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Information geometry, dynamics and discrete
quantum mechanics

Marcel Reginatto∗ and Michael J. W. Hall†

∗Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
†Centre for Quantum Dynamics, Grif�th University, Brisbane, QLD 4111, Australia

Abstract. We consider a system with a discrete con�guration space. We show that the geometrical
structures associated with such a system provide the tools necessary for a reconstruction of discrete
quantum mechanics once dynamics is brought into the picture. We do this in three steps. Our
starting point is information geometry, the natural geometry of the space of probability distributions.
Dynamics requires additional structure. To evolve the Pk, we introduce coordinates Sk canonically
conjugate to the Pk and a symplectic structure. We then seek to extend the metric structure of
information geometry, to de�ne a geometry over the full space of the Pk and Sk. Consistency
between the metric tensor and the symplectic form forces us to introduce a Kähler geometry.
The construction has notable features. A complex structure is obtained in a natural way. The
canonical coordinatesψk=

√
PkeiSk of the Kähler space are precisely the wave functions of quantum

mechanics. The full group of unitary transformations is obtained. Finally, one may associate a
Hilbert space with the Kähler space, which leads to the standard version of quantum theory. We
also show that the metric that we derive here using purely geometrical arguments is precisely the
one that leads to Wootters’ expression for the statistical distance for quantum systems.
Keywords: quantum mechanics, information geometry, symplectic geometry, Kähler geometry
PACS: 03.65.Ta, 02.40.Tt, 02.40.Yy

INTRODUCTION

In this paper, we consider systems with a discrete con�guration space. In the presence
of uncertainty, the state of a classical system will be described by a probability P =
(P1, ...,Pn), where n is the number of available states. An analysis complementing the
one carried out in Ref. [1], for continuous systems, leads to the remarkable result that the
geometrical structures associated with such a system provide the tools necessary for a
reconstruction of discrete quantummechanics once dynamics is brought into the picture.
The reformulation of Ref. [1] presented here is nontrivial: it requires new geometrical
insights because assumptions that are natural in the in�nite dimensional case (e.g.,
“spatial locality,” the action of the Galilean group, etc.) are no longer available in the
discrete case.
This reconstruction of discrete quantum mechanics has notable features. We show

that the natural geometry of the space of probabilities in motion (i.e., taking dynamics
into consideration) is a Kähler geometry. The canonical coordinates ψk =

√
PkeiSk of the

Kähler space are precisely the wave functions of quantum mechanics. The full group of
unitary transformations is obtained. Finally, one may associate a Hilbert space with the
Kähler space, which leads to the standard version of quantum theory. We note that the
Kähler space metric that we derive here using purely geometrical arguments is precisely
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the one that leads toWootters’ expression for the statistical distance for quantum systems
[2], which he derived using a completely different argument based on the concept of
distinguishability. Comparison of our approach to papers of Mehrafarin [3] and Goyal
[4, 5], which also start from classical information geometry, will be made elsewhere.

INFORMATION GEOMETRY

The starting point is a classical system which has associated with it n different states.
The probability that the system is in state i is given by Pi, i = 1, ...,n, with Pi ≥ 0 and
∑i Pi = 1. There is a natural line element given by

ds2 = Gi j dPi dP j =
α
2Pi

δi j dPi dP j (1)

where α is a constant. The value of this constant can not be determined a priori; it is
usually set to 1

2 . We do not make this assumption here but instead allow α to be a free
parameter. The metric Gi j is known as the information metric,

Gi j =
α
2Pi

δi j. (2)

The line element of Eq. (1) leads to a concept of distance on a probability space. This
distance seems to have been introduced into statistics by Bhattacharyya [6, 7] as a way
of providing a measure of divergence for multinomial probabilities [8]. Wootters calls it
the statistical distance [2]. To derive the statistical distance from the metricGi j, consider
two points in probability space, PA and PB, joined by a curve Pi(t), 0≤ t ≤ 1, and write
the expression for the length l of the curve in the form

l =
∫ 1

0
dt
√
Gi j
dPi(t)
dt

dP j(t)
dt

. (3)

The statistical distance is de�ned as the shortest distance between PA and PB. To compute
the statistical distance, it is convenient to do the change of coordinates Xi =

√
Pi . Then

l =
√
2α

∫ 1

0
dt

√
n

∑
i=1

[
dXi(t)
dt

]2
. (4)

Since the curve P(t) is assumed to lie in the probability space, it must satisfy the con-
dition ∑ni=1Pi(t) = ∑ni=1[Xi(t)]2 = 1; that is, the curve must lie on a unit n-dimensional
sphere in the X space. The shortest distance on the n-dimensional sphere is equal to the
angle between the unit vectors XA and XB. This leads immediately to

d(PA,PB) =
√
2α cos−1

(
n

∑
i=1
XiAX

i
B

)
=
√
2α cos−1

(
n

∑
i=1

√
PiA
√
PiB

)
. (5)

which agrees with the expressions in the papers of Bhattacharyya andWootters provided
α is set to the standard value of 1

2 .
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The statistical distance does not play a fundamental role in our discussion. Neverthe-
less, we make reference to it here because it clari�es the relation of our work to that of
Wootters.

