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ABSTRACT 

In this study, the three-dimensional wave-pile group interaction mechanism is 

investigated by addressing both wave behaviour and pile group responses. The Scaled 

Boundary Finite Element Method (SBFEM) is employed to develop the computational 

model. This paper, Part I of the study, mainly focuses on the theoretical development of 

the problem. A SBFEM model is developed to formulate both equations governing the 

wave motion and the structural behaviour. The proposed model, with its accuracy verified 

by wave interaction with a single pile foundation, is capable of addressing wave 

interaction with any arbitrary number of piles with various cross-sections and spatial 
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layouts. 
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1. INTRODUCTION 

Pile foundations are one of the most commonly used foundation structures for coastal and 

offshore installations, such as oil-drilling platforms, offshore airports and wind farms. 

They are also extensively used in ports and harbour areas in the form of piers for bridges 

or jetties for mooring. Normally, piles appear in clusters, i.e. a group of piles are arranged 

in specific layouts and separated by certain distances to provide enhanced functional 

ability. One significant difference between pile foundations designed for ocean 

constructions and those for onshore installations lies in the surrounding environment to 

which they are subjected and accordingly the external forces they have to withstand. By 

exerting constant and detrimental forces onto structures, waves are the most significant 

environmental concern, and therefore the main consideration for designing and 

maintaining ocean structures (Benassai, 2006; Goda, 2010). Investigations of engineering 

failures have established that waves can be a critical factor causing accidents in ocean 

installations (U.S. Coast Guard, 1983; Moan, 2005). Therefore, the analyses of waves, i.e. 

their behaviour in the presence of, and their impact on pile group foundations, and the 



3 

 

corresponding pile group’s performance are of vital importance for safe and reliable 

design, and optimal usage of pile group foundations. 

Significant research has been carried out by ocean engineers focusing on wave behaviour 

in the presence of, and the corresponding wave forces exerted on multiple vertical 

cylinders. Spring and Monkmeyer (1974) analytically formulated the first-order plane 

wave forces on groups of two bottom-fixed, surface-piercing vertical cylinders. Linton 

and Evans (1990) simplified the theory proposed by Spring and Monkmeyer (1974) and 

investigated the first-order diffraction problem of a regular incident wave in the presence 

of N bottom-mounted vertical circular cylinders. An important breakthrough can be 

identified as the generalised wave-structure interaction theory derived by Kagemoto and 

Yue (1986), which is applicable to arrays of arbitrary structures with two specifications: 

(1) the vertical projections of the structures on a horizontal plane cannot overlap with 

each other; and (2) fictitiously introduced circles on the projection plane to enclose 

individual structures cannot enclose centres of other circles. Yilmaz and Incecik (1998) 

employed Kagemoto and Yue’s (1986) formulation to address wave diffraction by a 

group of truncated vertical cylinders. The mushrooming of very large floating structures 

supported by thousands of cylindrical legs led to the work of Maniar and Newman (1997) 

and Kashiwagi (2000). They employed a hierarchical procedure to first divide the entire 
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cylinder group into small clusters. These clusters were later assembled to build up the 

whole array. 

Recently, Walker and Eatock Taylor (2005) extended the linear diffraction theory to 

‘NewWaves’ interaction with linear array of cylinders. Wang and Wu (2007) investigated 

the second-order wave diffraction problem with an array of vertical cylinders in the time 

domain, capturing the transient effect when the wave motion is not periodic. Zhao et al. 

(2008) examined the wave diffraction by an array of truncated cylinders. Chatjigeorgiou 

and Mavrakos (2010) derived a semi-analytical formulation, using Mathieu functions in 

the elliptic coordinate system, for wave diffraction with an array of elliptical cylinders. 

Tao et al. (2009) studied the wave field behaviour in the presence of two adjacent square 

caissons. Song et al. (2010) further extended the wave diffraction problem to multiple 

cylinders of arbitrary cross-sections. 

It is found that intensive effort has been directed towards the wave analysis to investigate 

wave parameters due to the influence of structures, such as the free surface elevation, 

wave propagation velocity and the hydrodynamic pressure. These studies provide explicit 

wave data for subsequent structural analyses. However, they are normally formulated in 

certain situations for specific applications. The Morison equation is effective when the 

structure’s influence on wave transformation is negligible. The formula proposed in Zhu 



5 

 

(1993) is only applicable to circular cylinders subjected to short-crested waves. In other 

cases concerning complexity, the linkage between the two processes becomes 

challenging. For an effective evaluation of the structural behaviour, an investigation 

involving both waves and structures needs to be performed. 

However, due to the dissimilar physical nature as found in waves and structures, the 

study in this aspect has not yet been adequately documented. Waves exist in an extensive 

domain, and their behaviour is governed by scalar equations, normally with the velocity 

potential as the unknown variable. Structures, on the other hand, are characterised by 

finite dimensions, and their behaviour is described by vector equations addressing 

displacements and stresses. These differences in the theoretical background between 

wave and structural analyses impede the compiling of an integrated wave-structure 

interaction model. In this regard, a few documented studies (Lee and Wang, 2000; Wu et 

al., 1995) set a precedent. However, these studies were mostly conducted in two 

dimensions, and the boundary conditions associated with the wave analysis were not 

treated properly. This is directly or indirectly restricted by the time consumption and 

memory requirement involved in three-dimensional analyses. Moreover, the methodology 

employed in the analysis can also be a reason for this restriction. The complex nature of 

the interaction problem, together with other issues such as the unbounded scope of the 
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study domain and the dissimilar nature of the multi-physical field, precludes the 

acquisition of an analytical solution or an experimental investigation. The Finite Element 

Method (FEM), though possessing numerous advantages such as the flexibility when 

dealing with inhomogeneous and anisotropic materials, runs into difficulties when 

unbounded domains are involved. The Boundary Element Method (BEM), though well 

suited to model unbounded domains, needs to evaluate singular integrals and suffers from 

irregular frequencies. These disadvantages render them inappropriate to be employed in 

the wave-pile group interaction analysis specified in this study. 

