
A methodology for plan revision
under norm and outcome compliance

Simone Scannapieco•∗†, Guido Governatori•∗,
Francesco Olivieri•∗†, and Matteo Cristani†

†Department of Computer Science, University of Verona, Italy
•NICTA, Queensland Research Laboratory, Australia?

∗Institute for Integrated and Intelligent Systems, Griffith University, Australia

Abstract. Scholars understand an agent as a system acting in an environment.
Such an environment is usually governed by norms, and the agent has to obey
to such norms when pursuing her objectives. We report a non-monotonic modal
logic able to describe the environment, the norms, and the agent’s capabilities as
well as her mental attitudes (e.g., desires, intentions). First, we show how such a
logic is expressive enough to determine when the agent is compliant with respect
to norms and objectives by extending it with a formal characterisation of the
concepts of norm and outcome compliance. Then, in the case the agent violates
some norms or does not achieve all her objectives, we propose a preliminary
analysis of methodologies to revise the theory and restore compliance.

Keywords: Norm compliance, goal compliance, Defeasible Logic, business pro-
cess, logic-based revision

1 Introduction

An agent is a system which operates in the environment where she is embedded driven
by a set of objectives. Typically, an agent is equipped with a library of plans and, based
on her mental attitudes, she deliberates on the course of action to adopt to achieve her
objectives [1].

We depart from the standard architecture proposed in [2,3,4] where an agent selects
a plan from her plan library and instead we assume that the agent generates alternative
plans to reach a particular set of objectives in the form of a business process (work-
flows), derived from the declarative specifications of the agent’s knowledge base. This is
in line with the classical definition of business process as the set of all the possible ways
in which it can be executed, i.e., the set of its execution traces [5]. In turn, the notion of
trace is compatible with the classical AI definition of plan as a sequence of actions that
are triggered by pre-conditions and that generate some effects (post-conditions) [6].

The constraints imposed by the environment play an important role in choosing the
most suitable plan for a given circumstance. In fact, the environment is usually governed

? NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy, the Australian Research Council through the
ICT Centre of Excellence program and the Queensland Government.

by a set of rules describing the “right way” of behaving, which are expressed in various
forms (e.g., guidelines, norms, laws, regulations).

In this perspective, it is possible to consider scenarios where an agent is not able to
achieve all her objectives without violating the norms. That is to say, there is no possible
way for the process to be executed without either violating the norms, or achieving some
objectives. In other words, the whole business process is not compliant [7,8].

Consider the following example. Robbie the Robot is downtown to deliver some
mail for its boss, Carmen. It is just done with the task and thinking to get a (well-
deserved) ice-cold oil-beer, when Carmen calls him: the meeting she was supposed to
attend at 3pm has been anticipated and will start in one hour. Therefore, she tells him
to bring some food at her office since she will not be able to have lunch at her favourite
restaurant for lack of time. Moreover, Robbie cannot forget to pick up a suit for Carmen,
which is necessary for the presentation she will hold during the meeting.

Robbie’s internal system elaborates four plans. Plan A is to go to the dry-cleaner to
get Carmen’s favourite suit and then to a take-away, but to get all these things done in
time, it needs to drive beyond the speed limit, thus violating the traffic laws. Plan A1 is
not to stop at the dry-cleaner, while plan A2 is not to stop to get the food (not fulfilling
one objective in both cases). Instead, Plan B involves going to Carmen’s place to get
another suit and then stop at a fast-food close by (Carmen’s less favourite food). In this
way, there is no time for the ice-cold oil-beer. Thus, whatever plan Robbie decides to
adopt, either a violation of the norms occurs, or some of the objectives are not fulfilled.

The main aim of this paper is to start an analytical study on how to restore compli-
ance of a business process with respect to objectives and obligations. More specifically,
we search for a methodology to revise the knowledge base of the agent to obtain a new
plan which complies with the governing norms and meets her objectives.

To integrate the previous example, suppose Robbie has recently been equipped with
an (on-line) unit which can suggest alternative plans. Strangely enough, the unit informs
Robbie that there is a grocery store close to Carmen’s home. Just by downloading from
the server the task-programmes buy groceries and make a sandwich, Robbie may in-
deed buy all the necessary ingredients to prepare an healthy sandwich (which Carmen
prefers to a fast-food burger), get an oil-beer six-pack and return to Carmen’s office in
time without driving fast. With great delight, Robbie opts for this plan, happy and proud
of its new software.

To succeed in our endeavour, we start from the logic presented in [9] which is a
modal variant of Defeasible Logic (DL) [10]. The logic is inspired by the BDI (Belief-
Desire-Intention) architecture [2,3,4] and defines a framework to model rational agents,
based on three kind of knowledge:

(i) the internal constraints guiding the agent (i.e., her mental attitudes);
(ii) the external constraints she has to obey to (i.e., norms);

(iii) her vision of the world (i.e., her beliefs) along with the actions she is able to
perform in the form of rules; each action has its pre-conditions (inputs) and post-
conditions (effects).

Equipped with this knowledge, the agent is able to choose different courses of action
to reach the objectives she decides to achieve.

The paper is organised as follows. In Section 2, we first illustrate the logical for-
malism, and we end by discussing the notion of compliance with respect to norms and
objectives (Subsection 2.3). Section 3 gives an overview of existing formalisms and
suggests a methodology to address business process revision using the logical frame-
work proposed. We summarise and comment some future works in Section 4.

