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One of the known weaknesses of the “ACFD” correlation energy functional under the direct random-phase
approximation (RPA) is its failure to accurately predict energy differences between dissimilar systems. In this
work we evaluate ionisation potentials I and electron affinities A for atoms and ions with one to eighteen elec-
trons using the ACFD functional under the RPA, and with the “PGG” and “RXH” model exchange kernels.
All calculations are carried out using a real-space, all electron method with an exact exchange groundstate to
minimise errors. As expected, the RPA is less accurate even than some regular DFT approaches, while the
introduction of a dynamical exchange kernel improves results. In contrast to the case of atomic groundstate
energies, the PGG kernel outperforms the RXH kernel for I and A. Mean absolute errors for I/A are found
to be 3.27/2.38kcal/mol, 4.38/5.43kcal/mol and 9.24/8.94kcal/mol for the PGG, RXH and RPA respectively.
We thus show that the inclusion of even the simple “RXH” kernel improves both quantities when compared

to the RPA.

PACS numbers: 31.15.E-,31.15.ee,31.15.ve

I. INTRODUCTION

The “ACFD-RPA” correlation energy functional ap-
proach, recently reviewed in Eshuis, Bates and Furche'
(EBF) and Ren et al,? has increasingly been used to sup-
plement standard groundstate DFT methods® under lo-
cal density functional approaches such as the LDA, GGA
or (static) exact exchange (EXX) optimised effective po-
tential (OEP) approach.* Here, efficient® ! implemen-
tation and increasing computational power have made
the ACFD-RPA a viable correlation energy approach for
many systems.

In typical implementations of the ACFD-RPA, Kohn-
Sham (KS) orbitals |ic) and KS energies €;, are first eval-
uated in a standard groundstate method (often EXX),
and then used to calculate the exchange-correlation en-
ergy via the bare x(o and interacting x density response
functions. Thus ACFD-RPA is usually employed as a
“post groundstate” method, although self-consistent ver-
sions do exist.!? 714

Using the occupied and unoccupied orbitals of the KS
system one can evaluate the bare response function xq
through e.g.
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where & = ro. Here p;(x,x’) = (r|io)(ic’|r') is the den-
sity matrix of orbital ¢ with occupation factor 8;, and KS
energy €5, and we define Q;; = ¢; — €;. The interacting
response is then evaluated through

XA =X0 + X0 * Wx * XA (2)

where * represents an integral/sum over & = ro. The

effective interaction term w) is typically written as
wy (z, z;iw) =o§ (|r — r'|) + Xz, 2';iw)  (3)

where v{(R) = A/R is the Coulomb potential and f3¢ is
the exchange-correlation kernel, which must be approxi-
mated. The correlation energy is then evaluated through
the so-called “ACFD” functional (see Section 2.1 of EBF!
for details and page 424 of Dobson'® for a succint deriva-
tion)
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and combined with the KS kinetic energy 755, external
energy E™* and Hartree and exchange energy ET* to
give the electronic groundstate energy

By =T"S + E™* + E™ 4+ E*. (5)

Il. RPA AND XC KERNELS

The dynamic physics of interaction is governed by
equation (3), where f*¢ is an unknown functional that
must be approximated. The direct random phase
approximation'® (RPA) corresponds to setting f}° =
in equation (3). More generally fX°(x,’;iw) is often
replaced by its zero frequency expression (or an approx-
imation thereto)

B

xc _ V(=) _
~ on(x)on(x) (©)

A (:I},:B/;O) - 571(.’13/)

under the common adiabatic assumption. In the tdEXX
approach!™ '8 the full frequency dependent exchange ker-
nel is sometimes used. Various approximations to f*¢
have been proposed!'” 28 with varying levels of success.



A generally assumed rule has been that the RPA tends
to predict energy differences between similar systems
quite well (such as arise in dispersion energy problems,
some atomisation problems and the like), with the f*¢
kernel having much more of an effect on absolute correla-
tion energies. Evidence for this assumption has been pre-
sented in many works on bulk systems,? ! atoms®?26:28:29
and molecules.’’® One known exception is the evaluation
of van der Waals (vdW) Cg coefficients, where the lo-
cal screening through f*¢ can make a substantial differ-
ence to the Cg coefficient predicted through the Casimir-
Polder formula (see eg. discussion in Ref. 30).

The ionisation potential I and electron affinity A are
respectively the energy required to remove an electron,
and the energy released by the addition of an electron to
an atom. They are thus the differences in groundstate en-
ergy between an atom and its positive and negative ions.
Both quantities play an important role in the chemistry
of electronic systems. As shown by EBF (Tables 2 and 3
of Ref. 1), the RPA is less accurate than some local and
semi-local functional approaches for both I and A. This
is unsurprising as the RPA is not expected to perform
well for energy differences between dissimilar systems
such as atoms and their ions. In this paper we use the
RPA, Petersilka, Gossmann and Gross?® (PGG) kernel
and recently developed Radial Exchange Hole?® (RXH)
kernel to evaluate I and A for atoms with between one
and eighteen electrons.