Encouragingly, the Scaled Boundary Finite Element Method (SBFEM), originally 

developed to address wave propagation problems within the framework of dynamic 

unbounded medium-structure interaction (Song and Wolf, 1997; Wolf and Song, 1996), 

overcomes the drawbacks mentioned above and has been applied to solve many problems 

in fracture mechanics (Yang, 2006; Yang and Deeks, 2007), computational 

electromagnetics (Liu et al., 2010), geotechnical engineering (Bazyar, 2007) and 

hydraulic engineering (Wang et al., 2010). It also has been employed to address wave 

diffraction problems around breakwaters and caissons (Li, 2007; Tao et al., 2007). 

Studies show that SBFEM has demonstrated high efficiency and accuracy in solving 

wave domains when waves interact with structures. Contrary to FEM, domain truncations 
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and artificial boundary conditions do not need to be treated in situations with unbounded 

computational domain; Unlike BEM, fundamental solutions and singular integral 

evaluations are not required, and numerical difficulties associated with irregular 

frequency and sharp corners do not need to be addressed. This, spontaneously and 

inspiringly, provokes the motivation of utilising SBFEM to solve the wave-pile group 

interaction problem, investigating both the wave motion in the presence of pile groups 

and pile groups’ reaction subjected to wave forces. 

Most recently, Li et al. (2010b; 2011) used SBFEM to study the structural behaviour of 

offshore monopiles when subjected to ocean wave loads. In Li et al. (2010b; 2011), the 

analytical wave formula in Zhu (1993) was employed, and only the equations governing 

the monopile’s behaviour was formulated in the SBFEM model. The present study is an 

enhanced development of the previous work. Both the wave field and the pile group are 

incorporated in an integrated SBFEM model. As Part I of this study, this paper presents 

the theoretical formulation. The wave field behaviour and the pile group response are 

described mathematically in Section 2. The SBFEM model is constructed in Section 3 

with a detailed solution proposal, which is verified in Section 4 by wave interaction with 

a single pile foundation. Finally, the paper concludes by summarising significant 

contributions in Section 5. The numerical results of wave interaction with pile group 
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foundations will be discussed in an accompanying paper as Part II of this study.  

2. PROBLEM FORMULATION 

A group of pile foundations in an ocean environment subjected to ocean wave forces are 

illustrated in Fig. 1. The piles are assumed to be fixed at the seabed surface and the 

relative motion between the piles and the seabed is neglected. In addition, external loads 

from superstructures, not being the main focus of this study, are not addressed in the 

current discussion. The origin O of the Cartesian coordinate system is located at the 

seabed surface. x and y denote two orthogonal horizontal directions, and z positively 

points upwards. Here,  represents the field with sea water. A denotes the wave 

amplitude; d the mean water depth. a and h represent the radius and the height of the pile 

foundation, respectively. 

2.1. Wave field behaviour 

Under the assumption that the flow motion is irrotational, and that the fluid is invisid and 

incompressible, the velocity potential Φ of the wave field Ω is governed by the Laplace 

equation (Mei, 1989): 

 
2
Φ = 0 in Ω  (1) 

The concept of separation variables is employed to decompose Φ into univariate 
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functions with respect to the independent variables, i.e. the spatial variables x, y, and z, 

and the temporal variable t: 

 Φ (x, y, z, t) =  (x, y) Z (z) e
-it

 (2) 

In Eq. (2), Z(z) is formulated as: 

  
cosh

cosh

kz
Z z

kd
  (3) 

to account for the boundary condition that no flow across the seabed surface. The 

linearised free surface boundary condition is satisfied by the dispersion relation. 

Substituting Eq. (2) into Eq. (1) leads to a Helmholtz equation governing the wave 

motion at the free surface level two-dimensionally: 

 
2 2 0k     (4) 

It should be mentioned that Φ and   in Eqs. (1), (2) and (4) represent any of the total 

(denoted by a subscript ‘T’), the incident (denoted by a subscript ‘I’) and the scattered 

(denoted by a subscript ‘S’) velocity potentials. 

The Neumann boundary condition and the Sommerfeld radiation condition (Sommerfeld, 

1949) are specified respectively as: 
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 , 0T n     at the wetted structure face (5) 

and 

    
1/2

,lim 0S r S
kr

kr ik 


   at infinity (6) 

Therefore, by introducing Eqs. (2) and (3), a three-dimensional wave diffraction problem 

described by Eq. (1) is spatially reduced to a two-dimensional problem governed by Eq. 

(4), subjected to Eqs. (5) and (6). 

2.2. Structural response 

The structural behaviour of the pile group foundation is governed by the elasto-static 

differential equation (Gould, 1994): 

     0
T

L    (7) 

with [L] being the partial differential operator. The stress amplitude {σ} is related to the 

strain amplitude {ε} and the elastic matrix [D] as: 

     D   (8) 

The strain amplitude {ε} and displacement amplitude {u} are related by [L] in the form 

of: 
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     L u   (9) 

The structural behaviour of each pile subjected to external wave forces is to be 

investigated three dimensionally with the boundary condition specified at the seabed 

level. 

3. SBFEM MODEL AND SOLUTION PROCEDURE 

SBFEM is a semi-analytical numerical method proposed in mid-1990s (Song and Wolf, 

1996a, 1996b, 1997). Its concept of solving problems originates from the Finite Element 

Method (FEM) and the Boundary Element Method (BEM). It inherits the idea of 

discretisation and interpolation from FEM, but only along the boundary as in BEM, 

which reduces the spatial dimension of the problem by one, and significantly minimises 

the discretisation effort and leads to a substantially reduced number of degrees of 

freedom. Fundamental solutions are not required, as would be the case in BEM. 