2 Logic

Despite the traditional treatment of internal constraints in the BDI architecture, the logic
proposed in [9] considers all mental attitudes (desires, goals, intentions, and social in-
tentions) as facets of the same concept of outcome, which is regarded as something the
agent would like to achieve. As a result, mental attitudes were modelled by using a
single type of rule, called outcome rule, whose nature is very similar to that of repara-
tive chains modelling the mechanism of norm violation/reparation [11]. Given the rule
r : Γ ⇒ o1⊗ o2⊗ ·· ·⊗ on, if the context described by Γ holds, then the obligation in
force is o1; in case o1 is violated then the new obligation in force is o2, and so on. Simi-
larly, we use the same rationale to model an agent which ranks alternative outcomes by
a preference ordering. Using only one type of rule to derive all agent’s mental attitudes
reflects a natural way to express alternatives to more preferred outcomes. The agent
then deploys her knowledge of the environment to filter out the actual objectives she
will commit to from all her preferences. For instance, consider the following setting.
Alice, during her holidays, plans to pay a visit to her friend John, who lives close to her
parents. A possible plan for Alice is described by the following modal outcome rule,
where the notation⇒U denotes the fact that rule s is used to derive oUtcomes.

s : holiday⇒U visit John� visit parents� stay home

The intended meaning is “I shall come over to John’s place to visit him, but if it is not
possible (for instance, if he is not home), I am going to visit my parents. If this is not
possible as well, I shall take some rest at home”.

Four different types of mental attitudes were identified: desires, goals, intentions,
and social intentions, whose meaning is the following.
Desires as acceptable outcomes. Consider an agent equipped with the outcome rules

r : a1, . . . ,an⇒U b1�·· ·�bm s : a′1, . . . ,a
′
n⇒U b′1�·· ·�b′k

and that the situation described by a1, . . . ,an and a′1, . . . ,a
′
n are mutually compatible

but b1 and b′1 are not, namely b1 = ¬b′1. In this case b1, . . . ,bm,b′1, . . . ,b
′
k are anyway

all acceptable outcomes, including the incompatible outcomes b1 and b′1. Desires are
expected or acceptable outcomes, independently of whether they are compatible with
other expected or acceptable outcomes.
Goals as preferred outcomes. For rule r alone the preferred outcome is b1, and for rule s
alone it is b′1. But if both rules are applicable, then the agent would not be rational if she
considers both b1 and ¬b1 as her preferred outcomes. Hence, the agent has to decide if
she prefers a state where b1 holds to one where b′1 (i.e., ¬b1) holds, or the other way
around. If the agent has no way to decide which is the most suitable option for her, then

neither the chain of r nor that of s can produce preferred outcomes. Suppose that the
agent opts for b′1; this can be done if she establishes that the second rule overrides the
first one, i.e., s > r. Accordingly, the preferred outcome is b′1 for the chain of outcomes
defined by s, and b2 is the preferred outcome of r. b2 is the second best alternative
according to rule r: in fact b1 has been discarded as an acceptable outcome given that s
prevails over r.
Two degrees of commitment: intentions and social intentions. We now clarify which are
the outcomes for an agent to commit to. Naturally, if the agent values some outcomes
more than others, she should strive for the best, i.e., for the most preferred outcomes.

We first consider the case where only rule r applies. Here, the agent should commit
to the outcome she values the most, i.e., b1. But what if the agent believes that b1 cannot
be achieved in the environment, or she knows that ¬b1 holds? Committing to b1 would
result in a waste of agent’s resources; rationally, she should target the next best outcome,
in this case b2. Accordingly, the agent derives b2 as her intention. Suppose, now, that b2
is forbidden, and the agent is social (an agent is social if the agent would not knowingly
commit to anything that is forbidden [12]). Once again, in this situation the agent has
to lower her expectation and settle for b3, which is considered her social intention.

To complete the analysis, consider the situation where both rules r and s apply and
the agent prefers s to r. As we have seen before, ¬b1 (b′1) and b2 are the preferred out-
comes since the agent stated s > r. Assume that, this time, the agent knows she cannot
achieve ¬b1 (or equivalently, b1 holds). If the agent is rational, she cannot commit to
¬b1. Thus, the best option for her is to commit to b′2 and b1 (both regarded as intentions
and social intentions), where she is guaranteed to be successful. In this scenario, the
best course of action for the agent is where she commits herself to some outcomes that
are not her preferred ones, or even that she would consider not acceptable based only
on her preferences, but such that they influence her decision process given that they
represent relevant external factors (either her beliefs or the norms that apply to her).

2.1 Language

Let PROP be a set of propositional atoms, MOD = {B,O,D,G, I,SI} the set of modal
operators, whose reading is B for belief, O for obligation, D for desire, G for goal,
I for intention and SI for social intention. Let Lab be a set of arbitrary labels. The
set Lit = PROP∪{¬p|p ∈ PROP} denotes the set of literals. The complementary of a
literal q is denoted by∼q; if q is a positive literal p, then∼q is ¬p, and if q is a negative
literal ¬p then ∼q is p. The set of modal literals is ModLit = {�l,¬�l|l ∈ Lit,� ∈
{O,D,G, I,SI}}. We assume that modal operator “�” for belief B is the empty modal
operator. Accordingly, a modal literal Bl is equivalent to literal l; the complementary of
B∼l and ¬Bl is l. We define a defeasible theory D as a structure (F,R,>), where

(i) F ⊆ Lit∪ModLit is a set of facts or indisputable statements;
(ii) R contains three sets of rules: for beliefs, obligations, and outcomes;

(iii) >⊆ R×R is a superiority relation to determine the relative strength of conflicting
rules.

