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Abstract A Backward Prediction Model (BPM) has been developed to generate the missing bridge 

condition ratings in past years thereby ensuring adequate condition data as required in long-term 

performance modelling. The BPM establishes a correlation between the known condition ratings 

and the non-bridge factors including climate condition, traffic volume and population growth. The 

aim of this study is to confirm the ability of BPM in improving the prediction accuracy using the 

existing bridge deterioration models. The prediction accuracies of typical deterministic and 

stochastic bridge deterioration models are compared when different sets of BPM-generated 

historical condition ratings are used as input. Comparisons indicate that the prediction error 

decreases as more historical condition ratings are made available. Notwithstanding the above 

findings, several limitations of the current deterministic and stochastic bridge deterioration models 

are also worth noting and further research is essential to improve the prediction accuracy of bridge 

deterioration modelling. 

Keywords Backward Prediction Model (BPM), deterioration modelling, 

deterministic models, stochastic models. 

 

1 Introduction 

In bridge management, critical decision-making for Maintenance, Repair and 

Rehabilitation (MR&R) activities is required to ensure optimum levels of safety 

and serviceability of a bridge [1]. Many Bridge Management Systems (BMSs), as 

a Decision Support System (DSS), have been developed during the past decades 
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for effective management of large bridge networks. A BMS, generally assisting 

significant future MR&R strategies, is based on a reliable bridge deterioration 

model. The prediction accuracy of deterioration ratings is therefore highly crucial 

for an effective BMS [2]. A number of bridge deterioration models have been 

developed to determine the bridge life cycle for major MR&R needs [3]. 

Nevertheless, the predictions of future structural condition ratings from BMSs are 

still impractical for developing long-term maintenance strategies. This is largely 

due to several drawbacks related to their applications in most bridge agencies, viz: 

(1) commercial BMS software has been implemented for only two decades, 

therefore bridge agencies would only have around 8 to 9 biennial inspection 

records [4]; (2) bridge condition ratings usually do not change significantly during 

short-term periods [4]; and (3) approximately 60% of BMS analytical modules 

rely heavily on periodical bridge inspection records [5]. These factors underlie the 

inaccuracy in predicting the future performance of bridges. In response, research 

efforts were made in the area of bridge asset management in an attempt to 

improve overall quality of BMS outcomes [1, 3].  

Despite previous research achievements in the development of the deterioration 

models, some fundamental problems still remain. The most critical one is that the 

bridge inspection records are inadequate as required for BMS input. Many 

researchers and infrastructure asset management practitioners have recognised 

that deterioration of infrastructure facilities is not deterministic [6]. For effective 

implementation of BMS software, two important research problems must be 

solved: (1) As part of BMS data requirements, the amount of time-dependent 

bridge data from periodic bridge inspections for a BMS update is very limited; (2) 

Bridge condition rating variances in the existing small number of historical data 

cause inaccurate prediction results from the most important BMS analysis 

modules that require lengthy historical data patterns for their future projections. 

Typical deterioration modeling techniques have invariably been developed based 

on a few set of current structural condition ratings, thus unlikely to predict reliable 

future bridge condition ratings [4]. 

In addition to the above, bridge deteriorations are also caused by diverse 

explanatory variables including “non-bridge factors” such as traffic intensity, 

environmental factors, climates etc [7, 8]. Collection of such variables is not 

included in the current bridge inspection routines. Because of this and with only 
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limited bridge condition rating records, it is very difficult to use typical stochastic-

based deterioration models to accurately predict future condition ratings. This 

limitation has been recognised and it is a challenging problem that has not yet 

been adequately addressed [9, 10, 11, 12]. 

As mentioned above, a deterioration model in a BMS is the most critical 

component and is based on historical condition ratings obtained from the element-

level bridge inspections [5]. Although most bridge authorities have previously 

conducted inspection and maintenance tasks, these past inspection records are 

incompatible with what are required by a BMS as input. Such incompatibility is a 

major cause for the deficiency of the current BMS outcomes. Due to the lack of 

historical condition rating information, many bridge authorities worldwide have 

similar problems in using BMS for accurate and reliable predictions of long-term 

bridge performance and budget planning. 