Boundary conditions at infinity for problems involving unbounded domains can be 

exactly satisfied. Despite some disadvantages when dealing with problems involving 

nonlinearity and material inhomogeneity, SBFEM is well-suited to address the wave-

structure interaction problem specified in this study. This will be demonstrated in 

Sections 3.1 and 3.2 by illustrating SBFEM formulations of the wave and the structural 

analyses, respectively. 
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3.1. Wave domain formulation 

As discussed in Section 2.1, the wave diffraction due to the presence of pile groups in 

three dimensions governed by Eq. (1) has been transformed to a problem addressed by 

the Helmholtz Eq. (4) two dimensionally at the free surface level. The xy plane view of 

an infinite wave domain and a group of pile foundations is illustrated in Fig. 2, where the 

number of piles is arbitrarily chosen as three (denoted by P1, P2 and P3), and the piles 

are of circular cross-sections with a randomly arranged spatial layout. An auxiliary 

circular envelope, represented by the dashed line, is introduced to divide the entire wave 

domain into two: one unbounded domain S∞ extending from the circular envelope 

towards infinity, and one bounded domain Sb within the envelope enclosing the pile 

group. Before introducing the local scaled boundary coordinate system, a further division 

of Sb is performed to meet the requirement that for each subdivided domain, any position 

on the domain boundary can be visible from a specific location, namely the scaling centre. 

The subdomain division in SBFEM does not follow any particularly defined standard. It 

is subjected to the complexity of the boundaries and interfaces involved in the geometric 

model, i.e. the cross-section and the plane layout of the pile foundations in this study. 

Generally, subdomains with relatively uniform shapes are favoured. This is similar to the 

discretisation concept in FEM, where severely distorted polygons (elements) with rather 

sharp angles are avoided. The location of the scaling centre can theoretically be anywhere 



13 

 

inside the domain, as long as the visibility of the domain boundary from the scaling 

centre is guaranteed. However, a location allowing for well-balanced distances from the 

scaling centre to the domain boundary is preferable. It is therefore suggested the scaling 

centre be positioned at the geometric centre of the corresponding subdomain, to eliminate 

any possible numerical inaccuracy also benefit the pre-process of the SBFEM calculation. 

Thus, illustrated in Fig. 2, the entire wave field is discretised into eight subdomains, with 

seven bounded subdomains Si (i = 1, 2, …, 7) inside the circular envelope separated by 

solid lines and one outer unbounded subdomain S∞ extending to infinity.  

A local scaled boundary coordinate system, taking subdomain S4 for example, is 

constructed in Fig. 3 (a) by a scaling centre O (x0, y0) and a defining curve S, i.e. the 

boundary of S4. Scaling the defining curve S according to a radial coordinate ξ with 

respect to O leads to a bounded domain (S4 in this case) when ξ runs from ξ0 = 0 at the 

scaling centre O to ξ1 = 1 at the defining curve S, or alternatively as shown in Fig. 3 (b), 

the scaling leads to an unbounded domain S∞ when ξ goes from ξ0 = 1 at S to ξ1 = ∞ at 

infinity. 

In the SBFEM descretisation, only the defining curve needs to be discretised. The local 

scaled boundary coordinate system (ξ, s) is related to the Cartesian coordinate system 

 ˆ ˆ,x y  as: 
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    

    

0

0

ˆ , ( )

ˆ , ( )

x s N s x x

y s N s y y

 

 

 

 
 (10) 

where {x} and {y} represent the coordinates of the discretised nodes on S; [N(s)] is the 

geometric mapping function. Note that the coordinate of the Cartesian coordinate space is 

represented by  ˆ ˆ,x y  as (x, y) is reserved for the coordinates on the boundary, which is a 

convention in SBFEM. However, x and y (or x, y and z) are still used when indicating 

directions in the following discussions. 

With this geometric mapping, the gradient operator   is reformulated in the scaled 

boundary coordinate system using ξ and s as: 

    1 21
b s b s

s 

 
         

 (11) 

in which, [b
1
(s)] and [b

2
(s)] only depend on the boundary discretisation on S, and are 

independent of the radial coordinate ξ. Using the same shape function [N(s)] as for the 

boundary discretisation, the velocity potential   is expressed as: 

        , s N s a       (12) 

where {a(ξ)} represents the nodal velocity potential function varying in the radial 

direction with respect to ξ. Accordingly, the velocity vector {υ(ξ, s)} can be calculated as:  
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             1 2

,

1
, s B s a B s a


   


         (13) 

with 

 

1 1

2 2

,

[ ( )] [ ( )][ ( )]

[ ( )] [ ( )][ ( )] s

B s b s N s

B s b s N s




 (14) 

Denoting any boundary with prescribed velocity n  in the outward normal direction n as 

Γυ,  

 , nT n   on Γυ, (15) 

and applying the weighted residual technique with a weighting function w and Green's 

theorem, Eq. (4) is translated into an integral equation using Eq. (15) as: 

 
2 0T T T

nw d wk d w d  
  

         (16) 

Formulating the weighting function w using the shape function [N(s)] as: 

          ,
TT

w s N s w w N s           (17) 

and through a series of mathematical manipulations, the following expression results: 
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            

            

  
       

     

1

0

0 1

1 1 1 1 1 1,

0 1

0 0 0 0 0 0,

0 0 1 1

, ,

2 2 0

,

,

=0
1

T TT

n

S

T TT

n

S

T

T

w E a E a N s s ds

w E a E a N s s ds

E a E E E a

w d

E a k M a





  