Belief rules are used to relate the factual knowledge of an agent (her vision of the envi-
ronment), and defines the relationships between states of the world. As such, provability

for beliefs does not generate modal literals. Obligation rules determine when and which
obligations are in force. The conclusions generated by obligation rules are modalised
with obligation. Finally, outcome rules establish the possible outcomes of an agent de-
pending on the particular context. Apart from obligation rules, outcome rules are used
to derive conclusions for all modes denoting possible types of outcomes: desires, goals,
intentions, and social intentions.

Following ideas given in [11], rules can gain more expressiveness when a preference
operator � is used: an expression like a� b means that if a is possible, then a is the
first choice and b is the second one; if ¬a holds, then the first choice is not attainable
and b is the actual choice. This operator is used to build chains of preferences, called
�-expressions. The formation rules for �-expressions are: (i) every literal is an �-
expression; (ii) if A is an�-expression and b is a literal then A�b is an�-expression. In
this paper, we exploit the classical definition of defeasible rule in DL [10]. A defeasible
rule is an expression r : A(r)⇒� C(r), where

(i) r ∈ Lab is the name of the rule;
(ii) A(r) = {a1, . . . ,an} with ai ∈ Lit∪ModLit is the set of the premises (or the an-

tecedent) of the rule;
(iii) �∈ {B,O,U} represents the mode of the rule (from now on, we omit the subscript

B in rules for beliefs, i.e.,⇒ is used as a shortcut for⇒B);
(iv) C(r) is the consequent (or head) of the rule, which is a single literal if � = B, or

an �-expression otherwise. Notice that modal literals can occur only in the an-
tecedent of rules: the reason is that the rules are used to derive modal conclusions
and we do not conceptually need to iterate modalities. The motivation of a single
literal as a consequent for belief rules is dictated by the intended reading of the
belief rules, where these rules are used to describe the environment.

We use the following abbreviations on sets of rules: R� (R�[q]) denotes all rules of
mode � (with consequent q), and R[q] =

⋃
�∈{B,O,U}R�[q]. R[q, i] denotes the set of

rules whose head is �n
j=1c j and ci = q, with 1≤ i≤ n.

Notice that labelling the rules of DL produces nothing more but a simple treatment
of the modalities, thus two interaction strategies between modal operators are analysed.

Rule conversions and conflict-detection/resolution. It is sometimes meaningful to use
rules for a modality � as they were for another modality �, i.e., to convert one type of
conclusions into a different one. Formally, given rule r : a1, . . . ,an ⇒� b and the sit-
uation where �a1, . . . ,�an hold, the asymmetric binary relation Convert(�,�) permits
to derive �b. For instance, if statement A = “buy a car” implies statement B = “spend
money” and we have the intention to buy a car, then we may conclude that we also
have the intention to spend money (if A⇒ B and IA, then IB). In our framework, we
consider Convert(B,�) with � ∈MOD\{B}. Accordingly, we enrich the notation with
RB,�, denoting the set of belief rules that can be used for a conversion to mode �. The
antecedent of all such rules is not empty, and does not contain any modal literal.

Moreover, it is crucial to identify criteria for detecting and solving conflicts between
different modalities. Formally, we define an asymmetric binary relation Conflict ⊆
MOD×MOD such that Conflict(�,�) means ‘modes � and � are in conflict and mode
� prevails over �’. In our framework, we consider Conflict = {(B, I),(B,SI)} defining

the realistic attitude of the agents [13], and Conflict = {(O,SI)} defining the social at-
titude of the agents [12]. For instance, a social agent cannot have the social intention to
smoke in a public place where it is forbidden to smoke.

There are two applications of the superiority relation. The first considers rules of
the same mode. The latter compares two rules of different modes, with complementary
literals and the two modes are related by the Convert relation.

2.2 Inferential Mechanism

A proof P of length n is a finite sequence P(1), . . . ,P(n) of tagged literals of the type
+∂�q and −∂�q, where � ∈ MOD. As a conventional notation, P(1..i) denotes the
initial part of the sequence P of length i. Given a defeasible theory D, +∂�q means that
q is defeasibly provable in D with the mode �, and −∂�q that it has been proved in D
that q is not defeasibly provable in D with the mode �. From now on, the term refuted
is a synonym of not provable and we use D ` ±∂�l iff there is a proof P in D such that
P(n) =±∂�l for an index n.

To characterise the notions of provability for all modalities, it is essential to define
when a rule is applicable or discarded. To this end, the preliminary notion of when a
rule is body-applicable/body-discarded is needed, stating that each literal in the body
of the rule must be proved/refuted with the suitable mode.

Definition 1. Let P be a proof and � ∈ {O,D,G, I,SI}. A rule r ∈ R is body-applicable
(at step n+1) iff for all ai ∈ A(r):

1. if ai = �l then +∂�l ∈ P(1..n),
2. if ai = ¬�l then −∂�l ∈ P(1..n),
3. if ai = l ∈ Lit then +∂ l ∈ P(1..n).

A rule r ∈ R is body-discarded (at step n+1) iff there is ai ∈ A(r) such that

1. ai = �l and −∂�l ∈ P(1..n), or
2. ai = ¬�l and +∂�l ∈ P(1..n), or
3. ai = l ∈ Lit and −∂ l ∈ P(1..n).

As already stated, belief rules allow us to derive literals with different modes. The
applicability mechanism must take into account this constraint.

Definition 2. Let P be a proof. A rule r ∈ R is 1. Conv-applicable, 2. Conv-discarded
(at step n+1) for �, � ∈MOD\{B}, iff

1. r ∈ RB, A(r) , /0 and for all a ∈ A(r),+∂�a ∈ P(1..n);
2. r < RB or A(r) = /0 or ∃a ∈ A(r),−∂�a ∈ P(1..n).

