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Abstract— This paper presents a novel Fourier based 

approach for recovering the transformation parameters of 
images that have been translated, globally scaled, rotated and 
stretched along an arbitrary vector. The proposed method first 
recovers the global rotation and scaling parameters. Then Hough 
based techniques are used for recovering the magnitude and 
orientation of the stretch vector. Theory, methodology and 
preliminary experimental results are presented. 
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I.  INTRODUCTION  
Fourier-based techniques often provide an efficient, non-

iterative and robust solution to the problem of estimating the 
transformation parameters of images that have been subject to 
similarity transformations. In combination with a log-polar 
transform, Phase Correlation can recover a wide range of 
global rotation, scale and translation parameters [1]. While the 
global nature of the Fourier transform makes these methods 
relatively insensitive to localised noise and aberrations it 
renders them unsuitable for recovery of elastic deformation 
parameters. While similarity transforms preserve the lengths 
and angles within an image, affine transformations only 
preserve the parallelism of lines, making recovery of their 
transformation parameters problematic for Fourier based 
methods. This paper extends to application of Fourier based 
methods to the recovery of linear transformation parameters. 
Linear transforms are a superset of similarity transforms that 
include differential (or anisotropic) scaling and shearing. There 
is little published work regarding the application of Fourier 
based techniques to the estimation linear or affine transform 
parameters. 

Previous approaches for recovering of linear or affine 
transformation parameters avoid the use of frequency domain 
techniques all together as being unworkable in practice [2]. 
Although used for a different application, Fourier methods 
were historically used for estimating the spatial orientation of 
uniformly textured surface planes. The respective affine 
parameters were by obtained comparing the frequency 
components, peaks or the second order moments of Fourier 
transforms of two patches on the textured surface [3, 4]. The 
only other Fourier based method for estimating affine 
parameters between images in the literature approaches it as a 
nonlinear minimization problem using radial projections of the 
squared Fourier magnitudes of the images [5]. In contrast this 
paper presents a simple closed-form extension of Phase 

Correlation for the estimation of linear transform parameters. 
Section two presents the theoretical concepts; section three 
discusses methodology, with experimental results presented in 
section four. 

II. THEORY 

Let f1(x,y) and f2(x,y) be two images where 2],[ ℜ∈yx  and 
let f2(x,y)  be a version of f1(x,y)  that is stretched by a factor of 
z along an arbitrary orientation denoted by ϕ then uniformly 
scaled by a factor s, rotated by angle θ and translated by vector 
T(x0, y0), such that f1(x,y) is related to f2(x,y) by the following: 

 f2(x, y) = R(ϕ) S(z,1) R(-ϕ) S(s,s) R(θ) f1(x, y) + T (1) 

Where: S(µ,η) =
µ 0
0 η
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!

"
#
#

$

%
&
&
 (2) 

 Expanding (1) gives f2(x, y) = f1(j, k) where: 

j = s(z+1) ⋅ xcos(θ )− ysin(θ )( )+ s(z−1) ⋅ xcos(θ − 2ϕ )− ysin(θ − 2ϕ )( )+ x0
k = s(z+1) ⋅ xsin(θ )+ ycos(θ )( )− s(z−1) ⋅ xsin(θ − 2ϕ )+ ycos(θ − 2ϕ )( )+ y0  (3) 

Taking the magnitude of the Fourier transform of both sides 
of (1) such that Gi = | Fi | and using the linearity, shifting, 
scaling and rotation theorems gives:  

G2(u, v) =    

 1
s
F

(z+1)
s

ucosθ − vsinθ( )+ (z−1)
s

ucos θ − 2ϕ( )− vsin θ − 2ϕ( )( ),
(z+1)
s

usinθ + vcosθ( )− (z−1)
s

usin θ − 2ϕ( )+ vcos θ − 2ϕ( )( )
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 (4) 

Denoting the Cartesian coordinates (u, v) on the RHS of (4) 
in terms of the polar coordinates (r, φ) by substituting for  u = r 
cos φ and v = r sin φ, and ignoring the 1/|s| scaling factor gives:  



G2 u,v( ) = F

(z+1)
s

rcosφ cosθ − rsinφ sinθ( )

+
(z−1)
s

rcosφ cos θ − 2ϕ( )− rsinφ sin θ − 2ϕ( )( ),
(z+1)
s

rcosφ sinθ + rsinφ cosθ( )