      

      

  

 
  



 
           
 

 
            
 

                  
  

         
 







 (18) 

Eq. (18) is valid for any arbitrary {w(ξ)}, therefore, the coefficients of {w(ξ)} should be 

zero, resulting in: 

          0 1

0 0 0 0 0,
,

T T

n

S

E a E a N s s ds


                   (19) 

          0 1

1 1 1 1 1,
,

T T

n

S

E a E a N s s ds


                  (20) 

 

             0 2 0 1 1 2 2 2 0

, ,
0

T

E a E E E a E a k M a
 

                                 

  (21) 

Eqs. (19) and (20) explain the relationships between the nodal velocity potential and the 

integral of the velocity along boundaries ξ0 and ξ1, respectively. By examining the left-

hand sides of these two equations, the concept of nodal flow function, denoted by {q(ξ)}, 

analogous to the internal nodal force function specified in Song and Wolf (1998), is 

introduced. The formulation of {q(ξ)} is written as: 

         0 1

,

T

q E a E a


            (22) 
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Eq. (21) is the scaled boundary finite element equation corresponding to Eq. (4). It is a 

second-order matrix-form homogeneous ordinary differential equation (ODE) governing 

the variation of the nodal velocity potential function {a(ξ)} within the domain. Only the 

radial variable ξ appears. The other coordinate s is incorporated in the coefficient 

matrices in the form of: 

 

   

   

   

   

1
0 1 1

1

1
1 2 1

1

1
2 2 2

1

1
0

1

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

T

T

T

T

E B s B s J ds

E B s B s J ds

E B s B s J ds

M N s N s J ds









   

   

   

   









 (23) 

with | J | denoting the Jacobian calculated on the discretised curve S.  

The detailed solution procedure of the scaled boundary finite element equation 

formulated in the frequency domain for elasto-dynamic problems has been documented 

in Song and Wolf (1998) within the context of solid mechanics, and has been employed 

by Li et al. (2006) with appropriate modifications to solve wave diffraction problems. 

Song et al. (2010) adopted an analogous procedure dealing with the bounded domain, but 

using a special function, i.e. the Hankel function as the base function to account for the 

Sommerfeld radiation condition when formulating the unbounded domain. Key 

procedures of solving Eq. (21) for the entire wave domain are reproduced in the 
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following subsections. 

3.1.1. Bounded domain 

The order of Eq. (21) is reduced from two to one at the expense of doubling the number 

of degrees of freedom involved in the system by introducing the following variable: 

   
  
  

a
X

q






  
  
  

 (24) 

to incorporate the nodal velocity potential function {a(ξ)} and the nodal flow function 

{q(ξ)}. Consequently, Eq. (21) is rewritten as a first-order matrix-form ordinary 

differential equation: 

            
2

,
( )X Z X M X


        (25) 

with a newly-defined independent variable ka  , and the Hamiltonian matrix [Z] 

formulated by the coefficient matrices of Eq. (21) as : 

  

1 1
0 1 0

1 1
2 1 0 1 1 0

T

T

E E E
Z

E E E E E E

 

 

            
 

                          

 (26) 

Matrix [M] in Eq. (25) is related to the coefficient matrix [M
0
] as: 
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   02

0 01

0
M

Ma

 
  

    

 (27) 

Solving Eq. (25) involves a matrix decomposition of the Hamiltonian matrix [Z]. The 

Jordan’s decomposition is suggested by Li et al. (2006) and Song et al. (2010): 

      Z T T   (28) 

in which [T] is the invertible Jordan matrix; [Λ] is constructed by the eigenvalues in the 

form of: 

  
0 1

0 0

j

j





   
 
  

    
  

     

 (29) 

where j = 1, 2, …, n-1; n is the number of degrees of freedom in Eq. (21); Re(λj) ≥ 0. 

Through a series of matrix manipulations, the solution of Eq. (25) is sought as: 

       
   

 
U

X T R C   


 
 

 (30) 

with 

          
2 4 2

1 2

m

mR I R R R          
 

 (31) 
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and an upper-triangular matrix [U] with zero diagonal entries. Introducing  
 U

Y    
 

 

and      K T R    
   

 for brevity, Eq. (30) is partitioned as: 

   
   

   

   

 
 

 

11 12 11 12
1

2
21 22 22

*

00

j

j

K K Y Y C
X

CK K Y





   


  

 
 

  

                                                    

 (32) 

For a bounded domain, the solution at the scaling centre where 0ka   must be finite, 

resulting in {C2} = 0. Comparing Eq. (32) with Eq. (24) leads to: 

 
      

      

1

1

a A C

q Q C

 

 

 
 

 
 

 (33) 

with  

 
     

     

11 11

21 11

j

j

A K Y

Q K Y





   

   

 
 

 
 

     
     

     
     

 (34) 

Eliminating the constant vector {C1} from Eq. (33) yields the algebraic equation system, 

viz the nodal flow function -nodal velocity potential function relationship: 

        q H a   
 

 (35) 

with 



21 

 

          
1 1

21 11H Q A K K    
 

          
         

 (36) 

Eq. (35) is formulated individually for each bounded subdomain based on a local scaled 

boundary coordinate system. It is later assembled for the solution of the entire wave 

domain, following the same assemblage concept in FEM, which is discussed in Section 

3.1.3. 

3.1.2. Unbounded domain  

The unbounded domain can be represented by scaling the circular envelope towards 

infinity as depicted in Fig. 3 (b). The radial coordinate ξ equals 1 on the circular envelope 

and ∞ at infinity. Taking advantage of the geometric property of the circular envelope, Eq. 