1. METHOD

While in principle the ionisation potential and electron
affinity are related to properties of the exact KS ground-
state (notably e, = —1I for the highest occupied orbital),
it is known that approximations to the KS potential tend
to make such comparisons difficult. We instead consider
the full groundstate energies of Z — 1, Z and Z + 1 elec-
tron atoms and ions, where Z is the nuclear charge of the
atom. Thus we find
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where Eo(N, Z) is the groundstate energy of an N elec-
tron atom with nuclear charge Z.

We first evaluate the groundstate properties of the
atoms and ions using an exact exchange (EXX) opti-
mised effective potential (OEP) method. In order to cor-
rectly reproduce the groundstate density and EXX en-
ergy of open shell systems we employ the Linear EXX3!
(LEXX) energy functional. In the LEXX we construct
non-interacting ensembles of all degenerate groundstates.
For example for open s shells we mix up and down spin
states, while for open p shells we mix up/down spin
states, and different p, orbitals. The ensembles are con-
structed to yield spherically and spin symmetric electron
densities.

To implement the LEXX we use the Krieger, Li and
Iafrate3? approximation so that the tail of the opti-
mised effective potential VFFXX has the correct form
VEEXX(r — 00) — (N — Z — 1)/r, albeit with an incor-
rect exponential decay for the negative ion rather than
the correct VES(r — o0) — —1/r*. We note that a
local approximation like the LDA or GGA without self-
interaction correction would give incorrect tail behaviour,
with the negative ion having VIPA(r — o0) — +1/r.
This demonstrates the importance of choosing an appro-
priate groundstate method as input for the ACFD-RPA.

By construction, the groundstate density is both spher-
ically symmetric and has equal densities of the up and
down spins. The orbital Schrodinger equation [—3V? +
VEEXX (1)]¢i (x) = €;¢:(x) is thus separable and we con-
sider solutions ¢;(r) = Rni(r)Yim () where Yy, is a
spherical harmonic. The radial function obeys

;L[Rnl(f‘) Zeannl(T‘) (9)
where
1 do I(1+1) LEXX
hl = — Zmr + 2T2 + Vv (’f’) (10)

Each sub-shell is assumed to be occupied equally so
that the ensemble average occupation factor (see Ref. 31
for detailed discussion on ensemble averaging in ground-
states) (0;)s = (0n1)e is independent of m. Similarly the
average pair occupation factor (0;0;)s = (0,101 )¢ is
independent of m and m’. For the systems considered
here we find (0;5)s = fi = 0, %,1 where the half occu-
pation occurs in the outermost orbital h of systems with
odd electron number. With the exception of ¢ = i’ = h,
<9i09i/g/>g = fzfz/ For h in an s shell, <9h09hg>g = fh
and (Ono0hs)s = max|0,2f, — 1] (where & # o), while for
hin ap shell, (OhoOno)e = frn—min[fn, |5 — fal, 1= fa, 5]
and <9}w6‘h5>g = max[O, 2fh — 1].

Using groundstate orbitals we can now generate the
EXX energy (without correlation) through
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The density is n(x) = p(x,z) where p(x,x’) =

> illi)edi(x)gi(z’) = 32, (0i)epi(w,x'). The ground-
state Hartree and exchange pair-density nspx takes the
form
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The correlation energy is then calculated through the
ACFD functional
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and used to find the groundstate energy Fy = EFXX +
E°. We evaluate x under three schemes: (direct) RPA,
RPA+PGG? and RPA+RXH.28

A. Kernels

In all cases we must solve the Dyson-like screen-
ing equation for each frequency iw [here xi(x,z’) =
xa(x, x';iw)]

Xk(mv :E/) = XO(m7 :E/)

+ A/dwgdCEgXO(m,mg)M
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where g = 1 for the RPA. For the PGG approximation
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where napy is defined in (12). The RXH?® instead uses
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where R = |r — r’|. Here ¢ and k are determined by
ensuring that
0 z/drdr’
x [n(x)n(x) g™ (z, ') — nopy(x, x')],  (17)
0 :/ drdr’
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so that the model kernel is constrained to reproduce the
hole normalisation and exchange energy of the PGG ker-
nel.

B. Technical details

Here we use the real space method outlined in Ref. 26
with the LEXX modification outlined in Refs. 28 and 31.
Calculations involve all electrons in the atom or ion, with
no frozen core approximations or pseudopotentials. This
ensures that the only errors in implementing the chosen
level of theory are numerical, through quadrature and the
solutions of ODEs. In this sense these are “benchmark”
calculations.