In order to address the problem of insufficient condition data, the Artificial Neural 

Network (ANNs) based-Backward Prediction Model (BPM) has been developed 

by Lee et al [4] for reliable bridge deterioration predictions. The BPM can 

generate missing condition ratings through a correlation between the existing 

condition ratings and the non-bridge factors which influence the variation of 

bridge condition ratings. This paper presents a comparison study using typical 

deterministic and stochastic deterioration modeling techniques incorporated with 

different numbers of BPM-generated condition rating data, in an attempt to 

improve the reliability of long-term prediction. 

2 Backward prediction model 

The BPM predicts the selected or entire periods of historical bridge condition 

ratings to overcome the problem of lacking BMS condition rating data. Figure 1 

illustrates the main function of the ANN technique in establishing the correlation 

between the existing condition rating datasets (from year m to m+n) and the 

corresponding years’ non-bridge factors. The non-bridge factors directly and 

indirectly affect the variation of the bridge conditions and therefore the 

deterioration rate. The correlations established using neural networks are then 

applied to the non-bridge factors (for year 0 to m) to generate the missing bridge 

condition ratings (for the same year 0 to m). Thus, the non-bridge factors, in 

conjunction with the ANN technique, can produce the historical trends that help 
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generate the missing condition ratings [4]. Detailed structure of the ANN-based 

BPM can be found in [4]. Note in this study that only six highly relevant non-

bridge factors are employed including passenger vehicle, truck, total number of 

vehicles, maximum temperature, local city population and state population 

growth. All these non-bridge factors are relevant to the bridge network. 

3 BMS and NBI condition ratings for BPM 

3.1 BMS condition ratings as BPM input 

The results obtained from the BPM were validated by using both backward and 

forward comparison techniques. The former compares the BPM outcomes with 

the known historical data to assess the prediction accuracy; whereas the latter uses 

the BPM outcomes as input data to predict present year’s bridge condition ratings, 

which are then compared directly with the actual data in the corresponding year 

[13]. To carry out the backward comparison, only five sets of the existing BMS 

and National Bridge Inventory (NBI) condition ratings are used in this study as 

BPM training inputs and outputs (from 1996 to 2004 in a 2-year increment). 

Missing historical condition ratings can be generated from years 1968 to 1994 in a 

2-year increment. Details of the BMS and NBI raw data as prediction inputs are 

given in Table 1 and Figure 2, respectively. The BMS raw data (from year 1996 to 

2004 with a total quantity of 350) are those related to Element #234 (i.e. 

reinforced concrete pier cap) on Bridge #0301xxxx1 and the NBI data (from year 

1996 to 2004) are related to the bridge component (i.e. deck) of the same bridge. 

Note in Table 1 that the percentage values shown in brackets are the percentage 

quantities with respect to the total quantity. Note also that the Condition States 

(CSs) are used to quantify the severity and extent of damage for each bridge 

element. A five-CS scale is adopted in Queensland, Australia [14]. These five CSs 

are in the order of 1 to 5 (good to very poor), and represent the bridge condition 

ratings from 100% to 20% in a descending order (Figure 3). 

While the condition index for BMS raw data consists of five CSs, the NBI raw 

data consists of nine different CSs (Figure 4). The acceptable numerical scale for 

the Artificial Neural Network (ANN) is ranged from -1 to 1. Therefore a 

calibration procedure is required for the bridge condition datasets to fit into the 



5 

BPM by using typical ANN input environment. This is presented in Figures 3 and 

4 for BMS and NBI, respectively. 

Tu [15]’s study has indicated that an empirical process is required to determine 

best possible combinations of the parameters such as learning rates (lr) and 

momentum coefficient (mc). The BPM-generated condition ratings for each year 

contain 66 spectra of rating numbers per CS [4], which is a combination of the 

learning rates (lr) (i.e. lr: 0.0 to 0.5 @ 0.1 increment, resulting in 6 lr), and 

momentum coefficients (mc) (mc: 0.0 to 1.0 @ 0.1 increment resulting in 11 mc) 

in the Neural Network configurations. Accordingly, the number of prediction in 

each year is also 66. Figure 5 shows the BPM results using the BMS raw data. For 

each year, there are 66 prediction results being derived from the combined 

number of lr and mc in the neural network. The symbols (66 points each year) 

represent the total number of element quantity (350 components) for that 

particular year. Between 1996 and 2004, the average quantity in CS1, CS2 and 

CS3 for Element #234 is about 80%, 16.2% and 3.8% of the total element 

quantity, respectively. As seen in Figure 5, the historical condition ratings (from 