(10) can be reformulated as:  

 
   

   

0

0

ˆ , cos

ˆ , sin

x s R s R x

y s R s R y

 

 

 

 
 (37) 

with R being the radius of the circular envelope. 

Accordingly, the following relationships for the coefficient matrices in Eq.(23) hold: 



22 

 

 

   

 

 

1
0

1

1

1
0 0 2

1
[ ] [ ]

0

TE N s N s ds
R

E I

E M R I





   

    

       



 (38) 

Eq. (21) is thus simplified as a matrix-form Bessel’s differential equation: 

        
12 2

0 2

, ,
( ) ( ) ( ) ( ) 0a a E E a a

 
      



           (39) 

by redefining   for the unbounded domain as: kR  . 

Combining the two linearly independent solutions of the Bessel’s differential equation, 

i.e. the Bessel functions of the first kind and the Bessel functions of the second kind, the 

Hankel functions of the first kind are chosen as the base functions to formulate the series 

solution of Eq. (39): 

    
1

( )
j

m

j r j

j

a c H T 


  (40) 

where Tj are the eigenvectors of [E
0
]

-1
[E

2
] resulting from an eigenvalue problem: 

   1
0 2 2 0j jE E r I T



          (41) 

formulated by substituting Eq. (40) into Eq. (39); rj
2
 are the corresponding eigenvalues. 

Hence, the boundary condition at infinity Eq. (20), i.e. the Sommerfeld radiation 
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condition Eq. (6) is satisfied automatically. 

Similar to Eq. (35) for the bounded domains, the nodal flow function-nodal velocity 

potential function relationship for the unbounded domain is formulated by substituting Eq. 

(40) into Eq. (22), and noticing that [E
1
] = 0·[I]: 

        0 0 '

,
1

j

m

j r j

j

q E a E c H T


    


          (42) 

Using Eq. (40) again, Eq. (42) is rewritten as: 

       ( )S Sq H a     
 

 (43) 

where, 

      
10

bhH E T H T 
      

 (44) 

with 
   1 2 mT T T T

 

 and 
             

1 1 2 2

' ' '

m mbh r r r r r rH diag H H H H H H      
  . 

It should be made clear that the Sommerfeld radiation condition is only associated with 

the scattered waves. Therefore, a subscript ‘s’ is introduced in Eq. (43) to signify that the 

nodal flow function and the nodal velocity potential function are in terms of the scattered 
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waves only. A superscript ‘’ is used for the unbounded domain. 

3.1.3. Wave domain solution 

As indicated in Sections 3.1.1 and 3.1.2, each subdomain (bounded or unbounded) has an 

individual SBFEM formulation associated with a particular scaled boundary coordinate 

system. These formulations are independent, and are only effective for their own-defined 

domain. To solve the entire wave field, these formulations need to be assembled 

according to the relationships in terms of the nodal variables at the discretised interfaces 

between adjacent subdomains. These nodal values are then solved from the assembled 

equation subject to boundary conditions and the incident wave information. Subsequently, 

they are extracted back into each subdomain to calculate the integral constants ({C1} in 

Eq. (33) for bounded domains and cj in Eq. (40) for the unbounded domain). Afterwards, 

analytical nodal functions are formulated according to Eq. (33) for bounded domains or 

Eq. (40) for the unbounded domain. Finally, the solution of the entire wave domain can 

be obtained by specifying the scaled boundary coordinates  and s. The subdomain 

assemblage process and the solution procedure are detailed as follows. 

Eq. (35) is formulated on the discretised boundary for bounded subdomains Si (i = 1, 

2, …, 7) as: 
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    b b bq H a     (45) 

and then is assembled for the entire bounded subdomain Sb according to the conditions 

that the velocity potentials ( T , I  and S ) are continuous (Eq. (46)) at the subdomain 

interfaces Γintf (refer to Fig. 2); the flows (qT, qI and qS), however, hold the same 

magnitude but opposite signs (Eq. (47)).  

 
adj   on Γintf (46) 

 
adjq q   on Γintf (47) 

  and q with superscript ‘adj’ refer to the velocity potential and the flow from an 

adjacent subdomain. Expressing the total nodal flow and the total nodal velocity potential 

by the sum of corresponding incident and scattered components, the assembled nodal 

flow-nodal velocity potential relationship for the entire bounded domain Sb is written as: 

         b b b b b

I S I Sq q H a a      (48) 

In the subsequent assemblage of Sb and S∞, the equalities on the auxiliary circular 

envelope Γauxi are addressed. Again, the velocity potentials ( T , I  and S ) on Γauxi are 

continuous (Eq. (49)), and the flows (qT, qI and qS) are equal in magnitude but opposite in 

sign (Eq. (50)).  
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adj    on Γauxi (49) 

 
adjq q    on Γauxi (50) 

As the outward normal directions of the bounded domain and the unbounded domain on 

the auxiliary circular envelope are opposite to each other, Eq. (43) is reformulated in 

conformity with Eq. (48) for assemblage purposes as: 

    =-S SH a q      (51) 

and is subsequently added by  IH a     to both sides, which leads to: 

      =-T S IH a q H a            (52) 

By rearranging Eq. (48) as: 

        = =- -b b

T T S IH a q q q      (53) 

and combining Eqs. (52) and (53), noticing    = b

T Ta a , yields: 

       =-b

T I IH H a q H a               (54) 

Eq. (54) represents the assembled nodal flow -nodal velocity potential relationship for the 

entire wave domain discretisation. The right-hand side of Eq. (54) is in terms of the 
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incident wave information, which enables the total velocity potential  b

Ta  (   = b

T Ta a ) of 

all discretised nodes to be obtained by simply solving a linear algebraic equation. Once 

the nodal total velocity potential  b

Ta  for the entire discretisaion is solved, they are 

extracted for each individual subdomain according to the degrees of freedom involved. 

