Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1RS,2SR,6SR,8SR)-2,6-Dimethyl-8-(phenyl-sulfonyl)bicyclo[4.2.0]octan-1-ol

Wendy A. Loughlin, Michelle A. McCleary and Peter C. Healy*

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@griffith.edu.au

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.131$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$, exhibits a conformational arrangement that permits intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}-\mathrm{S}$ hydrogen bonds. Intermolecular bifurcated hydorgen bonding between the hydroxyl H and the sulfone O atoms, observed in the unmethylated derivative, is disrupted by the presence of the methyl group at the 6-position.

Comment

We have recently shown that a novel cyclization reaction between the lithium enolates of simple unfunctionalized ketones and phenyl vinyl sulfoxide provides a simple and convenient route to the preparation of fused carbocyclic ring systems bearing a bridgehead hydroxyl group (Loughlin \& McCleary, 2003; Loughlin, Rowen \& Healy, 2002). In the current study, reaction of the lithium enolate of $2,6-\mathrm{di}$ -methylcyclohexan-1-one (obtained from lithium diisopropylamide, LDA) with phenyl vinyl sulfoxide and subsequent oxidation with m-chloroperoxybenzoic acid (m-CPBA) generated a novel dimethylbicyclo[4.2.0]octan-1-ol, (I).

Received 4 June 2004 Accepted 7 June 2004 Online 12 June 2004

A bicyclo[4.2.0]octan-1-ol with a methyl bridgehead substituent can be perceived as a key structural component of, for example, natural products such as melleolide K (Momose et al., 2000) and cyclobutatusin (Zelnik et al., 1977; Wang et al., 1974) and as a synthetic intermediate in natural product synthesis (Morisaki et al., 1985, Ayer et al., 1981). Under the present unoptimized reaction conditions, (I) was formed as the major bicyclo[4.2.0]octan-1-ol isomer in a 22:78 ratio of (I):(II) (Loughlin, McCleary \& Healy, 2002) and (III) from 2,6-di-methylcyclohexan-1-one and phenyl vinyl sulfoxide with less than 5 percent of other products observed (see Scheme). Here we report the synthesis, isolation and solid-state structural characterization of the novel bicyclo[4.2.0]octan-1-ol (I), Fig. 1. The $\mathrm{S}-\mathrm{O} 2$ and $\mathrm{S}-\mathrm{O} 3$ bonds are directed away from the bicyclo[4.2.0]alkan-1-ol ring, whereas the phenyl group is oriented towards this ring. Intramolecular hydrogen-bonding

Figure 1
ORTEP-3 (Farrugia, 1997) plot, showing the atomic numbering scheme for the molecule of (I). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
interactions are observed between the hydroxyl H atom and the sulfone O atom O 2 , with an $\mathrm{O} 1 \cdots \mathrm{O} 2$ distance of 2.765 (3) \AA and an estimated $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 153°. The six-membered ring displays a pseudo-chair conformation. In the previously reported 8 -(phenylsulfonyl)bicyclo[4.2.0]octan1 -ol, which lacks the 2,6-dimethyl groups of compound (I), the orientation of the six-membered ring allows intermolecular bifurcated hydrogen bonding between the hydroxyl H atom and the sulfone O atoms (Healy et al., 2002). However, in compound (I) the presence of the methyl group in the C6 position now disrupts this and intermolecular hydrogen bonding is not observed in the solid-state structure of (I).