1968 to 1994) generated by the BPM are in three different proportions of the 

condition state. The historical condition ratings shown in Figure 5(c) indicate that 

3.8% of the total elements have historically fluctuated more than other CSs. This 

implies that MR&R activities on these 3.8% of elements have been performed 

previously. 

To validate the results of the BPM using the forward comparison technique, the 

generated backward prediction results (1968-1994) are used as input datasets to 

generate the condition ratings for the present years (1996-2004). It should be 

noted that the same BPM mechanism is applied for prediction in the forward-

direction (years 1996-2004). Two time periods (1968-1994 and 1996-2004) of the 

known non-bridge factors and one period (1968-1994) of the known generated 

condition ratings are used to predict the condition ratings for years (1996-2004). 

The forward prediction results (1996-2004) based on the BPM-generated 

condition ratings are then directly compared with the existing condition rating 

datasets (1996-2004). The prediction errors are calculated by averaging the 

differences between the forward prediction results and the actual BMS condition 

ratings. Table 2 shows the final results from the BPM and their prediction errors. 

The yearly average prediction errors are less than ±10% which is considered 
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acceptable. Therefore, the BPM generated historical condition ratings (1966-

1994) can be used with confidence as historical BMS input data. 

3.2 NBI condition ratings as BPM input 

With a longer period of historical data provided by NBI, it is possible to measure 

the performance of the BPM prediction without any difficulties. Note that only a 

backward comparison is performed to verify the results generated by the BPM. 

Note also that only the condition ratings of the bridge deck are presented as BPM 

training inputs and outputs (from 1968 to 1994 in a 2-year increment) [16]. 

Additionally, assumed condition rating (i.e. excellent condition state) in 1966, 

when the bridge was built, is used [16]. As a result, the historical condition ratings 

are generated from 1968 to 1994 in a 2-year increment, as shown in Figure 6. 

Figure 7 illustrates the backward comparisons between the average BPM results 

and the existing NBI data. The prediction errors are calculated by averaging the 

differences between the BPM-generated condition ratings and the actual NBI data. 

As shown in the figure, the prediction errors in each year are less than ±10% 

which is considered acceptable.  

Evidently, by using the BPM-generated historical condition ratings, the prediction 

accuracies of the currently used typical deterioration modelling techniques can be 

improved. Notwithstanding this finding, it is still necessary to ascertain the 

efficiency of such generated historical data. To achieve this, the generated 

historical condition ratings are examined in relation to specific prediction 

techniques commonly used in the typical deterioration models [16]. 

4 Typical bridge deterioration models 

Many research studies on bridge deterioration models have been carried out with 

an attempt to improve the reliability of BMS outcomes. Nonetheless, it has been 

emphasised that successful achievement of the analysis using these models 

remains highly dependent on the quality and sufficiency of data gathered [17].  

According to Morcous et al [18], currently used typical bridge deterioration 

models can be categorised as deterministic, stochastic and artificial intelligence. 

In this paper, the first two modelling techniques are examined as they are 

popularly used in many current BMSs. Generally, a deterministic model predicts 

the deterioration of a bridge using a particular algorithm, while a stochastic model 
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considers that the actual deterioration rate is unknown and there is a probability 

that the bridge will deteriorate at a specific rate [19].Amongst the deterministic 

models, regression analysis is a methodology widely used in many BMSs [17], 

whereas the Markov-based model is considered as one of the most common 

methods adopted by the stochastic techniques [20].  

As described above, the BPM outcomes can lead to improved prediction accuracy. 