As an example, consider theory D = ({a,b,Oc},{r1 : a⇒O b, r2 : b,c⇒ d}, /0).
Rule r1 is applicable, while r2 is not since c is not proved as a belief. Instead, r2 is
Conv-applicable for O, since Oc is a fact and r1 proves Ob.

The notion of applicability gives guidelines on how to consider the next element in
a given chain. Since a rule for belief cannot generate reparative chains but only single

literals, we can conclude that the applicability condition for belief collapses into body-
applicability. The same happens to desires, where we also consider the Convert relation.
For obligations, each element before the current one must be a violated obligation. A
literal is a candidate to be a goal only if none of the previous elements in the chain have
been proved as a goal. For intentions, the elements of the chain must pass the wishful
thinking filter, while social intentions are also constrained not to violate any norm.

Definition 3. Given a proof P, r ∈ R[q, i] is applicable (at index i and step n+1) for

1. B iff r ∈ RB and is body-applicable.
2. O iff either: (2.1) (2.1.1) r ∈ RO and is body-applicable,

(2.1.2) ∀ck ∈C(r), k < i,+∂Ock ∈ P(1..n) and −∂ck ∈ P(1..n), or
(2.2) r is Conv-applicable.

3. D iff either: (3.1) r ∈ RU and is body-applicable, or
(3.2) Conv-applicable.

4. � ∈ {G, I,SI} iff either: (4.1) (4.1.1) r ∈ RU and is body-applicable, and
(4.1.2) ∀ck ∈C(r), k < i, +∂�∼ck ∈ P(1..n) for some �
such that Conflict(�,�) and −∂�ck ∈ P(1..n), or

(4.2) r is Conv-applicable.
For G there are no conflicts; for I we have Conflict(B, I), and for SI we have
Conflict(B,SI) and Conflict(O,SI).

Conditions to establish that a rule is discarded correspond to the constructive failure to
prove that the same rule is applicable, and follow the principle of strong negation. The
strong negation principle is closely related to the function that simplifies a formula by
moving all negations to an inner most position in the resulting formula, and replaces
the positive tags with the respective negative tags, and the other way around [14].

We can now describe the proof conditions for the various modal operators; we start
with those for desires:
+∂D: If P(n+1) = +∂Dq then
(1) Dq ∈ F or
(2) (2.1) ¬Dq < F and

(2.2) ∃r ∈ R[q, i]: r is applicable for D and
(2.3) ∀s ∈ R[∼q, j] either (2.3.1) s is discarded for D, or (2.3.2) s ≯ r.

We say that a desire is each element in a chain of an outcome rule for which there
is no stronger argument for the opposite desire. The proof conditions for +∂�, with
� ∈MOD\{D} are as follows:

+∂�: If P(n+1) = +∂�q then
(1) �q ∈ F or
(2) (2.1) ¬�q < F for �= � or Convert(�,�) and

(2.2) ∃r ∈ R[q, i]: r is applicable for � and
(2.3) ∀s ∈ R�[∼q, j] either

(2.3.1) s is discarded for �, or
(2.3.2) ∃t ∈ R�[q,k]: t is applicable for � and either

(2.3.2.1) t > s if �= �, Convert(�,�), or Convert(�,�); or
(2.3.2.2) Conflict(�,�).

To show that a literal q is defeasibly provable with modality � we have two choices:
(1) modal literal �q is a fact; or (2) we need to argue using the defeasible part of D.
In this case, we require that a complementary literal (of the same modality, or of a
conflictual modality) does not appear in the set of facts (2.1), and that there must be an
applicable rule for q for mode � (2.2). Moreover, each possible attack brought by a rule
s for ∼q has to be either discarded (2.3.1), or successfully counterattacked by another
stronger rule t for q (2.3.2). We recall that the superiority relation combines rules of the
same mode, rules with different modes that produce complementary conclusion of the
same mode through conversion (both considered in clause (2.3.2.1)), and conflictual
modalities (clause 2.3.2.2). Obviously, if � = B, then the proof conditions reduce to
those of classical DL [10].

Again, the negative counterparts (−∂D and −∂�,� ∈MOD \ {D}) are derived by
strong negation applied to conditions for +∂D and +∂�, respectively.

Example 1. Let us consider the theory D= ({¬b1,O¬b2,SIb4},{r : ⇒U b1�b2�b3�
b4}, /0). Then r is trivially applicable for D and +∂Dbi holds, for 1 ≤ i ≤ 4. Moreover,
we have +∂Gb1 and r is discarded for G after b1. Since +∂¬b1, −∂Ib1 holds (as well
as −∂SIb1); the rule is applicable for I and b2, and we are able to prove +∂Ib2, thus
the rule becomes discarded for I after b2. Given that O¬b2 is a fact, r is discarded for
SI and b2 and −∂SIb2 is proved, which in turn makes the rule applicable for SI at b3,
proving +∂SIb3. As we have argued before, this would make the rule discarded for b4.
Nevertheless, b4 is still provable with mode SI (in this case because it is a fact, but in
other theories there could be more rules with b4 in their head).

In [9], authors showed the coherency and consistency of the logical apparatus.

2.3 Norm and Outcome Compliance

Our logic is able to model in a natural way the concepts of being compliant with respect
to norms and outcomes. Consider the obligation rule r : Γ ⇒O o1�o2�o3 in a theory
where Oo1 and Oo2 are the case. To be compliant with r, the agent has either to prove
Bo1, or to compensate by deriving Bo2.