For each bounded subdomain Si (i = 1, 2, …, 7), the constant vector {C1} in Eq. (33) is 

first determined according to the nodal value on the discretised boundary. Subsequently, 

  a   is calculated for any specific  (ranging from 0 to 1), and   , s   within the 

subdomain can be obtained by specifying the circumferential coordinate s. For the 

unbounded domain outside the auxiliary circular envelope, as the series expression in Eq. 

(40) is only associated with the scattered waves, the nodal scattered velocity potential is 

extracted first by subtracting the incident component from the total nodal velocity 

potential. Afterwards, the constant cj in Eq. (40) is gained and the total velocity potential 

for the unbounded domain is solved by adding the incident component to the scattered 

counterpart at any  (ranging from 1 to ) and s. Subsequently, other derivative physical 

quantities, such as the free surface elevation ηθ and the dynamic wave pressure p acting 

upon pile foundations can be computed as: 

 
i

g



   (55) 

 p   Φ,t (56) 
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3.2. Structural formulation 

Piles normally have a rather large aspect ratio of height to radius. It is common to divide 

the entire pile into subdomains with relatively well-proportioned length in all dimensions 

(Fig. 4 (a)). Similar to that introduced in Section 3.1, a local three-dimensional scaled 

boundary coordinate system is introduced in each subdomain as shown in Fig. 4 (b). It is 

constituted by a scaling centre O(x0, y0, z0), a radial coordinate ξ ranging from ξ0 = 0 at O 

to ξ1 = 1 at the subdomain boundary Γ, and two coordinates η, ζ relying on the 

circumferential directions with their values varying over an interval of [-1, 1] for each 

discretised element on Γ. The scaled boundary transformation equation is therefore 

formulated as: 

 

    

    

    

0

0

0

ˆ , , ( , )

ˆ , , ( , )

ˆ , , ( , )

x N x x

y N y y

z N z z

     

     

     

 

 

 

 (57) 

where {x}, {y} and {z} represent the coordinates of the discretised nodes on the 

subdomain surface. Eq. (57) describes the transformation from the Cartesian coordinate 

to the scaled boundary coordinate system with the mapping function [N(η, ζ)]. With this 

geometric mapping, the differential operator [L] is reformulated in the scaled boundary 

coordinate system using ξ, η and ζ as: 
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      1 2 31
[ ] , ( , , )L b b b     

   

  
              

 (58) 

in which, [b
1
(η, ζ)], [b

2
(η, ζ)] and [b

3
(η, ζ)] only depend on the boundary discretisation, 

and are independent of the radial coordinate ξ. 

Using the same shape function [N(η, ζ)] as for the boundary discretisation, the 

displacement amplitude is expressed as: 

 { ( , , )} [ ( , )]{ ( )}u N u       (59) 

where {u(ξ)} represents the displacement variation with the radial coordinate ξ. The 

stress and strain fields can be calculated as: 

 

   

   

1 2

,

1 2

,

1
{ } { ( , , )} , { ( )} , { ( )}

1
{ } { ( , , )} [ ] , { ( )} , { ( )}

B u B u

D B u B u





          


          


        

 
         
 

 (60) 

in which [B
1
(η, ζ)] and [B

2
(η, ζ)] are formulated as: 

 

1 1

2 2 3

, ,

[ ( , )] [ ( , )][ ( , )]

[ ( , )] [ ( , )][ ( , )] [ ( , )][ ( , )]

B b N

B b N b N 

     

         



 
 (61) 

Applying the weighted residual technique and Green's theorem, and through a series of 

manipulations, the governing PDEs (7)-(9) are transformed into the second-order matrix-

form Euler-Cauchy ODEs with respect to the nodal displacement function {u(ξ)}: 
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    0 2 0 1 1 1 2

, ,[ ] { ( )} 2[ ] [ ] [ ] { ( )} [ ] [ ] { ( )} 0T TE u E E E u E E u            (62) 

Eq. (62) is the scaled boundary finite element equation for structural behaviour analysis 

of the pile foundation. In Eq.(62), only the radial coordinate ξ appears. The other two 

coordinates η and ζ are incorporated in the coefficient matrices in the form of: 

 

     

     

     

1 1
0 1 1

1 1

1 1
1 2 1

1 1

1 1
2 2 2

1 1

[ , ] [ ][ , ] ,

[ , ] [ ][ , ] ,

[ , ] [ ][ , ] ,

T

T

T

E B D B J d d

E B D B J d d

E B D B J d d

       

       

       

 

 

 

   

   

   

 

 

 

 (63) 

where [D] is the elastic matrix representing the physical property of the pile foundation. 

The three matrices [E
0
], [E

1
] and [E

2
] in Eq.(63) are first formulated for each individual 

element discretised on Г and then assembled in the same way as in FEM. 

To solve the scaled boundary finite element Eq.(62), a new variable 

   
  
  

0.5

0.5

u
X

Q

 


 





  
  
  

 (64) 

is introduced to incorporate the nodal displacement function {u(ξ)} and the nodal force 

function{Q(ξ)}, which is expressed as: 

         0 2 1

,

T

Q E u E u


             (65) 
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By introducing {X(ξ)} and employing a Hamiltonian matrix [Z], which is formulated by 

the coefficient matrices of Eq.(62) and the identity matrix [I] as: 

  
 

 

1 1
0 1 0

1 1
2 1 0 1 1 0

0.5

0.5

T

T

E E I E
Z

E E E E E E I

 

 

             
 

                           

 (66) 

the number of degrees of freedom of the problem is doubled, however, the order of the 

matrix-form ODE (62) is reduced from two to one, as can be examined from the resulting 

homogeneous linear ODE (67): 

        
,

0X Z X


     (67) 

The Schur decomposition has been proven to be a qualified and efficient method to solve 

Eq. (67). Following the solution procedure presented in Song (2004) and Li et al.(2010a) , 

The Schur decomposition of the Hamiltonian matrix [Z] can be expressed as: 

      
   
   

 
11 12

21 22 0

n

p

SV V
Z V V S

V V S

  
    

      

 (68) 

where [V]  is an orthogonal matrix, [S] is a block upper triangular matrix with 1-by-1 and 

2-by-2 blocks on the diagonal and ∗ stands for a real matrix. The solution of Eq. (67) is 

thus expressed as: 
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   
   
   

   

 
11 12 1

21 22 2

n

p

S

S

V V C
X

V V C








  

     
    
       

 (69) 

where {C1} and {C2} are integral constants. 