−
(z−1)
s

rcosφ sin θ − 2ϕ( )+ rsinφ cos θ − 2ϕ( )( )
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  (5) 

Applying the product to sum trigonometric identities to (5) 
results in: 

 
G2 u,v( ) = F

(z+1)
s

rcos φ +θ( )( )+ (z−1)s
rcos φ +θ − 2ϕ( )( ),

(z+1)
s

rsin φ +θ( )( )− (z−1)s
rsin φ +θ − 2ϕ( )( )
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Mapping expression (6)  into the polar plane (r, φ) where    
r = u2 + v2, and φ = arctan(v/u) results in:  

                        G2 r,φ( ) =G1 r ⋅
2β
s
, φ +τ
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where β = z2 +1( )+ z2 −1( )cos 2 θ +φ −ϕ[ ]( )  (8) 

and  τ = arctan

z+1
z−1
"

#
$

%

&
'sin θ +φ( )− sin θ +φ − 2ϕ( )

z+1
z−1
"

#
$

%

&
'cos θ +φ( )+ cos θ +φ − 2ϕ( )

"

#

$
$
$
$

%

&

'
'
'
'

−φ  (9) 

Taking the logarithm of the first variable in expression (7) 
converts the multiplications into additions to give: 

 G2 ln r[ ],φ( ) =G1 ln r[ ]− ln[s]+ 1
2 ln 2β[ ], φ +τ( )  (10) 

Now let β = H * ψ so that:  

 H = z2 −1( ) & ψ = cos 2 θ +φ −ϕ[ ]( )+ z
2 +1
z2 −1

 (11) 

Now (10) can be rewritten as: 

     G1 ln r[ ]− ln[s]− ln[4]+ 1
2 ln 2H[ ]+ 1

2 ln 2ψ[ ], φ +τ( )  (12) 

Now let ρ = ln[r], k = ln[s] + ½ ln[2H] b = ½ ln[2ψ] and 
relabeling these relationships as h2(ω, φ) = G2(ρ, φ)  and h1(ω, 
φ) = G1(ρ+k+b, φ+τ) gives the Fourier transform of h2 as 

      

F h2 ω,φ( ){ }= H2 ε,α( )

=
1
2π

G1 ω,φ( )∫∫ ⋅e−i2π ε ω+k( )+α θ+τ( )( )

× e−i2π ⋅ε⋅bdωdφ

 (13) 

Which can be simplified to: 

 H2 ε,α( ) = H1 ε,α( ) ⋅e−i εk+ατ( ) e−i2π ⋅ε⋅b dφ∫  (14) 

Substituting for b into the remaining integral in (14) results 
in it having the approximate form of an nth order Bessel 
function of the first kind denoted as Jn(m). Accordingly (14) 
can be rewritten as: 

  H2 ε,α( ) = H1 ε,α( ) ⋅e−i εk+ατ( ) ⋅ Jn m( )  (15) 

Taking the normalized cross power spectrum of (14) factors 
out the phase difference since the magnitude of a complex 
exponential is simply the radius of a unit circle:  

 
H1(u,v) ⋅H

*
2 (u,v)

H1(u,v) ⋅H
*
2 (u,v)

= e−i(εk+ατ ) ⋅ Jn (m)  (16) 

Finally, the Fourier transform of a Bessel function of the 
first kind is a ring delta function. Convolving it with a Dirac 
delta at (k, τ) shifts the ring’s origin, so taking the inverse 
Fourier transform of (16) gives: 

 F −1 e−i(εk+ατ ) ⋅ Jn (m){ }= δ ε + k,α +τ( )*Ring(m)  (17) 

Now since ε and α are respectively the transformed 
logarithm of the global scale factor s and the rotation angle θ 
we can directly estimate the global scale and rotation from the 
ring delta’s location on the correlation surface.  

The magnitude of the stretch z can also be calculated from 
the radius of ring delta, as it is a function of z. Unfortunately, 
the orientation of the stretch ϕ, given by the phase of the ring 
cannot be isolated from this formulation. Instead, note that if β 
is a constant and letting k = ln[β/s], the integral in (13) can be 
eliminated leaving only the Dirac delta in (17). This is the case 
if either z = 1 or if the Fourier integral in (13) is only evaluated 
for a fixed value of φ, in which case it reduces to a 1D 
transform only in terms of ω. As the offset of the Dirac delta 
will be dependent on cos(φ+θ-ϕ), stepping through different 
values of φ from 0 to 2π the offset of the Dirac Delta will trace 
out a sinusoid. Since θ can be obtained from (17) and φ is 
predetermined, only ϕ remains to be calculated from the phase 
of the sinusoid. 