To formalise the concept of compliance, we first introduce a new literal ⊥ whose
interpretation is a not compliant situation, and we provide proof conditions to (defea-
sibly) derive it. We exploit the modal derivations of ⊥ to formally characterise norm
compliant (−∂O⊥) and outcome compliant (−∂�⊥,� ∈ {G, I,SI}) situations.

−∂O⊥: If P(n+1) =−∂O⊥ then
(1) ∀r ∈ RO∪RB,O either r is discarded or either

(2.1) ∀ci ∈C(r), −∂Oci ∈ P(1..n), or
(2.2) ∃ci ∈C(r) such that +∂Oci ∈ P(1..n) and +∂ci ∈ P(1..n).

To be norm compliant, all applicable rules producing an obligation are such that
either all elements in the consequent are not actually active obligations (condition (2.1)),
or one element ci is an obligation in force and is fulfilled (condition (2.2)). The situation
is slightly different when addressing outcome compliance.

−∂�⊥: If P(n+1) =−∂�⊥ (� ∈ {G, I,SI}) then
(1) ∀r ∈ RU∪RB,�, Conflict(�,�), either r is discarded or
(2) (2.1) ∃ci ∈C(r) such that +∂�ci ∈ P(1..n), ∀c j ∈C(r), j < i,−∂�c j ∈ P(1..n), and

(2.2) ∃ck,k ≥ i such that
(2.2.1′) (2.1.1.1′) if k = i then +∂ck ∈ P(1..n), or

(2.1.1.2′) if k , i then +∂ck and +∂Dck ∈ P(1..n).
(2.2.1′′) +∂ck ∈ P(1..n) and −∂�∼ck ∈ P(1..n).

First, the agent chooses her level of commitment, that is the mode � among G, I, or
SI to comply with (notice that in some cases this process is not particularly meaningful,
e.g., desires). Then, we select the first element proved with modality � in the consequent
of any applicable rule (element ci in the proof condition (2.1)). We propose two variants
of outcome compliance corresponding to sub-conditions (2.2.1′) and (2.2.1′′).

In the first case, we are compliant iff either ci is proved as a belief (being the first
element in the chain proved with modality �), or if there exists a following element
ck which has been proved as a desire as well as a belief. In the latter, we are outcome
compliant with respect to r if an element ck following ci has been proved as a belief,
and its opposite has not been chosen as an outcome to achieve. It may be the case that,
semantically but not syntactically, if ¬�∼ck is the case then +∂Dck, but this is left to
further analysis.

Again, the counterparts +∂O⊥ and +∂�⊥,�∈ {G, I,SI} are derived by strong nega-
tion applied to conditions for −∂O⊥ and −∂�⊥, respectively.

Example 2. We now formalise the “Robbie the Robot” example to show how compli-
ance definitions work within our theoretical framework. For the sake of simplicity, we
take the stance that whenever the unit suggests Robbie a plan, all the actions to perform
are either derivable from the theory, or considered as additional facts.

F = { Robbie downtown, mail delivered, early meeting, lunch time},
R = { r1 : lunch time⇒U restaurant� take away� sandwich� f ast f ood,

r2 : Robbie downtown,mail delivered⇒U oil-beer,
r3 : Robbie downtown,dry cleaner, take away⇒ speed,
r4 :⇒O ¬speed, r5 : early meeting⇒U best suit�2nd suit,
r6 : take away⇒¬ f ast f ood, r7 : f ast f ood⇒¬take away,
r8 : best suit⇒ dry cleaner, r9 : best suit⇒¬2nd suit,
r10 : 2nd suit⇒ go home, r11 : go home, f ast f ood⇒¬oil-beer,
r12 : early meeting⇒¬restaurant}.

If Robbie decides to go to the take away and to give Carmen her best suit, then it
must stop to the dry cleaner (r8); this course of action (r3) violates r4. If Robbie decides
to pick up the Carmen’s second favourite suit from home (r10) and then stop to a fast
food, it will not get an oil-beer (r11). In the first scenario, we are not compliant with
respect to the norm stated by r4, while in the second scenario we are not outcome-
compliant since Robbie would not be able to derive as belief the conclusion of r2.

3 Revision under Compliance

Norm and outcome compliance give rise to a non-trivial question: what to be done
when a business process is not norm compliant or outcome compliant, or even both? To

the best of our knowledge, no effective approach addresses the issue of how to revise
non-compliant business processes.

We take on this challenge by taking inspiration from business process revision,
which has received great attention in recent years given its crucial influence, for ex-
ample, on organisation practices. The aim of the present section is twofold:

(i) to give a critical overview of the state of the art on business process revision and
justify the proposed approach taking compliance into consideration;

(ii) to devise a methodology based on the logic proposed in Section 2 to afford revi-
sion under compliance.

Roughly speaking, all the efforts spent in the area of business process revision sub-
scribe to two general approaches.

The first approach relies on modelling notations and languages which define the
structural aspect of business processes and are extended with other formalisms to repre-
sent the behavioural aspects. As an example, BPMN enriched with semantic annotations
is able to describe the effects implied by the execution of a particular task [7]. On the
same grounds, several translations from modelling notations into other formalisms have
been proposed, for example semantic nets [15] and business process graphs [16].

The second approach is instead based on pure logic formalisms, where revising a
business process means revising the theory describing the business process itself. The
underlying logical theory formally represents at the same time the structural and the
behavioural aspects of the business process [17,18,19].