Comparing Eq. (69) with Eq. (64), and considering the fact that the solution at the scaling 

centre where ξ0 = 0 must be finite due to the bounded nature of the structural behaviour, 

yield: 

 
       

       

0.5

11 1

0.5

21 1

n

n

S

S

u V C

Q V C

  

  








 (70) 

Eliminating the integral constant {C1} from Eq. (70) and setting ξ = 1, lead to the nodal 

force-nodal displacement relationship on the discretised boundary:  

       R Q K u   (71) 

with the static stiffness matrix [K] written as: 

     
1

21 11K V V


  (72) 

Eq. (71) is formulated for each subdomain, and then assembled for the entire 

discretisation. The nodal displacement {u} is solved from the assembled equation by 

enforcing prescribed boundary conditions, and is subsequently extracted back into each 
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subdomain to obtain the domain solutions by specifying ξ, η and ζ in Eqs. (59) and (60). 

3.3. Integrated SBFEM model 

The SBFEM formulation and solution procedure are outlined in Sections 3.1 for the wave 

field behaviour and Section 3.2 for the pile foundation response, respectively. The wave 

field behaviour is solved first in the presence of pile foundations so that wave-induced 

forces can be applied for the subsequent structural behaviour investigation. As discussed, 

the SBFEM formulation of the wave field corresponds to the two-dimensional Helmholtz 

equation at the free surface level, whereas that of the pile foundations is addressed in 

three dimensions. Therefore, the wave field solutions need to be reinterpreted into three 

dimensions in order to be applicable to the structural response investigations. Referring 

back to the transformation from Eq. (1) to Eq. (4), it is consequently reasonable to 

combine the analytical expression Eq. (3) with the SBFEM solution to gain the three-

dimensional wave field solution.  

During the numerical implementation, conformity is required between the discretisation 

on Γp (see Fig. 2) for the wave field analysis and on pile circumferences for structural 

analysis. Therefore, the physical quantities calculated from the two-dimensional mesh on 

Γp (denoted by  in Fig. 2) are matched correspondingly onto the three-dimensional pile 

mesh (Fig. 4(b)) according to the nodal x and y coordinates. Eq. (3) is programmed into 
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the two-dimensional SBFEM solution of the wave domain based on the nodal z 

coordinates to restore the analytical variation of the wave field solution in the z direction. 

Upon formulation into three dimensions, the wave field solution can then be applied to 

the subsequent structural behaviour investigations. A flowchart, illustrating the whole 

procedure from solving the wave field to analysing the structural behaviour, is shown in 

Fig. 5. Its feasibility and performance are demonstrated by the subsequent validation 

process.  

It should be made clear that although the SBFEM model is formulated using a group of 

three cylindrical piles as an illustration, it is capable of addressing wave interaction with 

structures in a more general sense regardless of the attributes associated with the 

structures, such as the geometric configuration or the quantity and the spatial layout when 

multiple structures are involved. The proposed model can always be utilised following 

the procedure detailed in Sections 3. Separating the entire infinite wave domain into one 

unbounded domain and one bounded domain, the auxiliary circular envelope is 

recommended to be large enough to enclose all the structures. The unbounded domain 

outside the circular envelope is addressed in terms of the scattered wave field. The 

bounded domain, in which a further division into several subdomains should be 

considered, is formulated with respect to the total wave field. The subdivision of the 
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bounded domain Sb behaves such that the scaling centre of each subdomain can be 

efficiently defined to make any position on the subdomain boundary visible from it. In 

this study, the subdomain division follows a well-balanced pattern rather than a 

completely arbitrary one, thereby each subdomain holding relatively even distances 

between the scaling centre and the domain boundary. The scaling centre of the 

unbounded domain is positioned at the centre of the circular envelope. These can be 

easily implemented in the pre-process to improve the efficiency of the SBFEM model. 

4. MODEL VERIFICATION 

In this validation process, the interaction of plane waves with a single pile foundation is 

examined. The velocity potential of incident plane waves is expressed as (Mei, 1989): 

 Φ    x yi k x k y t

I

igA
Z z e





 
   (73) 

In Eq. (73),  represents the angular frequency of the incident plane waves; . 

Other relevant parameters are listed in Table 1. 

For ease of subsequent discussions, the orientation specifications of two variables, the 

incident wave angle α and the azimuth angle θ around the pile circumference are defined 

as shown in Fig. 6. 

1i  
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A two-dimensional SBFEM wave model is established as shown in Fig. 7 (a). A radius R 

twice that of the pile radius a is chosen for the auxiliary circular envelope. The bounded 

domain within the envelope, i.e. the annulus, is further divided into four subdomains, 

each having a scaling centre located at the geometric centre of the subdomain. All solid 

lines in Fig. 7 (a) are discretised using three-node quadratic elements as displayed in Fig. 

7 (b). 

