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Abstract. In this paper we analyse different notions of the concept of goal start-
ing from the idea of sequences of “alternative acceptable outcomes”. We study the
relationships between goals and concepts like agent’s beliefs, norms and desires,
and we propose a computationally oriented formalisation using Defeasible Logic
that will be able to provide a computationally feasible approach. The resulting
system is able to capture various nuances of the notion of goal against different
normative domains, for which the right decision is not only context-dependent,
but it must be chosen from a pool of alternatives as wide as possible.

1 Motivation and Basic Intuitions

The BDI architecture is a prominent approach to model rational agents [4, 16]. BDI
agents are means-ends reasoners equipped with: (i.) Desires, Goals, Intentions (or
Tasks); (ii.) a description of the current state of the environment (Beliefs); (iii.) Ac-
tions. Tha is the case, the key tenet of this architecture is that the agent behaviour is
the outcome of a rational balance among different mental states. Typically these men-
tal attitudes are taken as primitive and independent from each other, even though some
mutual influences are considered (e.g., intentions are seen as desires satisfied up to com-
mitment). Previous work implementing the BDI paradigm in Defeasible Logic [6, 11,
9] follow this schema.

We work here on a different perspective and to provide a fresh and efficient rule-
based framework that considers goals, desires and intentions as facets of the same phe-
nomenon (all of them being goal-like attitudes): the notion of expected outcome, which
is simply something an agent would like or is expected to achieve. An advantage of
the proposed framework is that it allows agents to compute different degrees of moti-
vational attitudes, and degrees of commitment that take into account other factors, such
as beliefs and norms.

Consider the following example. Alice, during her holidays, plans to pay a visit
to her friend John, who lives close to her parents. The plan can be described by the
sentence [ shall come over to John’s place to visit him on Monday, but if he is not home
or the visit is not possible, I am going to visit my parents. If this is not possible as well,
I shall take some rest at home. This idea can be easily implemented by building for



each alternatives a sequence of other alternatives A1, ...,A, that are preferred when the
first choice is no longer feasible. Normally, each alternatives is the result of a specific
context C. This scenario can be represented as C = Ay,...,A, which is closely related
of contrary-to-duty obligations [10], where a norm is represented by a rule of the type
represented as follows:

ry : drive_car =>¢o —~damage © compensate © foreclosure.

Rule r; states that, if one agent drives a car, she has the obligation not to cause any dam-
age to others; if this happens, she is obliged to compensate; if she fails to compensate,
there is an obligation of foreclosure. The previous setting can be rewritten as:

ry : holiday =\ visit_ friend ® visit_parents ® stay_home.

In both examples (rules | and r,), sequences express a preference ordering among out-
comes, which means that also stay_home and foreclosure, though not the best options,
still correspond to acceptable situations.

Besides rules for outcomes and obligations, we also have rules for beliefs such as

r3 : friend_away =g —wisit_ friend

for which we assume there is no preference ordering, since they do not express expected
outcomes but simply describe how the world is.

These building blocks allow us to introduce different types of goal-like attitudes and
degrees of commitment to outcomes: desires, goals, intentions, and social intentions.

Desires as acceptable outcomes Suppose an agent is equipped with the following out-
come rules expressing two preference orderings:

ria,...,apn =y b1 ®---Oby s:a'l,...,ail =y bﬁ@m@b;{
and that the situation described by aj,...,a, and d},...,a, are mutually compatible
but by and b} are not, namely b; = —b. In this case by,...,by,b},..., b} are anyway

all acceptable outcomes, including the incompatible outcomes b; and b}. Desires are
expected or acceptable outcomes, independently of whether they are compatible with
other expected or acceptable outcomes.