These two approaches capture different (and both interesting) meanings of com-
pliance. The first aims at revising a business process at an higher level, in terms of
removal, addition, swapping, and substitutions of tasks in the business process. On the
other hand, the second one abstracts from the concepts of task and conditions that trig-
ger (or are caused by) a task: they are all denoted by literals in the same theory and the
main focus is on how they interact with each other to obtain other literals.
The most representative example of the first approach, given in [20] and then developed
in [21], relies on the emerging trend of designing and thinking about business processes
as related collections of reusable modules (or fragments). Reusable modules denote
sets of standardised actions to be performed to achieve some fixed objectives (giving
outcome compliance) that can be used with slight or no modifications also in other
business processes. Modules are further augmented with built-in statements ensuring
that the module is norm compliant according to the statements specified in the module.

The reusable modules approach is theoretically applicable both when a norm un-
compliant process is given, or when it must be built from scratch and we have to ensure
norm and outcome compliance at design time. For the first case, the algorithm for norm
compliance checking proposed in [7] finds out the exact point in a business process
where a violation of an obligation occurs. Thus, we can substitute the un-compliant part
of the business process with a module that reaches the same objectives and compensates
the previous violation(s). In the second case, we build the process starting from a given
repository of modules, based on objectives to achieve and norms to comply with.

For many aspects, the reusable module approach recall the SOC paradigm that “pro-
motes the idea of assembling application components into a network of services that

can be loosely coupled to create flexible, dynamic business processes and agile applica-
tions” [22]. As such, the main advantage of this approach is the possibility of exploiting
well defined techniques and methodologies developed through years of investigation in
the field. Above all, Web Service technology is nowadays the most promising means for
a widespread deployment of SOC-based architectures in on-the-net business process
software development [23].

However, this approach is not free from drawbacks, especially in case of compli-
ance recovery of a given business process. For example, the addition or substitution
of a fragment in a business process may lead to a lack of resources, jeopardising the
entire execution of the process. In fact, reusable fragments are intrinsically bound to
a localised concept of compliance. Every fragment introduces potentially new effects
in the business process and, consequently, other obligations or outcomes may be trig-
gered. Thus, once a fragment has been added or replaced, there is no guarantee that the
business process is globally compliant (with respect to norms and outcomes). Notice
that the issue can be avoided in some cases when, for instance, the effects attached to
executed modules are independent, or the execution of modules is mutually exclusive
(when modules belong to different branches of XOR paths). Nevertheless, these cases
represent a very limited part of the whole behavioural sphere of organisational practices.

Apart from the difficulties brought by the first family of approaches in managing
compliance, a fully logic approach (like the one herein proposed) results much more
appealing due to several factors:

(i) the approach of revision based on module reuse is quite hypothetical at this mo-
ment, since no formal investigation has been yet carried out that looks at the pos-
sible ways to provide a correct and complete solution;

(ii) a logic approach always comes with an inferential mechanism to reason about the
underlying framework and to prove the computational properties like consistency
and coherency;

(iii) it is particularly simple to map many different logic approaches existing in the
current literature of the field into graph models and this is a promise for simplicity
in the case we are dealing with too;

(iv) a roadmap that can be considered useful aims at building real applications, and one
possible target is a system that modifies a business process based upon preferences
specified by the user. In this scenario, it is meaningful to provide a logic approach
that extends execution environments (for example Deimos [24] and SPINdle [25])
where the schema is useful for deploying real systems.

3.1 Revision via Proof Tags Analysis

Rule-based nonmonotonic formalisms – like the one developed in this work – have
been used in many types of reasoning given their predisposition to capture aspects from
many domains of interest. As an example, in [26] authors address the problem of revis-
ing non-modal defeasible theories in the area of legal reasoning through an exhaustive
analysis of proof tags. The major contribution of that work is the identification of three
relevant cases, named canonical, where a revision operator could act by only changing
the relative strength between pairs of rules.

First case. The revision operator acts on a defeasibly proved literal p and makes it not
provable anymore, i.e., from +∂ p to −∂ p;

Second case. The revision operator acts on a defeasibly proved literal p and makes its
opposite defeasibly proved, i.e., from +∂ p to +∂∼p;

Third case. The revision operator acts on a not defeasibly proved literal p and makes it
defeasibly proved, i.e., from −∂ p to +∂ p.

Additional proof tags other than those for classical defeasible proof (±∂) are used to
better identify all relevant situations. The new proof tags do not modify the expressive
power of the logic itself, but they identify specific properties of literals within the theory,
e.g., their reachability or being always derived.

There are three major reasons for using and extending the approach of proof tag
analysis also in the framework at hand.

First, canonical cases clearly refer to the basic issue we address. For example, by
definition of +∂O⊥, there exists at least one applicable rule r for obligations such that
each element ci defeasibly proved as an obligation in the chain is not derived as a belief,
i.e., if +∂Oci holds, then −∂ci holds as well. As this chain represents the consequent of
a rule, there are two strategies to recover norm compliance with respect to r:

(i) By making one element ci defeasibly provable as a belief, or
(ii) Acting on r, either by making the rule body-discarded in the sense of Definition 1,

or by blocking the derivation of the first element in the chain as an obligation.

Case (i) represents a modal variant of the third canonical case, that is from −∂�p to
+∂�p, while case (ii) represent a modal variant of the first canonical case, that is from
+∂�p to−∂�p. Notice that in most cases, the first approach reflects a more intuitive way
to address the problem. Indeed, it seems more reasonable to find a way to compensate
an obligation (or the failure to achieve an outcome) rather than to make discarded the
entire chain of obligations or outcomes.

