f1  is  2 

 

  

P1 !
µ1"1

N +"1( )2 !# P1

$

%
&
&

'

(
)
)
+ P2 !

µ1"1

N +"1( )2 !
2*̂12"̂12P1

P1
2 + "̂12( )2

$

%
&
&

'

(
)
)

+Z1 !
µ1"1

N +"1( )2 !
2*11"11P1

P1
2 +"11( )2

$

%
&
&

'

(
)
)
+ Z2 !

µ1"1

N +"1( )2 !
2*12"12P1

P1
2 +"12( )2

$

%
&
&

'

(
)
)
< 0

.  (17) 3 

This ray derivative is always negative and   f1  satisfies rule 4. 4 

As   P2  is allowed to be a mixotroph, and hence has multiple resources, its resource 5 

conditions must be checked on each resource independently after setting the other resource to 6 

zero. When acting as an autotroph the resource for   P2  is   R2
1 = x0 = N ; then 7 

f2 R2
1=1

= µ2
1+! 2

> 0 , and f2 R2
1=0

= ! "21P2Z1
P2
2 +# 21

! "22P2Z2
P2
2 +# 22

!$ P2P2 . When acting as a mixotroph 8 

the resource for   P2  is   R2
2 = x1 = P1 ; then   P1 = 1 f2 R2

2=1
=
!̂12 1"#̂ 12( )
1+ $̂12

> 0 , and at   P1 = 0 , after 9 

setting the alternate resource  N  to zero, f2 R2
2=0

= ! "21P2Z1
P2
2 +# 21

! "22P2Z2
P2
2 +# 22

!$ P2P2 < 0 . The 10 

directional derivative (5) in the   R2
1 = x0 = N  resource space, after setting the alternate 11 

resource   P1 = 0 , is 12 

 

  

P1 !
µ2" 2

N +" 2( )2

#

$
%
%

&

'
(
(
+ P2 !

µ2" 2

N +" 2( )2 !
)21" 21Z1

P2
2 +" 21( )2 !

)22" 22Z2

P2
2 +" 22( )2 !* P2

#

$
%
%

&

'
(
(

+Z1 !
µ2" 2

N +" 2( )2 !
)21" 21P2

P2
2 +" 21( )2

#

$
%
%

&

'
(
(
+ Z2 !

µ2" 2

N +" 2( )2 !
)22" 22P2

P2
2 +" 22( )2

#

$
%
%

&

'
(
(
< 0

, (18) 13 
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and in the   R2
2 = x1 = P1  resource space, after setting the alternate resource   N = 0 , is 1 
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)
*
*
< 0

. (19) 2 

Both these ray derivatives are always negative and   f2  satisfies rule 4. 3 

  Z1  also has two resources,   R3
1 = x1 = P1  and   R3

2 = x2 = P2 . When feeding on   P1 , at 4 

  P1 = 1 f3 R3
1=1

=
!11 1"# 11( )
1+$11

> 0  and at   P1 = 0 , with   P2 = 0 , 
 
f3 R3

1=0
= !
!"12Z1Z2
Z1
2 + !#12

!$ Z1Z1 < 0 . 5 

When feeding on   P2 , at   P2 = 1 f3 R3
2=1

=
!21 1"# 21( )
1+$ 21

> 0  and at   P2 = 0 , with   P1 = 0 , 6 

 
f3 R3

2=0
= !
!"12Z1Z2
Z1
2 + !#12

!$ Z1Z1 < 0 . The directional derivative (5) in the   R3
1 = x1 = P1  resource 7 

space, with   P2 = 0 , is 8 
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< 0 , (20) 9 

and the directional derivative (5) in the   R3
2 = x2 = P2  resource space, with   P1 = 0 , is 10 
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, (21) 11 

Both these ray derivatives are unequivocally negative, so rule 4 holds for   f3 . 12 
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  Z2  is an omnivore, and has three resources,   R4
1 = x1 = P1 ,   R4