Goals as preferred outcomes For rule r alone the preferred outcome is by, and for
rule s alone it is ). But if both rules are applicable, then a state where both b; and
b} hold is not possible. Hence, the agent would not be rational if she considers both
by and —b; as her preferred outcomes. Then the agent has to decide if she prefers a
state where b; holds to one where b’1 (i.e., —by) holds, or vice versa. If the agent cannot
make up her mind, i.e., she has no way to decide which is the most suitable option for
her, then neither the chain of » nor that of s can produce preferred outcomes. Suppose
that the agent opts for the latter option; this can be done if the agent establishes that
the second rule overrides the first one, i.e., s > r. Accordingly, the preferred outcome
is b} for the chain of outcomes defined by s, and b, is the preferred outcome of r. by
is the second best alternative according to rule r: in fact b; has been discarded as an
acceptable outcome given that s prevails over r.



Two degrees of commitment: intentions and social intentions Let us clarify when an
agent commits to acceptable outcomes. If the agent values some outcomes more than
others, she should strive for the best, i.e., for the most preferred outcomes. Let us start
by considering the case where only rule r applies. Here, the agent should commit to the
outcome she values the most, i.e., b;. But what if the agent believes that b cannot be
achieved in the environment where she is currently situated in, or she knows that —b;
holds? Committing to b; would result in a waste of agent’s resources; rationally, she
should target the next best outcomes, in this case b,. Suppose, now, that b; is forbidden,
and the agent is social (an agent is social if the agent would not knowingly commit to
anything that is forbidden [11]). Once again, in this situation the agent has to lower her
expectation and settle for b3, which is the next acceptable outcome.

To complete the analysis, consider the situation where both rules r and s apply and
the agent prefers s to r. As we have seen before, =b; (b}) and b, are the preferred
outcomes based on the preference of the agent over the two rules. Assume that, this
time, the agent knows she cannot achieve —b; (or equivalently, b; holds). If the agent is
rational, she cannot commit to —b;. Thus, the best option for her is to commit to b’2 and
b1, where she is guaranteed to be successful. In this scenario, the best course of action
for the agent is where she commits herself to some outcomes that are not her preferred
ones, or even that she would consider not acceptable based only on her preferences, but
such that they influence her decision process given that they represent relevant external
factors (either her beliefs or the norms that apply to her).

The layout of the paper is as follows. Section 2 presents the new logical framework.
Section 3 illustrates how to employ this framework to characterise various types of
agent compliance. Section 4 describes the algorithms to prove that the logic has linear
complexity. Section 5 ends the paper with some conclusions and a discussion of related
work.

2 Logic

Defeasible Logic (DL) [1] is a simple but flexible and efficient rule based non-
monotonic formalism. The strength of DL lays in the constructive proof theory, which
has an argumentation-like structure and allows us to draw meaningful conclusions from
(potentially) conflicting and incomplete knowledge bases. The framework provided by
the proof theory accounts for the possibility of extensions of the logic, in particular ex-
tensions with modal operators. Several extensions have been proposed, which resulted
in particular in applications in the area of normative reasoning [8] and modelling agents
[11,12,9]. Efficient implementations of the logic (including the modal variants) are
developed which are able to handle very large knowledge bases [13, 2, 18].

2.1 Language

The main aim of this subsection is to establish an inference process to compute factual
knowledge, desires, intentions, goals and obligations from existing facts, primitive de-
sires, intentions, goals and unconditional obligations. As a first step, we introduce the
language adopted. Let PROP be a set of propositional atoms, MOD = {B, O, D, G, |,SI}



the set of modal operators' and Lbl be a set of arbitrary labels. The set Lit = PROP U
{=p|p € PROP} denotes the set of literals. The complementary of a literal q is denoted
by ~q; if g is a positive literal p, then ~q is —p, and if g is a negative literal —p then
~q is p. The set of modal literals is ModLit = {0/, -0{|/ € Lit,0 € {0, D, G,1,SI} }.
We assume that the “00”” modal operator for belief B is the empty modal operator, thus a
modal literal Bl is equivalent to literal /. Accordingly, we state that the complementary
of B~ as well as =B/ is ~I.