III. METHOD DESCRIPTION 
The recovery of the global scale and rotation parameters 

between a reference image and its transformed pair begins with 
obtaining a translation invariant representation of the images 
by making use of the Fourier shift theorem. The result is then 
remapped into a log-polar plane that converts rotation and 
global scaling into shifts. The conversion of a image f(x,y) from 
the Cartesian space into the log-polar domain g(ρ, φ) is 
performed using bilinear interpolation by resampling the 
magnitude of the N x N FFTs on an N/2 x N/2 log-polar grid 
using the relationship: 

 g ρ,φ( ) = f N
2 +β

y ⋅cos(α), N 2 +β y ⋅sin(α)( )  (18) 

Where the variables α and β are given by: 

 α = 
π x
N       &   

( )
2/

2/log
N

N

e=β  (19) 

If the stretch magnitude z is not unity, calculating the phase 
correlation of the remapped images as described in [6] will 
result in a ring delta located somewhere on the correlation 
surface. Locating the ring delta on the correlation surface can 
be performed via a modified Hough Circle transform (HCT). 

The first stage in the ring detection is to reduce the noise in 
correlation surface image via local noise averaging. Each point 
in the correlation surface is renormalized according to the mean 
local noise as per equation (20). 

 m x, y( ) = 1
4r2

f x + i, y+ j( )
j=−r

+r

∑
i=−r
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∑ f ' x, y( ) =
f x, y( )
m x, y( )
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Due to the overall low signal to noise ratio the performance 
of the standard HCT [7] is sub optimal. Using the HCT to 
obtain a shortlist of the most likely ring locations and analyzing 
their statistics can achieve better detection accuracy. In this 
case the highest product of the ring’s size and squared mean of 
the perimeter is then taken as the ring location [8]. Using polar 
coordinates (r, θ) the circumference of a circle centered at (ρ, 
φ) with radius r is given by: 

 K θ( ) = ρ cos θ −φ( )+ r2 − ρ2 sin2 θ −φ( )  (21) 

The ring’s mean, where η is the number of points of 
support in the ring can be calculated as: 

  µ = 1
η

f θ( )
K∫ ⋅dθ  (22) 

The centroid of the ring (k, τ) gives the rotation and average 
scaling between the two images. The average scale factor S can 
be recovered as: 

 S = N
1
N
k

   (23) 

The magnitude of any stretch can be recovered (where N is 
half the number of points in the final Fourier transform): from 
the ring’s radius R, in a similar manner:  

 Z = N
1
N
(R+1)

 (24) 

Given the angular component τ of the coordinates of the 
centre of the ring delta and assuming the stretch ratio from (21) 
is within the range 1<= z <=2, the rotation angle θ can be 
recovered as the first order approximation of (9): 

  τ = arctan tan θ +φ( )( )−φ  (25) 

and   Θ =
π ⋅τ
N

 (26) 

To recover the orientation of the stretching one can either 
first inverse transform the target image to eliminate it’s rotation 
and have θ = 0, otherwise the θ will need to be subtracted from 
the phase estimate when it is obtained.  

The process of recovering the phase begins with the log-
polar transformed images. Rather than calculate the normalized 
cross power spectrum for each φ which implies each image 
column, we segment the image into bands sufficiently narrow 
as to safely assume that the variation in φ is negligible within 
each band. While wider bands improve the resulting signal to 
noise ratio, they also reduce angular resolution. The normalized 
cross power spectrum is calculated for each pair of 
corresponding bands in the two images. This results in a set of 
correlation peaks, one for each band. The correlation peaks will 
form a sampled sinusoid of the form given by β from (8), the 
parameters of which could be easily recovered using of a least 
squares or similar curve fitting approach. In practice, these 
methods are highly unreliable for estimating the phase of the 
sinusoid due to the low signal to noise ratio in the correlation 
surface. A general Hough transform based approach is better 
suited for this task [9, 10]. A slightly different formulation is 
presented here for detecting the resulting sinusoid from that in 
the literature. Given a fixed-period sinusoid described in 
Cartesian space in terms of (x, y) as: 

 y = Asin ωx +φ( )+ c  (27) 

It can be parameterized in terms of (A, φ, c) as: 

 A = Y − c
sin ωx +φ( )

  (28) 



Each point in (x,y) now results in a family of inverse sine 
functions, each one defined over (A, φ) for each value of c. The 
corresponding set of curves for each sample of the sinusoid in 
(x,y) is accumulated in (A, φ, c) space and the location of the 
resulting maxima gives the parameters of the original sinusoid. 
Noise reduction by pre-filtering can be used to improve the 
reliability of correctly detecting the sinusoid. 