The normalised free surface elevation |ηθ|/A, defined as the ratio of the free surface 

elevation |ηθ| to the wave amplitude A, is calculated under the prescribed wave conditions 

and compared with the analytical solution (Zhu, 1993) in Fig. 8 for a finite region and in 

Fig. 9 around the pile circumference, respectively. The two figures demonstrate excellent 

performance of the wave field solution. 

Subsequently, a three-dimensional model of the pile foundation is prepared for the 

structural behaviour analysis. Five subdomains with well-proportioned geometric 

dimensions are designed with the scaling centre of each subdomain coincident with the 

geometric centre. The surface of the pile, as well as the interfaces between adjacent 

subdomains is discretised using eight-node quadratic quadrilateral elements. In order for 

the nodal physical quantities from the wave field solution to be matched onto the pile 

model, a consistent discretisation scheme along the pile circumference between the two 
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models is required. Following the procedure outlined in Section 3.2, the displacement 

components in the x, y and z directions of the pile foundation are calculated, and those 

along the pile height at  = 0 are plotted in Fig. 10.  

For validation purposes, the displacement components are denoted by the suffix ‘-

Numerical’ and compared in Fig. 10 with those calculated from the explicit wave 

pressure expression (Zhu, 1993), which is denoted by the suffix ‘-Analytical’. Note that 

in both cases, the wave pressure is evaluated up to the free surface elevation by stretching 

the coordinate z according to Wheeler’s method (1969). Satisfactory agreement is 

achieved between the two results. Fig. 8-Fig. 10 demonstrate the credibility of the 

proposed model in solving wave-structure interaction problems. This model will be 

employed in the subsequent investigation of wave interaction with pile group foundations, 

which will be discussed in Part II of this study (Li et al., 2012). 

5. CONCLUSIONS 

This study employs SBFEM to investigate the integration of two contemporary debatable 

issues within the context of ocean engineering: the wave field behaviour in the presence 

of structures and the corresponding structural response when subject to resultant wave 

forces. Part I of this study, i.e. this paper, mainly deals with the physical and 

mathematical formulations. Prior to the SBFEM formulation of the wave field, the 
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Laplace equation governing the entire wave field is processed into the Helmholtz 

equation by separating the vertical-direction component from the velocity potential 

expression. This leads to a two-dimensional SBFEM investigation of the wave field at the 

free surface level. Well-planned subdomain division of the two-dimensional wave 

domain into one unbounded and several bounded subdomains is required so that: (1) the 

Sommerfeld radiation condition at infinity can be precisely satisfied by employing the 

Hankel function in the formulation of the unbounded domain; (2) irregular geometric 

configuration or complex spatial arrangement of piles can be easily dealt with. Upon 

assemblage, the wave domain is solved after the boundary conditions are enforced.  

To incorporate the wave field results into the structural analysis, conformity of the 

discrestisation scheme along the pile circumference is required when constructing the 

SBFEM model. The wave field results are re-interpreted into three dimensions by 

programming the analytical attenuation function in the z direction into the two-

dimensional results. The proposed model is verified using wave interaction with one 

single pile with satisfactory performance: (1) accurately captures the boundary condition 

at infinity for the unbounded wave domain; (2) effectively addresses the wave-pile group 

interaction problem in three dimensions however with released computational burden; (3) 

successfully incorporates a scalar field in which the wave field behaviour is explored, and 
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a vector field where the structural response is investigated.  

The formulation of the present study intensively focuses on the wave-structure interaction, 

external loads from superstructures acting on the pile groups are not considered. For 

guiding engineering design when a specific project is involved, these loads need to be 

applied in the SBFEM model, following the same way as in other analyses. Another 

simplification is in relation to the boundary condition at the seabed level, where pile 

foundations are seated and their displacements are assumed zero. The relative motion 

between piles and the seabed are beyond the scope of the present study. These aspects 

will be taken into consideration in the future investigation of the wave-structure 

interaction. The application of the proposed model to wave interaction with pile groups, 

detailing the wave field behaviour and the pile group responses, is presented as Part II of 

the three-dimensional investigation of wave-pile group interaction using SBFEM (Li et 

al., 2012). 
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Table 1. Relevant parametric information of the validation example 

Parameters Notations Magnitudes Units 

Pile parameters 

Pile radius a 1 m 

Pile height h 10 m 

Young’s 

modulus 
E 2.8×10

10
 Pa 

Possion’s ratio ν 0.25 - 

Wave parameters 

Water depth d 7.5 m 

Incident wave 

angle 
α 0 rad 

Wave number k 0.1 m
-1

 

Water density ρ 1000 kg/m
3
 

Wave amplitude A 0.5 m 

Gravitational acceleration g 9.81 m/s
2
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Fig. 1. Illustration of a pile group foundation in ocean environment 

 

Fig. 2. Illustration of SBFEM subdomain division  
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(a) (b) 

Fig. 3. Illustration of the scaled boundary coordinate system: (a) bounded domain and (b) 

unbounded domain 

 

 

(a) (b) 

Fig. 4. SBFEM model of a pile foundation: (a) subdomain division and (b) boundary 

discretisation 
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Fig. 5. Integration of wave field solution and structure behaviour analysis 
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Fig. 6. Reference systems of: (a) the incident wave angle α and (b) the azimuth angle θ 

around pile circumference 
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(a) (b) 

Fig. 7. Two-dimensional SBFEM model for wave domain solution: (a) subdomain 

division and (b) scaled boundary element 

  

 

 (a) (b) 

Fig. 8. |ηθ|/A of a finite region of the wave field for plane waves (k = 0.10 m
-1

 and α = 0) 

interaction with a cylindrical pile from (a) analytical expression and (b) numerical 

calculation 
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Fig. 9. Comparison of normalised free surface elevation |ηθ|/A around pile circumference  

 

Fig. 10. Displacement comparison of the validation example 