Second, it is quite simple to align the additional proof tags introduced in [26] with a
modal defeasible theory. As an example, the tagged literal +Σ p means that there exists
a reasoning chain supporting literal p. A more fine-grained definition of support can be
given in our framework, that is, when a literal p is supported in a modal defeasible the-
ory with modality � (+Σ�p). An analogous reasoning can be made for an unsupported
literal p (−Σ�p).

+Σ�: If P(n+1) = +Σ�q then
(1) �q ∈ F or

(2) ∃r ∈ R�[q, i] such that ∀a ∈ A(r), +ΣBa ∈ P(1..n), and
∀�b ∈ A(r), +Σ�b ∈ P(1..n), or

(3) ∃r ∈ RB[q] such that ∀a ∈ A(r), +Σ�a ∈ P(1..n)

Third, the alignment of proof tags in a modal defeasible theory allows us to for-
mally represent the conditions under which a revision operator could return a positive
solution of the problem. To give an overall idea, we report in Figure 1 a conceptual tree
representing the possible cases a revision operator could deal with in our framework.

Business
Process
Revision

Norm
compliance

Outcome
compliance Both

Safe add/remove Add/remove
with consequences

Task Conditions Preferences

Activate other
rules / chains

Deactivate
outcomes or
obligations in
other chains

For obligations For outcomes

What to achieve?

How to achieve
compliance?

What do we
add/remove?

What is the
consequence?

What type
of chain?

Rules Task Conditions PreferencesRules

Fig. 1: Possible problems for a business process revision operator.

The schema is organised in levels, and every level sets up the parameters that the revi-
sion operator must obey to.

The first level represents the type of compliance to be fulfilled; in the first two
cases, we take the stance that a norm un-compliant business process is already outcome
compliant, and the other way around.

The second level defines the possible actions the revision operator can perform in
order to meet compliance. In our case, removal or addition of elements in the theory
are the only feasible actions. At first glance, the combination of addition and removal
could represent a potential candidate to define the operation of swapping: for example,
to change the order between tasks t1 and t2, we just remove t1 (resp. t2) and then add it
after t2 (resp. before t1).

The third level defines the elements (literals for tasks, literals representing condi-
tions, rules, or preference relations between rules in the theory) the revision operator
can manipulate based on the type of actions permitted. We define an addition or a re-
moval safe if the operation does not make applicable any previously discarded rule in
the theory, and does not deactivate obligations or outcomes previously in force. Other-
wise, we define the operation unsafe or with consequences. In this case, we discriminate
between the two types of consequences (fourth level), and in the first case, we specify
which type of chain is activated (fifth level).

Intuitively, every path from the root to a leaf denotes a particular type of problem
to be solved. For example, the dotted path in Figure 1 represents the problem of finding
conditions under which we can revise a business process to recover norm compliance,
remaining outcome compliant, only through safe addition or removal of tasks.

The schema aims at providing a combinatorial exploitation of the cases for a revi-
sion operator for business processes with compliance preservation. This analysis can be

valued as exhaustive provided that we do not consider neither redundancy nor unfeasi-
bility. These further aspects will be considered in the next step of this research.

Here follow some intuitive ideas, based on [27], on how to address the first (and
second) canonical case by using rule addition/removal and preference manipulation.

Rule removal and exception addition. As the name suggests, the operation of rule
removal contracts a literal p by simply removing rules in the theory directly deriving it.
One of the proposed variants acts only on defeasible rules, and, unlike other variants,
it has to take care of preserving minimality (in the sense of number of erased rules).
The intuition here is to identify all rules that are essential to prove the literal at hand.
This corresponds to remove only the applicable rules that are not inferiorly defeated,
i.e., rules such that there is no stronger applicable rule for the opposite. Several variants
of exception addition were discussed as well, and one of them consider only defeasible
rules. In this case, the revision operator introduces a new conflicting defeasible rule for
the opposite conclusion to block the conclusion we want to contract.

Preference addition/removal. This kind of contraction acts on the relative strength
of rules, by making two complementary arguments of the same strength (and then both
conclusions cannot be derived), or by making the opposite argument stronger than the
argument for the literal to contract. When we deal with changing a theory by only modi-
fying the superiority relation, we must switch perspective with respect to the operations
of rule removal/addition and exception addition. The operations cannot anymore focus
only on active/inactive chains for the literal we want to change, but they must take into
account the entire theory. Moreover, one strong problematic that affects the contraction
operation by modifying the superiority relation only is on the hardness of defining when
a literal is absolutely unrefutable. Roughly speaking, a literal is absolutely unrefutable
if it is true in every interpretation (and then we cannot contract it). We found examples
on the structure of a theory where a non factual literal is absolutely unrefutable, and we
proved that the problem of deciding if a literal is absolutely unrefutable is NP-hard. The
proof is not reported in the present work for space reasons.

4 Conclusions and Further Work

This paper introduced a logical framework to represent objective-driven agents which
deliberates her course of action based on constraints imposed by the environment. The
logic deems the notions of desires, goals and intentions (and social intentions) as differ-
ent nuances of the (more general) notion of outcome. The framework naturally describes
and integrates the notion of being compliant with the notions of norms and outcomes.
This allowed us to describe situations where the agent is able (or not) to reach all her
objectives while not violating the norms. In addition, we proposed a preliminary anal-
ysis on how to devise a methodology to restore from un-compliant situations, covering
the case of outcomes or norms. The analysis carried out in the previous sections points
out several directions of research. We report the most valuable, referring to the case
analysis reported in Figure 1.

Does a solution exist for each case? As already pointed out, one prior challenge
to address is to study conditions under which the revision operator returns a positive
answer to the case at hand. In this sense, proof tag analysis seems a good candidate for

defining properties that describe the status of every literal in the theory. Moreover, this
approach is compatible with a fully logical representation of business processes.