In the following section, evaluations of the prediction accuracies obtained from 

the linear and non-linear regression analyses, as well as the Markov-based model 

are presented. In general, the determination of a functional form of an equation 

that could fit particular datasets (also referred to as a performance curve) is 

considered as crucial part of a regression modelling [19]. As for linear regression, 

this function is expressed by a simple linear equation; whereas in non-linear 

regression, this function is characterised as a polynomial form of second or higher 

orders. In this study, following the work of Jiang and Sinha [3], a third-order 

polynomial model is used to determine long-term deterioration of bridge condition 

ratings. 

C(t) = β0 + β1ti+ β2ti
2
+ β3ti

3
+ αi      (1) 

where C(t) = condition rating of a bridge at age t; ti = bridge age; αi = error term; 

and β0 = recorded condition rating of a new bridge. 

For the Markov-based model, generating a reliable transition probability is a key 

component. Percentage prediction and expected-value methods are two popular 

techniques which have been employed to generate transition probabilities in many 

state-of-art BMSs. Note that in estimating the transition probabilities, the 

percentage prediction method requires at least two consecutive condition records 

without any maintenance interventions, for a large number of bridge components 

at different condition states [21, 22]. As a consequence, the available condition 

ratings used in this study, which do not satisfy the above condition, are unable to 

be used by the percentage prediction method. Therefore, the expected-value 

method is employed to estimate the transition probabilities of a bridge component. 

This is achieved by solving a non-linear optimisation objective function that 

minimises the difference between the overall condition ratings A(t) and the 

expected condition ratings E(t) resulted from the Markov-chain model. The 

overall condition ratings are generated using an Elman Neural Network (ENN) 
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[23]. The non-linear objective function aimed at minimising the absolute 

difference between A(t) and E(t) may be expressed as follows: 

.....,3,2,1,1)(0 subject to )()(
1

UiiPtEtAMin
N

t




   (2) 

where N = the number of years in one age group; U = the number of unknown 

probabilities; A(t) = the condition ratings at time t, generated by the ENN; E(t) = 

the condition ratings at time t, estimated by the Markov-chain method. 

5 Comparison of deterioration model predictions 

5.1 BPM-generated condition ratings using BMS raw data  

The long-term predictions of element #234 due to both the regression analysis 

(deterministic) and the Markov-based model(stochastic) are carried out using 

different sets of BPM-generated condition ratings, i.e. 4 (from 1978 to 1984) 

being the minimum and 9 (from 1978 to 1994) being the maximum. Table 3 

summarises the input data for prediction using the regression analysis and the 

Markov-based model. Also shown in the table are the numbers of predicted data 

used for comparison with the existing BMS condition ratings. Note that initially 

14 missing historical condition ratings (from 1968 to 1994) are generated by the 

BPM. For the non-linear regression analysis, the polynomial degree of regression 

function must be less than or equal to the number of input minus 1. In this study, a 

3
rd

-order polynomial function is used, which is a typical process in the most 

deterioration models in BMS. Therefore the minimum number of dataset must be 

4 (from year 1978 to 1984) which are taken from the abovementioned 9 condition 

ratings. 

Figure 8 presents the prediction outcomes resulted from both linear and non-linear 

regression analyses based on 4 historical data records (from year 1978 to 1984) 

generated by the BPM. The average prediction errors of the linear regression are 

obtained by averaging the differences between the condition ratings of the 

existing BMS condition ratings and the prediction data from year 1996 to 2004. 

Similar method is employed to calculate the average prediction errors for the non-

linear regression; however, only 4 prediction data (from year 1996 to 2002) are 

available for comparison with the existing condition ratings. The average 

prediction errors of the linear and non-linear regressions are found to be 3.5% and 
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45.4%, respectively. The large discrepancy resulted from the non-linear regression 

technique is due to the very limited number of input data. Such a limitation has a 

much higher impact on the non-linear regression than the linear method.  

Figure 9 shows the prediction results based on 9 BPM-generated historical data 

records (from year 1978 to 1994). As described earlier, BPM based historical 

condition ratings are generated as 66 combinations of learning rates and 

momentum coefficients. In order for these results to be used in the regression 

analysis, the 66 combinations in each year from 1968 to 1994 are averaged to 

represent the individual condition rating records. Subsequently, the existing BMS 

condition ratings and the BPM-based prediction results are compared and the 

prediction accuracy is evaluated. Following the similar approach mentioned 

above, the average prediction errors between the generated condition ratings and 

the existing BMS condition ratings are calculated for both the linear and non-

linear regression models, which are 1.5% and 4.7%, respectively. This 

demonstrates much improved predictions by the regression methods, when the 

number of BPM-generated input data is increased.  