By exploiting the spherical symmetry we expand all
two-point quantities C'(r,r’) on Legendre polynomials
Py so that C(r,7') = Y, CE(r,r") 2L PL(7 - #') and
we include terms with 0 < L < 6. Direct products
C(r,7") = A(r,7")B(r,v') give C* = Y, K}, A'BY

where K} o f_ll dzP,(z)Py(x)Pr(z). Convolutions
[ draA(r,r9)B(ra, ') are diagonal in L and we find (eg.)

XX (z,2') =xg (z,2") +A/x§dx2x§dx3
X [x§ (2, 22w (w2, 23)x % (5, 2)] (19)

where z = ro.

Radial functions are calculated on an exponential grid
with rp = ro—i-eh(k’k“) where 1o = 0.001 and ry, 1 > 12
using 256 < N, < 400 points (N, and ry,—1 depend
on the atom). For the evaluation of each atom and its
positive ions we use the same grid, optimised for each
system to provide energy convergence of 1mHa or 0.5%
(whichever is the greater) for the neutral atom. For the
negative ion, we use the same grid as the neutral atom
but add extra abcissae to the outside to deal with the
weakly confined outer electrons. By keeping the grids
consistent we avoid introducing extra numerical errors
(via the quadrature) into the energy differences.

To calculate the bare response function Y& (r,r’) we
use Greens functions G!(r,r’) satisfying

§(r—r")
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[hy is defined in (10)] generated by a shooting method.
This is equivalent (up to errors from the finite grid) to a
sum over all unoccupied orbitals. These are used to form

XG(r,r'siw) = = 2R (Ou)e Ko pra(r, 7')
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where pp(r, 1) = ZELR, (r)Ry (). It can be shown
that (21) is equivalent to (1).

To evaluate the correlation energies, we must also in-
tegrate over A and w. For the former we simply use
four points (A = 0, %, %, 1) and Simpson’s rule for the
weights. For the latter we borrow from the method de-
scribed by Eshuis, Yarkony and Furche®® and construct
a set of Clenshaw-Curtis weights and abcissae. Here the
number of points and scaling are adjusted for each system
to appropriately deal with all energy scales.

IV. RESULTS

Previously Eshuis, Bates and Furche calculated elec-
tron ionisation potentials and electron affinities in the
RPA for the G21EX test set of Goerigk and Grimme3*
(see Tables 2 and 3 of Ref. 1). Ionisation potentials were
found to be worse than various semi-local functionals
(TPSS,*® B¥*LYP?%), with a mean error of —5.01kcal /mol
and mean absolute error of 5.11kcal/mol. For affinities
they found an acceptable mean error of —0.70kcal/mol,
but a mean absolute error worse than the local function-
als at 3.02kcal/mol.



FIG. 1. Ionisation potentials I in eV of various atoms using
the EXX, RPA, PGG and RXH energy functionals.’® Ground-
states are calculated using the LEXX OEP approach. Exact
data from Ref. 41.
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The ACFD-like GW method®” is also an increasingly
popular approach to calculating energy differences. The
‘true’ GW method has been shown'? to be equivalent
to the ACFD-RPA functional with an optimised effec-
tive potential, although is often practically evaluated
under further approximations. Stan, Dahlen and van
Leeuwen?® performed GW calculations for ionisation po-
tentials on the closed shell atoms He, Be, Ne and Mg,
and found mean absolute errors (MAE) of 11.7, 3.95 and
7.38kcal/mol for respectively the GoW, approximation
with LDA and HF groundstates, and the self-consistent
GW method. Rostgaard, Jacobson and Thygeson®’
found a larger MAE for I of 9-11kcal/mol (depending
on approximation) over a larger set of 34 molecules.

In Figure 1 we show the ionisation potentials I of
atoms with one to eighteen electrons (H to Ar). Ioni-
sation potentials are evaluated using the RPA, and PGG
and RXH model exchange kernels, and we also include
results from the EXX method (without correlation) to
show the importance of electron correlation in these en-
ergy differences. Our ionisation potentials for Li, Be, Na
and Mg are within 1mHa of those predicted by Jiang and
Engels?® for the ACFD-RPA. For convenience we note
that 1kcal/mol= 0.0434eV= 1.59mHa.

As in the set tested by EBF, it is clear that the RPA
typically overestimates I while the groundstate EXX cal-
culation (without correlation) typically underestimates
it. The mean errors (ME) over the set of atom are
9.11kcal/mol for the RPA, with PGG improving this to
—2.04kcal/mol and RXH to 3.10kcal/mol. The RPA
gives a mean absolute error (MAE) of 9.24kcal/mol,
nearly identical to its ME as almost all errors are posi-
tive. For the PGG and RXH model exchange kernels, er-
rors are both positive and negative and this is reflected in
the MAEs of 3.27kcal/mol and 4.38kcal /mol respectively,
which are both significantly greater than the MEs.