2 = x2 = P2  and 1 

  R4
3 = x3 = Z1 . When feeding on   P1 , at   P1 = 1 f4 R4

1=1
=
!12 1"# 12( )
1+$12

> 0  and at   P1 = 0 , with 2 

  P2 = 0  and   Z1 = 0 , f4 R4
1=0

= !" Z 2Z2 < 0 . Similarly, when feeding on   P2 , at   P2 = 1 3 

f4 R4
2=1

=
!22 1"# 22( )
1+$ 22

> 0  and at   P2 = 0 , with   P1 = 0  and   Z1 = 0 , f4 R4
2=0

= !"QZ 2Z2 < 0 . 4 

Finally, when feeding on   Z1 , at   Z1 = 1 
 
f4 R4

3=1
=
!!12 1" !# 12( )
1+ !$12

> 0 , while at   Z1 = 0 , with   P1 = 0  5 

and   P2 = 0 , f4 R4
3=0

= !" Z 2Z2 < 0 .  6 

The directional derivative (5) in the   R4
1 = x1 = P1  resource space, with   P2 = 0  and 7 

  Z1 = 0 , is 8 
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in the   R4
2 = x2 = P2  resource space, with   P1 = 0  and   Z1 = 0 , is 10 
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and in the   R4
3 = x3 = Z1  resource space, with   P1 = 0  and   P2 = 0 , is 12 
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)
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All of these ray derivatives are unequivocally negative, so rule 4 is always satisfied for   f4 .  14 
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 1 

Appendix Two: Checking the Rules for Conditional Coexistence 2 

This model similarly complies with our rules, but differs from the structural 3 

coexistence model in that the sign restrictions of Rule 4 place constraints on the magnitude of 4 

the mortality terms of each PFT: 5 

• for   P1  
  
f1 R1=1> 0  requires that ! P1 <

µ1
1+"1

; 6 

• for   P2  
  
f2 R2

1=1
> 0  requires that ! P2 <

µ2
1+" 2

 and 
  
f2 R2

2=1
> 0  requires that 7 

! P2 <
"̂12 1#$̂ 12( )
1+ %̂12

; 8 

• for   Z1  
  
f3 R3

1=1
> 0  requires that ! Z1 <

"11 1#$ 11( )
1+%11

 and 
  
f3 R3

2=1
> 0  requires that 9 

! Z1 <
"21 1#$ 21( )
1+% 21

; and 10 

• for   Z2  
  
f4 R4

1=1
> 0  requires that ! Z 2 <

"12 1#$ 12( )
1+%12

, 
  
f4 R4

2=1
> 0  requires that 11 

! Z 2 <
"22 1#$ 22( )
1+% 22

 and 
  
f4 R4

3=1
> 0  requires that 

 
! Z 2 <

!"12 1# !$ 12( )
1+ !%12

. 12 

Where Rule 4 imposes more than one criterion on the mortality term at least one of these 13 

conditions must be satisfied for the ecology to be consistent. 14 

The directional derivative for   f1  is  15 
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, (25) 1 

which is unequivocally negative. 2 

  P2  is again a mixotrophy with multiple resources and its resource conditions must be 3 

checked on each resource independently after setting the other resource to zero. When acting 4 

as an autotroph the directional derivative in the   R2
1 = x0 = N  resource space, after setting the 5 

alternate resource   P1 = 0 , is 6 
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, (26) 7 

and in the   R2
2 = x1 = P1  resource space, after setting the alternate resource   N = 0 , is 8 
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Both ray derivatives are unequivocally negative and therefore rule 4 is satisfied for   f2 . 10 

  Z1  has two resources,   R3
1 = x1 = P1  and   R3

2 = x2 = P2 . The directional derivative in the 11 

  R3
1 = x1 = P1  resource space, with   P2 = 0 , is 12 
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and the directional derivative (5) in the   R3
2 = x2 = P2  resource space, with   P1 = 0 , is 2 
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Both these ray derivatives are unequivocally negative, so rule 4 holds for   f3 . 4 

  Z2  is an omnivore, and has three resources,   R4
1 = x1 = P1 ,   R4

2 = x2 = P2  and 5 

  R4
3 = x3 = Z1 . The directional derivative in the   R4

1 = x1 = P1  resource space, with   P2 = 0  and 6 

  Z1 = 0 , is 7 
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in the   R4
2 = x2 = P2  resource space, with   P1 = 0  and   Z1 = 0 , is 9 
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and in the   R4
3 = x3 = Z1  resource space, with   P1 = 0  and   P2 = 0 , is 11 

 

   

1! Z1( ) !
!"12 1! !# 12( )Z2

Z1 + !$12( )2

%

&
'
'

(

)
*
*
< 0 . (32) 12 

All of these ray derivatives are unequivocally negative, so rule 4 is always satisfied for   f4 .  13 
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