Figures 10 and 11 present the long-term prediction results of the Markov-based 

model based on 4 and 9 historical data records generated by the BPM. 

Theoretically, the Markov-based model predicts bridge condition ratings using the 

probabilities of the bridge condition transition. These probabilities are 

characterised in a matrix type, namely, the transition probability matrix. Tables 4 

and 5 present the transition probabilities which are produced by Equation 2 using 

4 and 9 BPM-generated historical records. If the current state of bridge conditions 

or the initial state is known, the condition from one rating to another can be 

forecasted through multiplication of the original state vector and the transition 

probability matrix [3]. The average prediction errors of the Markov-based model 

are also obtained by averaging the differences between the condition ratings of the 

existing BMS condition ratings and the prediction data from year 1996 to 2004. 

These prediction errors are found to be 18.3% and 4.6%, respectively using 4 and 

9 BPM-generated input data. 

Table 6 summarises the prediction errors using the linear regression, the non-

linear regression and the Markov-based techniques when incorporating the BPM-

generated condition ratings. It is evident that the prediction errors decrease as 

more input data become available. In the case of linear regression, the average 
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error of 3.5% from the prediction using 4 generated condition ratings decreases to 

1.5% when 9 generated condition ratings are used. Similarly for non-linear 

regression, the prediction error decreases from 45.4% to 4.7% when the number 

of input datasets increases. As for the Markov-based model, the prediction error 

decreases from 18.3% to 4.6%.  

5.2 BPM-generate condition ratings using NBI data 

The long-term predictions of the bridge deck from both deterministic and 

stochastic models are also carried out using 4 selected NBI datasets (1976, 78, 82 

and 84) and 9 out of 14 BPM-generated condition ratings (years 1968-1984) as 

input data, as given in Table 7. Also shown in the table are the numbers of 

predicted data used for comparison with the existing NBI data. 

As presented in Figure 12, the average prediction errors of the linear regression 

using 4 NBI data are obtained by averaging the differences between the condition 

ratings of the existing NBI data and the prediction data from 1986 to 2004, with 

the exception of 1990 due to the NBI data being unavailable. Similar method is 

employed to calculate the average prediction errors of the non-linear regression, 

except that this calculation is based on only two valid prediction data, i.e. years 

1986 and 1988. Results indicate that the average prediction errors of the linear and 

non-linear regressions are 33.3% and 25.6%, respectively. It should be noted that 

the unrealistic pattern of deterioration as a result of the non-linear regression 

technique further confirms the limitation of the deterministic technique when only 

a very small number of condition rating data is available.  

Figure 13 illustrates the prediction results based on 9 historical data generated by 

the BPM, as 66 combinations of learning rates and momentum coefficients. These 

combinations in each of the year 1968 to 1984 are averaged to represent the 

individual condition rating records to be used in the regression analysis. 

Subsequently, the existing NBI records and the BPM-generated historical data are 

compared to evaluate the prediction accuracy. Following the similar approach 

mentioned above, the average prediction errors between the generated condition 

ratings and the NBI records are calculated for both the linear and non-linear 

regression models. This yields the average prediction errors of 6.6% and 9.0%, 

respectively.  



11 

For the Markov-based (stochastic) model, again 4 NBI data and 9 BPM-generated 

data are used as input for the bridge deck to predict the future condition ratings. 

The predicted results are compared with the existing NBI dataset to validate the 

prediction accuracy. Tables 8 and 9 present the generated transition probabilities 

based on 4 NBI data and 9 BPM-generated data. Figures 14 and 15 illustrate the 

long-term prediction results using the transition probabilities from Tables 8 and 9. 

As indicated in the figures, the predicted condition ratings using 9 data input is 

more accurate than those using 4 data input. The average prediction errors 

between the predicted condition ratings and the existing NBI records from year 

1986 to 2004 are found to be 24.5% for 4 NBI input data and 12.3% for 9 BPM-

generated input data. 