FIG. 2. Electron affinities A in eV of various atoms using the
EXX, RPA, PGG and RXH energy functionals.’® Ground-
states are calculated using the LEXX OEP approach. Exact
data from Refs. 42-53.
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As expected the inclusion of an exchange-like f*¢ ker-
nel provides quite an improvement, all but halving the
MAE with the RXH kernel and giving a 60% improve-
ment with the PGG kernel. Clearly the correction of
the short-range physics is quite important in these cal-
culations. The performance of the PGG kernel is fairly
consistent across the full range of atoms, with poorest
performances for systems with one to three electrons in
the p shell. The RXH kernel offers poorer performance as
the system size increases. This is unsurprising as the con-
straints (17) and (18) on the parameters must balance the
short-range physics of the inner electrons with that of the
outer electrons. Freezing the core would likely decrease
this error, but testing this is unreliable in the Greens
function based numerical approach employed here.

In Figure 2 we show the electron affinities under the
same approximations as the ionisation potentials. Here
again the RPA almost exclusively tends to overesti-
mate affinities, giving a ME of 8.30kcal/mol and MAE
of 8.94kcal/mol. Similarly the RXH kernel overesti-
mates the affinities, albeit less so, improving the ME to
5.11kcal/mol and MAE to 5.43kcal/mol. The PGG ker-
nel produces significantly better results, with a ME of
0.46kcal/mol and MAE of 2.38kcal/mol both being sign-
ficantly better than the RPA and RXH kernel.

Here the PGG offers its worst performance for Li. This
is likely to arise from the poor treatment of dynamic
correlation in the Be-like Li™ ion. Again the RXH gives
worse results as system size increases. Indeed for some
larger atoms (Na, P, Cl) it gives poorer results than even
the RPA. We suspect that in these cases the RXH fails to
properly screen the tail region of the negative ion, leading
to an increase in error when compared with the neutral
atom.

While our main focus is on the methods that include
electron correlation, let us briefly consider the correlation
free, ensemble-corrected®! “EXX” results. Here both ion-
isation potentials and electron affinities are consistently
underestimated, with ME/MAESs of —19.9/21.0kcal/mol



for I and —24.9/24.9kcal/mol for A. For ionisation po-
tentials this can be ascribed to the trend for correla-
tion energies to be approximately proportional to elec-
tron number (=~ 30mHa per electron for small atoms*!).
For affinities, however, this approximate relationship be-
tween correlation and electron number breaks down due
to the very weak binding of the outermost electron(s) in
negative ions. It is clear, at least for the atoms tested
here, that the effect of the soft outermost orbitals over-
cancels the basic linear assumption.

V. CONCLUSIONS

Overall, we must conclude that electron affinity calu-
lations represent a difficult case for the ACFD-RPA in
standard approaches. Here the neglect of short range
physics by random phase approximation is problematic
due to the comparison between quite dissimilar species.
Overall the RPA must be considered qualitative at best.

Addition of even a relatively crude approximation to
the exchange kernel, such as the RXH kernel, substan-
tially improves results, especially for the smaller atoms
and ions. This illustrates the importance of the short
range correction in the physics of ionisation and affinity.

By including an exchange-type dynamic xc kernel, the
ACFD approach can yield results on a par with the
best exact-exchange hybrid approaches such B*LYP 36
many of which have been ‘trained’ to accurately re-
produce affinities and ionisation potentials. Although
it is difficult to make reliable comparisons, it appears
that the use of a kernel can improve results over even
the GW method, which gives MAE errors of the ion-
isation potential of 4 — 1lkcal/mol depending on test
set and approximation. We find mean errors in I/A
of 9.11/8.30kecal /mol (RPA), —2.04/0.46kcal /mol (PGG)
and 3.10/5.11kecal/mol (RXH), and mean absolute errors
of 9.24/8.94kcal/mol (RPA), 3.27/2.38kcal/mol (PGG)
and 4.38/5.43kcal/mol (RXH). It is somewhat surpris-
ing that the PGG kernel does a better job of predicting
A than it does I, while the RPA and RXH kernel give
similar accuracy for both.

For the RXH exchange kernel, we note that there is a
trend of poorer accuracy with larger number of electrons.
This is to be expected as satisfaction of the constraints
(17) and (18) by the simple kernel (15) treats the high
density inner electrons and the low density outer elec-
trons together. We would thus recommend employing
the RXH in a fixed core approximation to reduce this
issue, or weighting the constraints to focus on the outer-
most region.

Overall, we conclude that, even with a simple model
exchange kernel, the ACFD-RPA can achieve chemical
accuracy for both ionisation potentials, and the more dif-
ficult electron affinities.
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