We define a defeasible theory D as a structure (F,R, >), where (i.) F is a set of facts
or indisputable statements, (ii.) R contains three sets of rules: for beliefs, obligations,
and outcomes and (iii.) >C R X R is a superiority relation to determine the relative
strength of conflicting rules. Belief rules are used to relate the factual knowledge of an
agent (her vision of the environment), and defines the relationships between states of
the world. As such, provability for beliefs does not generate modal literals. Obligation
rules determine when and which obligations are in force. The conclusions generated by
obligation rules are modalised with obligation. Finally, outcome rules establish the pos-
sible outcomes of an agent depending on the particular context. Apart from obligation
rules, outcome rules are used to derive conclusions for all modes representing possible
types of outcomes: desires, goals, intentions, and social intentions.

Following ideas given in [10], rules can gain more expressiveness when a preference
operator © is used: an expression like @ ® b means that if a is possible, then a is the
first choice and b is the second one; if —a holds, then the first choice is not attainable
and b is the actual choice. This operator is used to build chains of preferences, called
(-expressions. The formation rules for ®-expressions are: (i.) every literal is an -
expression, (ii.) if A is an ®-expression and b is a literal then A © b is an ®-expression.
In addition we stipulate that ® obeys to the following properties: (i.) a® (b®¢) = (a®
b) @ c (associativity); (ii.) O a4 = (O ;) © (Of_s.; @) where exists j such that
aj = ay and j < k (duplication and contraction on the right). ®-expressions are given by
the agent designer, or obtained through construction rules based on the particular logic
[10].

In this paper we exploit the classical definition of defeasible rule in DL [1]. A
defeasible rule is an expression r : A(r) =g C(r), where

1. r € Lbl is the name of the rule;

2. A(r) ={ai,...,a,} with a; € LitUModLit is the set of the premises (or the an-
tecedent) of the rule;

3. O € {B,0,U} represents the mode of the rule (from now on, we omit the subscript
B in rules for beliefs, i.e., = is used as a shortcut for =-g);

4. C(r) is the consequent (or head) of the rule, which is a single literal if O = B, or an

®-expression otherwise?.

! The reading of the modal operators is B for belief, O for obligation, D for desire, | for intention
and Sl for social intention.

2 It is worth noting that modal literals can occur only in the antecedent of rules: the reason is
that the rules are used to derive modal conclusions and we do not conceptually need to iterate
modalities. The motivation of a single literal as a consequent for belief rules is dictated by the
intended reading of the belief rules, where these rules are used to describe the environment.



We use the following abbreviations on sets of rules: R” (R"[g]) denotes all rules of
mode O (with consequent ¢), and R[g] = Unegg 0,u3 R [g]- R[g,i] denotes the set of
rules whose head is @;?:lcj and ¢; =¢q, with 1 <i<n.

Most of the terminology defined so far appears in [11], where an extension of DL
with modal operators is introduced to differentiate modal and factual rules. However, la-
belling the rules of DL produces nothing more but a simple treatment of the modalities,
thus two interaction strategies between modal operators are analysed.

Rule conversions It is sometimes meaningful to use rules for a modality X as they were
for another modality Y, i.e., to convert one type of conclusions into a different one. For
example, if ‘a car industry has the purpose of assembling perfectly working cars’ and ‘it
is known that in every working car there is a working engine’, then ‘a car industry has
also the purpose of assembling working engines in every car produced’. Formally, we
define an asymmetric binary relation Convert C MOD x MOD such that Convert(X,Y)
means ‘a rule of mode X can be used also to produce conclusions of mode Y’. This
intuitively corresponds to the following logical schema:

Yay,....Ya, ay,...,a,=xb
Yb

In our framework obligations and goal-like attitudes cannot change what the
agent believes or how she perceives the world, thus we only consider conversion
with mode for belief as the first element of the relation (i.e., Convert(B,X) with
X € {0,D,G,,SI}).

Conflict-detection/resolution It is crucial to identify criteria for detecting and solving
conflicts between different modalities. Formally, we define an asymmetric binary rela-
tion Conflict C MOD x MOD such that Conflict(X,Y) means ‘modes X and Y are in
conflict and mode X prevails over Y. Consider the following theory:

Convert(X,Y).

F = { sunny_day, school_day},
R ={ry:Sunny_day = go_outside, r, : school _day =o —go_outside}.