Table 10 summarises the prediction errors using 4 NBI records and 9 BPM-

generated condition ratings, for the linear and non-linear regression techniques, as 

well as the Markov-based model. It is evident in the table that, for all these 

techniques, the prediction errors significantly decrease as more input data become 

available. In the case of linear regression, the average error of 33.3% from using 4 

NBI records decreases to 6.6% when using 9 BPM-generated condition ratings. 

Similarly for the case of non-linear regression, the prediction error decreases from 

25.6% to 9.0% when the number of input datasets increases. For the Markov-

based model, the prediction error decreases from 24.5% to 12.3% when using 9 

BPM-generated condition ratings. The above findings indicate that the amount of 

datasets is essential for numerical prediction methods to gain dependable 

prediction results. The results also suggest that, in both deterministic and 

stochastic models, the use of historical data generated by the BPM technique can 

improve the prediction accuracy. This reinforces the applicability of the BPM in 

generating missing historical condition ratings that are capable of providing a 

basis for more reliable predictions of future bridge conditions. 

6 Discussion and conclusion 

The performance of BMSs for optimal MR&R strategy relies heavily on the 

bridge deterioration models, which in turn depends on the quality and sufficiency 

of the inspection data. The lack of historical bridge condition ratings is a major 

problem encountered by the current deterioration modelling techniques to achieve 

reliable predictions of future bridge conditions. To overcome this drawback, the 
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Backward Prediction Model (BPM) has been developed as a means to assist in 

generating unavailable historical condition data, which was achieved by 

correlating the existing bridge condition dataset with the non-bridge factors 

including passenger vehicle, truck and total number of vehicles, highest 

temperature, local city population and state population growth. Using the non-

bridge factors, 14 historical condition rating records (from 1968 to 1994) are 

generated. To ensure adequate quality of such generated data, future prediction 

results using the generated data are compared with five existing condition data 

(from 1996 to 2004 in a 2-year increment) and backward prediction results are 

directly compared with the available NBI condition ratings. For both the linear 

and non-linear regression (deterministic) modelling scenarios, the average 

prediction errors using 9 BPM-generated historical condition records are found to 

be less than those using 4 BPM-generated records (decreased by 26.7% in linear 

and 16.6% in non-linear regressions) and 4 NBI records. Hence, using the BPM to 

generate more historical condition data helps to improve prediction accuracies. 

For the Markov-based (stochastic) model, the Elman Neural Network is employed 

to generate the performance curve of a typical bridge component based on 4 and 9 

BPM-generated input data. The results indicate that using 9 BPM-generated 

records as input data for the Markov-based model can provide more accurate 

prediction results than using 4 BPM-generated records. The average prediction 

errors are decreased by 12.2% when the number of input data increases from 4 to 

9 BPM-generated data.  

Comparisons between the currently available and typical bridge deterioration 

models using different numbers of BPM-generated condition data demonstrate 

that the prediction errors decrease when the amount of input data increases. This 

provides further confirmation for the effectiveness of the BPM. To minimise the 

limitations with the existing deterministic and stochastic models as identified in 

this study and to provide useful solutions for the asset management practitioners 

and researchers, further study is essential and should aim at developing a robust 

long-term bridge deterioration model that fully utilises the benefits of the BPM in 

practical applications. 
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deterministic model 

Fig 10 Prediction results using 4 sets of BPM-generated records based on BMS raw data in 

Markov-based (stochastic) model 

Fig 11 Prediction results using 9 sets of BPM-generated records based on BMS raw data in 

Markov-based (stochastic) model 

Fig 12 Prediction results using 4 NBI raw data  

Fig 13 Prediction results using 9 sets of BPM-generated records based on NBI raw data 

Fig 14 Prediction results using 4 sets of NBI raw data in Markov-based (stochastic) model 

Fig 15 Prediction results using 9 sets of BPM-generated records based on NBI raw data in 

Markov-based (stochastic) model 
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Table 1 BMS raw data of actual condition ratings (Element #234 on Bridge #0301xxxx1) 

Year of 

inspection 

Total Qty. 

(%) 

CS1 Qty. 

(%) 

CS2 Qty. 

(%) 

CS3 Qty. 