Experimental

2,6-Dimethylcyclohexanone ($0.55 \mathrm{ml}, 3.96 \mathrm{mmole}$), lithium diisopropylamide ($1.55 M, 2.56 \mathrm{ml}, 3.96 \mathrm{mmole}$) in THF, and phenyl vinyl sulfoxide ($0.55 \mathrm{ml}, 3.96 \mathrm{mmol}$) were reacted at 263 K with a 5 min reaction time, worked up and subsequently oxidized with m-CPBA (1 equiv) in chloroform (50 ml) as described elsewhere (Loughlin, Rowen \& Healy, 2002). After silica chromatography (hexane:ethyl acetate, 80:20), compound (I) was obtained ($197 \mathrm{mg}, 17 \%$) in conjunction with monoalkylated 2,6-dimethylcyclohexanone, compounds (II) and (III) ($577 \mathrm{mg}, 53 \%$) and other minor products (3\%). An analytically pure sample of compound (I) was obtained by semi-preparative HPLC (hexane-ethyl acetate, 90:10, retention time $17.4 \mathrm{~min}, 3 \mathrm{ml} \mathrm{min}{ }^{-1}$). Colourless crystals of compound (I) (m.p. 381.5-382.1 K) were isolated by slow evaporation of a hexane:ethyl acetate (90:10) solution of (I). Analysis found: C 65.34 , H 7.64, O 16.36%; calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{SO}_{3}$: C 65.27, H 7.53, O 16.30%.

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=294.41$
Monoclinic, $P 2_{\mathrm{A}} / c$
$a=11.340$ (3) \AA
$b=18.026$ (6) \AA
$c=7.8442(16) \AA$
$\beta=106.788$ (18) ${ }^{\circ}$
$V=1535.1$ (7) A^{3}
$Z=4$
$D_{x}=1.274 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 25
reflections
$\theta=12.6-17.4^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, colourless $0.40 \times 0.35 \times 0.20 \mathrm{~mm}$
Data collection
Rigaku AFC-7R diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
4336 measured reflections
3518 independent reflections
1904 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 14$
$k=-23 \rightarrow 10$
$l=-10 \rightarrow 9$
3 standard reflections every 150 reflections intensity decay: 0.8%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
3518 reflections
182 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

S1-O2	$1.445(2)$	S1-C9	$1.768(3)$
S1-O3	$1.432(3)$	O1-C1	$1.425(3)$
S1-C8	$1.770(2)$		
O2-S1-O3	$118.11(14)$	O1-C1-C8	$112.01(18)$
O2-S1-C8	$108.50(12)$	O1-C1-C2	$108.1(2)$
O2-S1-C9	$107.31(12)$	S1-C8-C1	$121.69(16)$
O3-S1-C8	$110.16(13)$	S1-C8-C7	$117.36(18)$
O3-S1-C9	$108.45(13)$	S1-C9-C10	$119.7(2)$
C8-S1-C9	$103.25(11)$	S1-C9-C14	$118.67(19)$
O1-C1-C6	$109.7(2)$		

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95, \mathrm{O}-\mathrm{H}=$ $0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: MSC/AFC-7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON.

The authors thank Griffith University and the Australian Research Council for financial assistance.

References

Ayer, W. A., Saeedi-Ghomi, M. H., Van Engen, D., Tagle, B. \& Clardy, J. (1981). Tetrahedron Suppl. pp. 379-385.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Healy, P. C., Loughlin, W. A., McCleary, M. A., Pierens, G. K. \& Rowen, C. C. (2002). J. Phys. Org. Chem. 15, 733-741.

Loughlin, W. A. \& McCleary, M. A. (2003). Org. Biomol. Chem. 1, 1347-1353.
Loughlin, W. A., McCleary, M. A. \& Healy, P. C. (2002). Acta Cryst. E58, o1280-o1282.

organic papers

Loughlin, W. A., Rowen, C. C. \& Healy, P. C. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 296-302.
Molecular Structure Corporation (1997-2001). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Momose, I., Sekizawa, R., Hosokawa, N., Iinuma, H., Matsui, S., Nakamura, H., Naganawa, H., Hamada, M. \& Takeuchi, T. (2000). J. Antibiotics, 53, 137-143.

Morisaki, N., Furukawa, J., Kobayashi, H., Iwasaki, S., Itai, A., Nozoe, S. \& Okuda, S. (1985). Chem. Pharm. Bull. 33, 2783-2791.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.
Wang, A. H. J., Paul, I. C., Zelnik, R., Lavie, D. \& Levy, E. C. (1974). J. Am. Chem. Soc. 96, 580-581.
Zelnik, R., Lavie, D., Levy, E. C., Wang, A. H. J. \& Paul, I. C. (1977). Tetrahedron, 33, 1457-1467.

[^0]: (C) 2004 International Union of Crystallography