Even if there is a sunny day, a responsible parent would not go outside and play with her
kid but will bring him to school; this behaviour is captured by Conflict(O, SI), which
means that the rule that forbids to go outside prevents the agent from obtaining the
(social) intention of going outside, and the parent will not derive the (social) intention.

In our framework, we consider conflicts between beliefs and intentions, beliefs and
social intentions, and obligations and social intentions. In other words, we have:

— Conlflict(B, 1), Conflict(B,SI) meaning that the agents are realistic (cf. [5]), and
— Conflict(O,SI) meaning that the agents are social (cf. [11]).

Observation 1 Convert and Conflict relations behave differently in our framework
than the usual deployed in the literature [11]. Typically, there is a bijective correspon-
dence between a mode and the type of rule “representing” it. For example, there are
rules with mode O to derive obligations, or rules with mode | to derive intentions. This
is not the case in our logic where outcome rules are used to derive conclusions for
all goal-like attitudes. Thus, we can have Conflict(O, SI) exhibiting the sociality of the
agent but not Conflict(O, U) since desires and obligation do not attack each other.



There are two applications of the superiority relation: the first considers rules of the
same mode; the latter compares rule of different mode. Given r € RX and s € RY, notice
that r > s iff r converts X into Y, or s converts Y into X, i.e., the superiority relation
is used when rules, each with a different mode, are used to produce complementary
conclusions of the same mode. Consider the following theory with Convert(B, G):

F ={ go_to_Rome, parent _anniversary, August },
R={r:go_-to_Rome =g go_to_Italy
ry @ parent_anniversary = go-to_Rome
r3 - August =y —go_to_ltaly},

>= {(r1,r3)}.

Typically, I have the goal not to go to Italy in August since the weather is too hot and it
is too crowded. However, it is my parents’ anniversary and they are going to celebrate it
this August in Rome, which is the capital of Italy. Nonetheless, I have the goal to go to
Italy for my parents’ wedding anniversary, since I am a good son. Here, the superiority
applies because we use r; through a conversion from belief to goal.

2.2 Inferential Mechanism

A proof P of length n is a finite sequence P(1),...,P(n) of tagged literals of the type
+dxq and —dxg, where X € MOD. The proof conditions below define the logical mean-
ing of such tagged literals. As a conventional notation, P(1..7) denotes the initial part
of the sequence P of length i. Given a defeasible theory D, +dxg means that g is defea-
sibly provable in D with the mode X, and —dxg¢ that it has been proved in D that g is
not defeasibly provable in D with the mode X. As usual, we use D - +dg! iff there is a
proof P in D such that P(n) = £dg! for an index n.

In order to characterise the notions of provability for beliefs (+dg), obligations
(+do), desires (+dp), goals (+dg), intentions (+4d) and social intentions (+ds)), it is
essential to define when a rule is applicable or discarded. To this end, the preliminary
notion of when a rule is body-applicable/discarded must be introduced, stating that
each literal in the body of the rule must be proved/rejected with the suitable mode.

Definition 1. Let P be a proof and O € {O,D, G,I,SI}. A rule r € R is body-applicable
(at step n+ 1) iff for all a; € A(r):

1. ifa; =0l then +dpl € P(1..n),

2. ifa; = -0l then —dnl € P(1..n),

3. ifa; =1 € Lit then +dl € P(1..n).

A rule r € R is body-discarded (at step n+ 1) iff there is a; € A(r) such that

1. a;=0land —dnl € P(1..n), or
2. a;=—-0l and +dal € P(1..n), or
3. a;=1€Litand —dl € P(1..n).

As already stated, belief rules allow us to derive literals with different modes. The
applicability mechanism must take into account this constraint.



Definition 2. Let P be a proof. A rule r € R is 1. Conv-applicable, 2. Conv-discarded
(at step n+ 1) for X iff

1. r€RB A(r) # 0 and forall a € A(r), +dxa € P(1..n);
2. r¢ RBorA(r)=0o0r3JacA(r), —dxac P(1..n).

Let us consider the following theory
F={a,b,0c}, R={ri:a=ob,r:b,c=d},

ry is applicable, while r, is not since c is not proved as a belief. Instead, r, is Conv-
applicable in the condition for +dg, since Oc is a fact and r; proves Ob.