(%) 

CS4 Qty. 

(%) 

CS5 Qty. 

(%) 

1996 350 (100) 280 (80) 50 (14) 20 (6) 0 0 

1998 350 (100) 280 (80) 50 (14) 20 (6) 0 0 

2000 350 (100) 280 (80) 50 (14) 20 (6) 0 0 

2002 350 (100) 283 (80) 67 (19) 3 (1) 0 0 

2004 350 (100) 283 (80) 67 (19) 3 (1) 0 0 
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Table 2 Prediction errors of the proposed BPM using forward comparison (Bridge #0301xxxx1) 

  
Total 

(%) 

CS1 

(%) 

CS2 

(%) 

CS3 

(%) 

CS4 

(%) 

CS5 

(%) 
D 

 A 100.0 86.0 12.0 2.0 0.0 0.0  

1996 B 100.0 80.0 14.3 5.7 0.0 0.0 2.4% 

 C  6.0 2.3 3.7 0.0 0.0  

 A 100.0 86.0 12.0 2.0 0.0 0.0  

1998 B 100.0 80.0 14.3 5.7 0.0 0.0 2.4% 

 C  6.0 2.3 3.7 0.0 0.0  

 A 100.0 86.0 12.0 2.0 0.0 0.0  

2000 B 100.0 80.0 14.3 5.7 0.0 0.0 2.4% 

 C  6.0 2.3 3.7 0.0 0.0  

 A 100.0 86.0 12.0 2.0 0.0 0.0  

2002 B 100.0 80.0 19.1 0.9 0.0 0.0 2.84% 

 C  6.0 7.1 1.1 0.0 0.0  

 A 100.0 86.0 12.0 2.0 0.0 0.0  

2004 B 100.0 80.0 19.1 0.9 0.0 0.0 2.84% 

 C  6.0 7.1 1.1 0.0 0.0  

A-results of forward prediction; B-actual condition ratings; 

C-difference between A and B; and D-average of difference 
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Table 3 Input data and predicted data for comparison with existing BMS condition rating (Bridge 

#0301xxxx1) 

Prediction techniques 
Input data for 

prediction 

Predicted data compared with existing condition 

ratings 

Linear regression 

4 BPM data 

(1978-1984) 
5 data (1996-2004) 

9 BPM data 

(1978-1994) 
5 data (1996-2004) 

Non-linear regression 

4 BPM data 

(1978-1984) 
4 data (1996-2002) 

9 BPM data 

(1978-1994) 
5 data (1996-2004) 

Markov-based model 

4 BPM data 

(1978-1984) 
5 data (1996-2004) 

9 BPM data 

(1978-1994) 
5 data (1996-2004) 
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Table 4 Transition probabilities (generated 4 BPM data as input using BMS data) 

Age group 1 2 3 4 5 

(12-17) 0.930 1.000 1.000 1.000 1.000 

(18-22) 0.945 1.000 1.000 1.000 1.000 

(23-27) 0.963 0.882 1.000 1.000 1.000 

(28-32) 0.955 0.898 1.000 1.000 1.000 

(33-37) 0.948 0.941 0.967 1.000 1.000 

(38-42) 0.909 0.969 1.000 1.000 1.000 

(43-47) 0.909 0.969 1.000 1.000 1.000 

(48-52) 0.909 0.969 1.000 1.000 1.000 
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Table 5 Transition probabilities (generated 9 BPM data as input using BMS data) 

Age group 1 2 3 4 5 

(12-17) 0.960 1.000 1.000 1.000 1.000 

(18-22) 0.973 1.000 1.000 1.000 1.000 

(23-27) 0.978 1.000 1.000 1.000 1.000 

(28-32) 0.979 1.000 1.000 1.000 1.000 

(33-37) 0.979 1.000 1.000 1.000 1.000 

(38-42) 0.977 1.000 1.000 1.000 1.000 

(43-47) 0.974 1.000 1.000 1.000 1.000 

(48-52) 0.986 0.948 1.000 1.000 1.000 
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Table 6 Summary of prediction errors using different sets of BPM-generated data 