DYNAMICS, SYMPLECTIC GEOMETRY, AND OBSERVABLES

We now set the probabilities in motion. We assume that the dynamics of Pi are generated
by an action principle and we introduce additional coordinates Si which are canonically
conjugate to the Pi and a corresponding Poisson bracket for any two functions F(P,S)
and G(P,S),

{F,G}=∑
i

(
∂F
∂Pi

∂G
∂Si

− ∂F
∂Si

∂G
∂Pi

)
. (6)

As is well known, the Poisson bracket can be rewritten geometrically as

{F,G}= (∂F/∂P , ∂F/∂S)Ω
(

∂G/∂P
∂G/∂S

)
, (7)

where Ω is the corresponding symplectic form, given in this case by

Ω=
(

0 1
−1 0

)
, (8)

where 1 is the unit matrix in n dimensions. We thus have a symplectic structure and a
corresponding symplectic geometry (which is why this formulation of the dynamics is a
natural one for a geometric approach). The equations of motion for Pi and Si are given by
�Pi =

{
Pi,H

}
, �Si =

{
Si,H

}
where H is the Hamiltonian that generates time translations.

The observables of the theory are functions A(P,S) of the coordinates Pi and Si.
Certain restrictions are imposed on them, so not every function is an observable. For
example, the in�nitesimal canonical transformation generated by any observable Amust
preserve the normalization and positivity of P. This implies the two conditions [9]

A(P,S+ c) = A(P,S), ∂A/∂Si = 0 if Pi = 0. (9)

Note that the �rst condition implies gauge invariance of the theory under Si → Si+ χ ,
where χ is a constant [9].

KÄHLER GEOMETRY

We nowwant to consider the following question: Can we extend the metricGi j in Eq. (2),
which is only de�ned on the n-dimensional subspace of probabilities Pi, to the full 2n-
dimensional phase space of the Pi and Si? It can be done, but certain conditions which
ensure the compatibility of the metric and symplectic structures have to be satis�ed.
These conditions are equivalent to requiring that the space have a Kähler structure (see
the Appendix of Ref. [1] for a proof). We are led then to the beautiful result that the
natural geometry of the space of probabilities in motion is a Kähler geometry.
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A Kähler structure brings together metric, symplectic and complex structures in a
harmonious way. To de�ne such a space, introduce a complex structure Jab and impose
the following conditions [10],

Ωab = gacJcb , (10)
JacgabJ

b
d = gcd , (11)

JabJ
b
c = −δ ac . (12)

Eq. (10) is a compatibility equation between the symplectic structure Ωab and the metric
gab, Eq. (11) is the condition that the metric should be Hermitian, and Eq. (12) is the
condition that Jab should be a complex structure.
We derive the solutions to these equations. The metric over the subspace of proba-

bilities is the information metric, Eq. (2). The metric over the full space will take the
form

gab =
(
G E
ET F

)
, (13)

where G= diag( α
2Pi ), and E and F are n×nmatrices that need to be determined using

the Kähler conditions and the expression for Ωab, Eq. (8). A matrix calculation leads to
general forms for the metric gab and the complex structure Jab. These are

gab =
(
G AT
A (1+A2)G−1

)
, Jab =

(
A (1+A2)G−1

−G −GAG−1

)
. (14)

where the n×n matrix A satis�es GAG−1 = AT but is otherwise arbitrary.
The Kähler conditions restrict the form of the metric gab but leave the matrix A (and

therefore the geometry) undetermined. To �x the geometry, it is necessary to introduce
an additional condition. As we show in the Appendix, there is a natural requirement
based on the idea of invariance of the metric under the motions generated by the
observables of the theory. This condition leads to A= 0 and, as shown below, to a very
simple geometry. The condition A = 0 alternatively follows by assuming the extended
metric has zero curvature, analogously to the classical information metric Gi j.