If a solution exists, what is the complexity of the problem instance? Once having
established that at least a solution exists, another issue is to find algorithmic means that
compute a particular (or all) solution(s). This is crucial for a better decision-making
process with a view to automatic deployment. In fact, algorithms based on the logical
system herein proposed could extend well-known execution environments, and that is
a promise for the revision process to become a proper extension of the process for
compliance checking, and could be fully integrated in the business process life-cycle.

Which is the minimum set of actions to obtain a solution? The trivial case is that
a solution does not exist because the set of actions performed is too restrained. In this
case, an interesting problem is to determine which action (or actions) the revision oper-
ator should be allowed to use in addition to solve the problem. In other terms, we define
the revision operator as an entity with several degrees of freedom and we determine
which is the minimum degree of freedom of the operator to solve each case.

In particular, the second problem deserves particular attention. Indeed, by its own
nature a rule in our framework may have multiple antecedents, and a chain for obliga-
tions and outcomes with more than one element as a consequent. In the view of revision,
a crucial aspect is defining the best point where to act during the process, be it in the
antecedent or the consequent. This question naturally resembles the meaning of mini-
mal change as a key tenet for the revision to be rational [28]. However, several criteria
of minimality can be chosen, such as the degree of change in the extension of the the-
ory, or based on the number of actions to be performed by the revision operator. In this
respect, a method that exploits the concept of literal dependency could be useful. A
literal l depends on another literal m if m appears in every reasoning chain supporting l.
We are working on a complete formalisation of dependency property, and an algorith-
mic implementation to find out the dependency set of a literal in a theory is currently
under development. Intuitively, if the revision operator decides to refute a (previously
proved) literal l to be recover compliance, then in principle refuting a literal m on which
l depends (if any) minimises the changes in the extension.

References

1. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: A survey. In
Wooldridge, M., Jennings, N.R., eds.: ECAI Workshop on Agent Theories, Architectures,
and Languages. Volume 890 of LNCS., Springer (1995)

2. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence
42(2-3) (1990)

3. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In Allen,
J.F., Fikes, R., Sandewall, E., eds.: KR, Kaufmann, M. (1991)

4. Rao, A.S., Georgeff, M.P.: Decision procedures for bdi logics. Journal of Logic and Com-
putation 8(3) (1998)

5. van der Aalst, W.M.P.: The application of Petri Nets to workflow management. Journal of
Circuits, Systems, and Computers 8(1) (1998)

6. Ghallab, M., Nau, D., Traverso, P.: Automated planning - theory and practice. Elsevier
(2004)

7. Governatori, G., Sadiq, S.: The journey to business process compliance. In: Handbook of
Research on BPM. IGI Global (2008)

8. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Designing for compliance:
Norms and goals. In Olken, F., Palmirani, M., Sottara, D., eds.: RuleML America. Volume
7018 of Lecture Notes in Computer Science., Springer (2011)

9. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking up the best
goal: An analytical study in defeasible logic. In Paschke, A., Morgenstern, L., Stefaneas, P.,
eds.: RuleML. Volume 8035 of LNCS., Springer (2013)

10. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2(2) (2001)

11. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4 (2006)

12. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible
logic. Journal of Autonomous Agents and Multi-Agent Systems 17(1) (2008)

13. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4) (2002)

14. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In Horn, W., ed.: ECAI, IOS Press (2000)

15. Ghose, A., Koliadis, G.: Auditing business process compliance. In Krämer, B., Lin, K.J.,
Narasimhan, P., eds.: ICSOC. Volume 4749 of LNCS., Springer (2007) 169–180

16. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36(2) (2011)

17. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. [29] 194–209
18. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between

flexibility and support. Computer Science - R&D 23(2) (2009)
19. Rotolo, A.: Rule-based agents, compliance, and intention reconsideration in defeasible logic.

In Bassiliades, N., Governatori, G., Paschke, A., eds.: RuleML Europe. Volume 6826 of
Lecture Notes in Computer Science., Springer (2011)

20. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S. In: Integrating Compliance into
Business Processes Process Fragments as Reusable Compliance Controls. Universitätsverlag
Göttingen (2010)

21. Schumm, D., Türetken, O., Kokash, N., Elgammal, A., Leymann, F., van den Heuvel, W.J.:
Business process compliance through reusable units of compliant processes. In Daniel, F.,
Facca, F., eds.: ICWE Workshops. Volume 6385 of LNCS., Springer (2010)

22. Leymann, F.: Combining web services and the grid: Towards adaptive enterprise applica-
tions. In Castro, J., Teniente, E., eds.: CAiSE Workshops (2), FEUP Edições, Porto (2005)

23. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messag-
ing, and More. Prentice Hall PTR (2005)

24. Rock, A.: Deimos: Query answering defeasible logic system (2000)
25. Lam, H.P., Governatori, G.: The making of SPINdle. In: Rule Representation, Interchange

and Reasoning on the Web. Number 5858, Springer (2009)
26. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of

defeasible theories. [29] 104–118
27. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Legal contractions: A logical

analysis. In Ashley, K.D., van Engers, T.M., eds.: ICAIL, ACM (2013)
28. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet

contraction and revision functions. J. Symb. Log. 50(2) (1985)
29. Dean, M., Hall, J., Rotolo, A., Tabet, S., eds.: Semantic Web Rules - International Sympo-

sium, RuleML 2010, Washington, DC, USA. In Dean, M., Hall, J., Rotolo, A., Tabet, S.,
eds.: RuleML. Volume 6403 of LNCS., Springer (2010)