Prediction 

techniques 

Number 

of input 

data 

Difference between prediction and existing BMS condition 

ratings 

Prediction 

error 

(Mean) 1996 1998 2000 2002 2004 

Linear 

regression 

4 2.5% 2.8% 3.1% 4.3% 4.6% 3.5% 

9 0.8% 1.0% 1.1% 2.3% 2.4% 1.5% 

Non-linear 

regression 

4 24.7% 36.4% 50.9% 69.5% - 45.4% 

9 2.7% 3.4% 4.2% 6.1% 7.0% 4.7% 

Markov-

based model 

4 14.0% 15.8% 17.6% 21.2% 22.7% 18.3% 

9 2.9% 3.4% 3.9% 6.1% 6.5% 4.6% 
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Table 7 Input data and predicted data for comparison with existing NBI data (Bridge #0301xxxx1) 

Prediction 

techniques 
Input data for prediction 

Predicted data compared with existing 

NBI data 

Linear 

regression 

4 NBI data (1976,1978,1982 and 

1984) 

9 data (1986, 1988 and from 1992-

2004) 

9 BPM data (from 1968-1984) 
9 data (1986, 1988 and from 1992-

2004) 

Non-linear 

regression 

4 NBI data (1976,1978,1982 and 

1984) 
2 data (1986 and 1988) 

9 BPM data (from 1968-1984) 2 data (1986 and 1988) 

Markov-

based model 

4 NBI data (1976,1978,1982 and 

1984) 

9 data (1986, 1988 and from 1992-

2004) 

9 BPM data (from 1968-1984) 
9 data (1986, 1988 and from 1992-

2004) 
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Table 8 Transition probabilities (input using 4 NBI data) 

Age group 1 2 3 4 5 6 7 8 9 

10-15 0.000 0.789 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16-20 0.000 0.887 0.738 1.000 1.000 1.000 1.000 1.000 1.000 

21-25 0.000 0.896 0.757 0.794 0.787 0.994 1.000 1.000 1.000 

26-30 0.000 0.900 0.819 0.764 0.639 0.537 0.148 0.994 1.000 

31-35 0.000 0.880 0.850 0.800 0.698 0.492 0.000 0.724 1.000 

36-40 0.000 0.863 0.845 0.766 0.655 0.574 0.001 0.975 1.000 

41-45 0.000 0.841 0.852 0.736 0.641 0.573 0.002 1.000 1.000 
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Table 9 Transition probabilities (generated 9 BPM data as input using NBI data) 

Age group 1 2 3 4 5 6 7 8 9 

2-7 0.129 0.991 0.890 1.000 1.000 1.000 1.000 1.000 1.000 

8-12 0.602 0.958 0.785 0.817 0.984 1.000 1.000 1.000 1.000 

13-17 0.722 0.952 0.770 0.732 0.781 0.975 1.000 1.000 1.000 

18-22 0.806 0.944 0.807 0.708 0.534 0.785 0.999 1.000 1.000 

23-27 0.842 0.940 0.816 0.710 0.513 0.662 0.832 1.000 1.000 

28-32 0.862 0.934 0.821 0.720 0.536 0.647 0.755 1.000 1.000 

33-37 0.847 0.941 0.809 0.671 0.489 0.628 0.808 1.000 1.000 

38-42 0.836 0.945 0.802 0.669 0.488 0.627 0.808 1.000 1.000 
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Table 10 Summary of prediction errors using 4 NBI and 9 BPM-generated data 

Prediction 

techniques 

Number 

of input 

data 

Difference between prediction and existing BMS condition ratings 
Prediction 

error (Mean) 

   1986 1988 1992 1994 1996 1998 2000 2002 2004  

Linear 

regression 

4 % 15.0 20.0 30.0 35.0 30.0 35.0 40.0 45.0 50.0 33.3 

9 % 3.4 5.2 8.9 10.7 2.6 4.4 6.3 8.1 10.0 6.6 

Non-linear 

regression 

4 % 10.4 40.7        25.6 

9 % 6.8 11.2        9.0 

Markov-

based model 

4 % 4.6 9.0 18.2 25.5 22.0 29.2 34.5 37.9 39.9 24.5 

9 % 2.8 5.7 12.5 15.9 9.1 12.1 15.0 17.6 20.1 12.3 

 