The various steps in this process are depicted in Fig.1 
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Fig. 1. Calculation of transformation parameters 

 

IV. EXPERIMENTAL RESULTS 
The performance of the proposed scheme was evaluated for 

a wide range of transformation parameters. A total of 432 
image pairs were generated by stretching a 1024x1204 source 
image by factors from 1.1 to 1.4 in steps of 0.1 along different 
orientations in 5 degree steps from 0 to 180 degrees, after first 
performing global scaling by factors of 1.0, 1.1 and 1.2.  

The accurate recovery of the global scale across this range 
of parameters decreases as the amount of stretching increases, 
as shown in in Figure 2. This plots the average scale factors 
reliably recovered for different amounts of stretching. A given 
scale factor was deemed to be reliably detected if the average 
error at a given amount of stretching for all rotation angles was 
below 15%. This error threshold was chosen rather arbitrarily 
since error distribution tends to be a step function: where the 
rings are correctly identified the error is typically below 15%, 
otherwise the average error is above 40%.  
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Fig. 2. Recovery of scale factors for different amounts of stretching 

In all of these cases the orientation was recovered from the 
phase of the sinusoid with an average absolute error of 5.69% 
and a median absolute error of 0.93%. This is depicted in 
figures 3 and 4 showing the absolute orientation error in 
degrees for different stretch factors at different orientations and 

the average absolute error for all orientations respectively. The 
fluctuations in the curved in fig. 3 are due resolution limiations 
and noise. The magnitude of the stretching was recovered from 
the radius of the ring delta with an average absolute error of 
6.42% and a median absolute error of 3.02%. 

 
Fig. 3. Absolute orientation recovery errors for different stretch factors 

 

Fig. 4. Average absolute orientation recovery errors for all orientations 

Figure 5 shows an image pair where the source image on 
the left has been globally scaling by a factor of 1.1 and 
stretched by a factor of 1.3 at angle of -40 degrees from the 
vertical as shown on its right. The orientation and magnitude of 
the stretch were correctly recovered respectively as -40 degrees 
1.384 times. The deviation in the magitude is due to the 
quantisation introduced by the Hough space. The panel on the 
right is a plot the sinusoid formed by the aggregation of the 
correlation surfaces generated from the image bands. 

 

Fig. 5. Global scaling at 1.1x and stretching by 1.3 at -40° 

Figure 6 shows a resulting image after rotating the original 
by -50 degrees, then stretching it  by a factor of 1.30 at an 
orientation of 25 degrees from the vertical. The proposed 
method correctly recovered the rotation at -50 degrees and the 



magnitude and orientation of the stretch at 1.27x and 33 
degrees respectively. The centre panel is the ring delta resulting 
from the correlation with its corresonding sinusoid on its right. 

 

Fig. 6.  Rotation of -50° followed by 1.3x stretching at 25°  

Figure 7 shows a resulting image after stretching it  by a 
factor of 1.40 at an orientation of -45 degrees from the vertical. 
The orientation and magnitue of the stretch were recovered as -
51 degrees and 1.384 respetively. 

 

Fig. 7. Stretching at -45° by a factor of 1.40x 

Figure 8 shows a resulting image after stretching it  by a 
factor of 1.40 at an orientation of 75 degrees from the vertical. 
The orientation and magnitue of the stretch were recovered as 
78 degrees and 1.325 respetively. 

 

Fig. 8. Stretching at 75° by a factor of 1.40x 

 

V. CONCLUSIONS  
This paper has presented a novel, straightforward method 

for estimating the transformation parameters of images that 
have undergone global scaling, rotation and arbitrary stretching 
for image registration. Based on combining Phase Correlation 
with the Hough Transform, it provides noise resilience and 
constant processing time. While the distortion introduced by 
stretching limits the upper range of global scaling that could 
otherwise be recovered, it is able to recover stretch parameters 
over all possible orientations with reasonable accuracy.  
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