The notion of applicability gives guidelines on how to consider the next element in
a given chain. Since a rule for belief cannot generate reparative chains but only single
literals, we can conclude that the applicability condition for belief collapses into body-
applicability. The same happens to desires, where we also consider the Convert relation.
For obligations, each element before the current one must be a violated obligation. A
literal is a candidate to be a goal only if none of the previous elements in the chain have
been proved as a goal. For intentions, the elements of the chain must pass the wishful
thinking filter, while social intentions are also constrained not to violate any norm.

Definition 3. Given a proof P, r € R|q,i] is applicable (at index i and step n+ 1) for

1. Biffr € R® and is body-applicable.

2. O iff either: (2.1.1) r € R® and is body-applicable, (2.1.2) V¢, € C(r),k <
i, +docy € P(1..n) and —dcy € P(1..n), or (2.2) r is Conv-applicable.

3. Diffeither: (3.1) r € RY and is body-applicable, or (3.2) Conv-applicable.

4. X, X € {G,1,SI} iff either: (4.1.1) r € RV and is body-applicable, (4.1.2) Vi €
C(r), k <i, +dy~cy € P(1..n) for some Y such that Conflict(Y,X) and —dxcy €
P(1..n) or (4.2) r is Conv-applicable.

For G there are no conflicts; for | we have Conflict(B,l), and for S| we have
Conflict(B, SI) and Conflict(O, SI).

Conditions to establish that a rule is discarded correspond to the constructive failure to
prove that the same rule is applicable, and follow the principle of strong negation.
We can now describe the proof conditions for the various modal operators; we start
with those for desires:
+0p: If P(n+ 1) = +dpg then
(1) Dg € For
(2) (2.1) -Dg ¢ F and
(2.2) 3r € R|g, i]: r is applicable for D and
(2.3) Vs € R[~q, j] either
(2.3.1) s is discarded for D, or
232)s 4.

3 The strong negation principle is closely related to the function that simplifies a formula by
moving all negations to an inner most position in the resulting formula, and replaces the posi-
tive tags with the respective negative tags, and the other way around [9].



We say that a desire is each element in a chain of an outcome rule for which there
is no stronger argument for the opposite desire. The proof conditions for +dy, with
X € {B,0,G,,Sl} are as follows:
+0x: If P(n+1) = +dxq then
(I) XgeFor
(2) 2.1) =Yg ¢ F for Y = X or Convert(Y,X) and

(2.2) 3r € R|q,i]: r is applicable for X and

(2.3) Vs € RY[~q, j] either

(2.3.1) s is discarded for Y, or

(2.3.2) 3t € R"[q,k]: t is applicable for T and either
(232.1)t >sifY =T, Convert(Y,T), or Convert(7,Y); or
(2.3.2.2) Conflict(7,Y).

To show that a literal g is defeasibly provable with modality X we have two choices:
(1) modal literal Xgq is a fact; or (2) we need to argue using the defeasible part of D.
In this case, we require that a complementary literal (of the same modality, or of a
conflictual modality) does not appear in the set of facts (2.1), and that there must be an
applicable rule for ¢ for mode X (2.2). Moreover, each possible attack brought by a rule
s for ~q has to be either discarded (3.1), or successfully counterattacked by another
stronger rule ¢ for g (2.3.2). We recall that the superiority relation combines rules of the
same mode, rules with different modes that produce complementary conclusion of the
same mode through conversion (both considered in clause (2.3.2.1)), and conflictual
modalities (clause 2.3.2.2). Obviously, if O = B, then the proof conditions reduce to
those of classical defeasible logic [1].

Again, the negative counterparts (—dp and —dy) are derived by strong negation ap-
plied to conditions for +dp and +dy, respectively. As an example, consider the theory:

FZ{—\bl,O—\bz,S|b4} R:{r: =u b1®b2®b3®b4}.