COMPLEX COORDINATES

We set A= 0 and consider the Kähler structure given by

Ωab =
(

0 1
−1 0

)
, gab =

(
G 0
0 G−1

)
, Jab =

(
0 G−1

−G 0

)
. (15)

We now carry out the Madelung transformation, ψ i =
√
Pi exp(iSi/α), ψ̄ i =√

Pi exp(−iSi/α). In terms of these complex coordinates, the tensors that de�ne
the Kähler geometry, Eqs. (15), take the standard form which is characteristic of a
�at-space [10],

Ωab =
(

0 iα1
−iα1 0

)
, gab =

(
0 α1

α1 0

)
, Jab =

( −i1 0
0 i1

)
. (16)
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This shows that the simplest geometrical formulation of the space of probabilities in
motion has a natural set of fundamental variables, ψ i and ψ̄ i. If we set the constant
α equal to h̄, these fundamental variables are precisely the wave functions of quantum
mechanics.
This is a remarkable result because we have not introduced any assumptions that

concern quantum mechanics, only geometrical arguments.

STATISTICAL DISTANCE IN THE KÄHLER SPACE

We now want to introduce a new expression for statistical distance which will be valid
in the Kähler space. In going from the n-dimensional space of probabilities Pi to the
full 2n-dimensional phase space of the Pi and Si, the metric has been extended, and this
should be taken in consideration when carrying out the generalization of the statistical
distance.
Consider two points ψA and ψB representing states in this space which are joined by

a curve ψ i(t), 0≤ t ≤ 1. Combining Eq. (3) with Eq. (16), the correct generalization of
the expression for the distance l will be given by

l =
∫ 1

0
dt
√
gi j
dψ i(t)
dt

dψ̄ j(t)
dt

=
√
2α
∫ 1

0
dt
∣∣∣∣
(
dψ(t)
dt

,
dψ(t)
dt

)∣∣∣∣ . (17)

where we have introduced the notation |(ψ,ψ)|=
√

∑iψ iψ̄ i.
The statistical distance in the Kähler space is de�ned as the shortest distance com-

puted with Eq. (17). Since the curve P(t) is assumed to lie in the probability space, then
ψ(t) must satisfy the condition

1=∑
i

ψ i(t)ψ̄ i(t), (18)

that is, the curve must lie on the unit sphere in the {ψ(t), ψ̄(t)} space. The shortest
distance on the unit sphere is equal to the angle between the unit vectors ψA and ψB.
This leads immediately to the expression for the statistical distance that appears at the
end of section III of Wootters’ paper (no equation number) provided α is set to the
standard value of 1

2 ,
d(ψA,ψB) =

√
2α cos−1 |(ψA,ψB)| . (19)

In this way we provide a very brief, geometrical derivation of Wootters’ expression
for the statistical distance in quantum mechanics, which he derived using a completely
different argument based on distinguishability [2].

GROUP OF LINEAR UNITARY TRANSFORMATIONS

We now examine the transformations which are allowed by the theory. As pointed out
brie�y in the discussion on observables, there are some basic conditions that must be
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satis�ed; we list them and derive the group of transformations that is consistent with
such conditions.
The �rst requirement is that the transformations preserve the normalization of the

probability, ∑i Pi = ∑iψ iψ̄ i = 1.
The second requirement is that the metric be form invariant under those transforma-

tions; i.e., that the line element dσ2 = 2α ∑ j dψ̄ jdψ j of the Kähler space is preserved
by the transformations.
Requiring normalization of the probability and metric invariance leads to the group of

rotations on the 2n-dimensional sphere. Such rotations are linear with respect to ψ j and
ψ̄ j. For an in�nitesimal transformation, it follows that

�ψ j =−i ∂H
∂ψ̄ j ,

�̄ψ j = i
∂H
∂ψ j , (20)

are linear in ψ and ψ̄ , where H is the Hamiltonian that generates the motion. Then H
must be of the form

H = E(t)+∑
j,k

[
Mjkψ̄ jψk+Njkψ jψk+ N̄ jkψ̄ jψ̄k

]
(21)

where E(t) is a arbitrary function of time,M is Hermitian, and N is symmetric.
The third and �nal requirement is that we only consider rotations on the 2n-

dimensional sphere that are compatible with the equations of motion. As pointed out in
the discussion on observables, conservation of probability requires that the ensemble
Hamiltonian be invariant (up to an additive constant) under S j → S j + χ , since to
�rst-order [9]

0= ε ∑
j
�Pj = ε ∑

j

∂H
∂S j

=H(P,S+ ε)−H(P,S). (22)

This condition, when written in terms of complex coordinates, is equivalent to invariance
of the Hamiltonian under ψ → ψeiχ . Using the notationQ :=∑Njkψ jψk, Eq. (21) leads
to the equality [

Qe2iχ + Q̄e−2iχ]= 0 (23)
which must be valid for all χ . Differentiating with respect to χ gives the additional
equality

2i
[
Qe2iχ − Q̄e−2iχ]= 0. (24)

Combining these two expressions leads to Q = 0. Since this must hold for all ψ , it
follows that Njk ≡ 0, i.e., the ensemble Hamiltonian has the Hermitian form

H = E(t)+∑
j,k
Mjkψ̄ jψk (25)

as desired.
This shows that the group of transformations of the theory is precisely the group

of linear unitary transformations. Note that all that is used here, in moving from all
rotations on the 2n-dimensional sphere to the subset of unitary transformations, is (i) the
conservation of probability and (ii) that the equations of motion follow from an action
principle.
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HILBERT SPACE FORMULATION

There is a standard construction that associates a complex Hilbert space with any Kähler
space. Given two complex vectors φ i and ϕ i, de�ne the Dirac product by [11]

〈φ |ϕ〉 =
1
2∑
i

{(
φ i, φ̄ i

) · [g+ iΩ] ·( ϕ i
ϕ̄ i
)}

=
1
2∑
i

{(
φ i, φ̄ i

)[( 0 1
1 0

)
+ i
(

0 i1
−i1 0

)](
ϕ i
ϕ̄ i
)}

= ∑
i

φ̄ iϕ i (26)

This suggests that the Hilbert space structure of quantum mechanics is perhaps not as
fundamental as its geometrical structure.

CONCLUDING REMARKS

We have shown that the Hilbert space formulation of discrete quantum theory emerges
from the geometry of probabilities in motion. The basic elements that go into this
geometrical reconstruction of discrete quantum mechanics are the natural metric on
the space of probabilities (information geometry), the description of dynamics using a
Hamiltonian formalism (symplectic geometry), and requirements of consistency (Kähler
geometry).
We summarize some of the remarkable features of this construction. The wave func-

tions of quantum mechanics, ψk =
√
PkeiSk , appear as the natural complex coordinates

of the Kähler space that describes the geometry of probabilities in motion. The full group
of unitary transformations is derived based on consistency requirements. And, �nally, a
Hilbert space may be associated with the Kähler space of the theory, which leads to the
standard version of quantum theory.
We have shown that we can derive Wootters’ statistical distance for quantummechan-

ics, Eq. (17), in a purely geometrical way. We have commented in this brief paper on the
connection between our work and that of Wootters; it would also be interesting to in-
vestigate the connection of our work to papers of Mehrafarin [3] and Goyal [4, 5] which
also take an information-geometrical approach. One of the main differences seems to
come from the emphasis that we place on �nding a geometrical description for the space
of probabilities in motion. The use of an action principle to describe the dynamics of the
probabilities Pi introduces geometrical structure that is quite powerful: we immediately
get a doubling of the dimensionality of the space (i.e., {Pi}→ {Pi,Si}) and, in addition,
we end up with a complex structure and unitary transformations, all of them ingredi-
ents that are essential for quantum mechanics. In our formalism, these are mainly the
result of consistency requirements which we impose to ensure the peaceful coexistence
of information geometry and symplectic geometry.
It appears then that discrete quantum mechanics stands at the intersection of informa-

tion geometry, symplectic geometry, and Kähler geometry.
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APPENDIX: THE CONDITION A= 0

To �x the matrix A that appears in Eqs. (14) we need to supplement the Kähler condi-
tions, Eqs. (10-12), with an additional condition. We make use of the fact that motion
in the probability space (for example, the trajectory in phase space generated by an ob-
servable) preserves the normalization ∑i Pi = 1. To look more closely at this constraint,
we introduce the new set of 2n real coordinates

xi =
√
2αPi cos

(
Si/α

)
, yi =

√
2αPi sin

(
Si/α

)
. (27)

One can check that this coordinate transformation is also a canonical transformation,
{xi,y j}= δ i j, so the symplectic form remains invariant.
The constraint ∑i Pi = 1 takes the form ∑i{(xi)2+(yi)2}= 2α in the new coordinates.

Therefore, motion is restricted to a 2n-dimensional sphere in the space of the xi and yi.
We require that the metric be invariant under rotations (equivalently, invariant under
the motions generated by observables); i.e., that it be spherically symmetric. In the
coordinates xi and yi, a spherically symmetric line element has the general form

dρ2 = f (r)∑
i

{
(dxi)2+(dyi)2

}
+g(r)

{
∑
i
(xidxi+ yidyi)

}2

(28)

where f and g are arbitrary functions of r=
√

∑i{(xi)2+(yi)2}. In terms of the original
coordinates Pi and Si, the spherically symmetric metric takes the form

dρ2 = f (∑
i
Pi)∑

i

{
α
2Pi
(dPi)2+

2Pi

α
(dSi)2

}
+g(∑

i
Pi)

{
α ∑

i
dPi
}2

(29)

The important point here is that the metric dρ2 does not have any mixed terms propor-
tional to dPidS j, and this means that we must set A = 0 to satisfy our requirement of
metric invariance.
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