Then r is trivially applicable for D and +dpb; holds, for 1 < i < 4. Moreover, we have
+dgb and r is discarded for G after by. Since +d—by, —db; holds (as well as —dgb1);
the rule is applicable for | and by, and we are able to prove +d,b,, thus the rule becomes
discarded for | after b,. Given that O—b, is a fact, r is discarded for S| and b, and —ds;b,
is proved, which in turn makes the rule applicable for Sl at b3, proving +ds;b3. As we
have argued before, this would make the rule discarded for bs4. Nevertheless, b4 is still
provable with mode Sl (in this case because it is a fact, but in other theories there could
be more rules with b4 in their head).

The logic resulting enjoys properties describing the appropriate behaviour of the
modal operators.

Definition 4. A defeasible theory D = (F,R,>) is consistent iff > is acyclic and F does
not contain pairs of complementary (modal) literals, that is pairs like (i.) | and ~I, (ii.)
0O/ and =01, O € MOD, and (iii.) Ol and O~I[, O € MOD\ {D}.

Proposition 1 Let D be a consistent modal defeasible theory. For any literal 1, it is not
possible to have both

1. DF+0dnl and DV —dpl with O € MOD;



2. D+ +dal and D - +dg~I with 0 € MOD\ {D}.
Moreover, given O € MOD \ {D}, then:
3. lfD |_ +a|jl, then D l_ —aDNl

3 Norm and Outcome Compliance

There are two fundamental strategies to characterize the concept of norm compliance
in agent systems [7, 19]:

— Compliance is achieved by adopting the so-called norm regimentation strategy,
which can amount to designing the system in such a way as illegal states are ruled
out and made impossible in it, or by imposing that the occurrence of any illegal
states is in theory possible but it leads to the system global failure;

— Norms are soft constraints and so do not limit in advance agents’ behavior. Compli-
ance is then ensured by system mechanisms stating that violations should result in
sanctions or other normative effects which are supposed to recover from violations.

The second perspective is the one captured in this paper by devising rules for obli-
gations that introduce preference orderings among normative outcomes: in fact, subse-
quent obligations in any (®-expressions are meant to be countermeasures for the vio-
lation of previous obligations in the given sequence. In other words, ®-constructions
identify situations that are not ideal but still acceptable.

In BDI-like systems, norm compliance can be checked in the agents’ deliberative
stage against different types of motivational attitudes. In this paper, we model the case
where obligations prevail over conflicting intentions in such a way that those inten-
tions that are still provable are called social intentions. In this way, obligations are a
mechanism for filtering expected outcomes in agents’ minds.

On the other hand, since agents are oriented to the achievement of their own ex-
pected outcomes, and these outcomes are ranked as well in ®-sequences, we may also
speak of different types of outcome compliance, which means that, given the the envi-
ronment where agents act, they deliberate and commit to achieve a state of the world
where all the preferred outcomes are obtained. For example, if we want to go to the air-
port and not to be hungry, the actions of catching the train from our place to the airport,
and stopping in a fast food to buy an hamburger, result in a state of the world where all
our goals are fulfilled. In this perspective, ®-sequences allow us to identify outcomes
‘compensating’ the non-achievement of other outcomes.

Informally, an agent is (a) norm compliant if each applicable norm is not violated,
or if so, it is compensated, (b) outcome compliant if she deliberates to commit to at least
all the minimal objectives, which means that there exists at least one possible way to
satisfy at least one of all preferred outcomes in each ©-sequence that is fired. Formally,
those notions of compliance can be captured by establishing that all ®-chains contain
one last null element L, such that all of them have this general form: b; ®---® b, ® L.
With this done, various types of compliance are defined as follows:

Definition 5 (Norm and Outcome Compliance). Let T be a defeasible theory. T is
norm compliant if T - —do L and it is outcome compliant if T - —dx L, where X €
{G,,SI}.



4 Algorithmic Results

We now present the algorithms apt to compute the extension of a finite defeasible the-
ory, i.e., with finite set of facts and rules, in order to bind the complexity of the logic
introduced in the previous sections. The algorithms are inspired by ideas of [15, 14].
For the sake of clarity, from now on B denotes a generic mode in MOD, < a generic
mode in MOD \ {B}, and O a fixed mode chosen in l. Moreover, we will treat literals
0O/ and [ as synonyms whenever O = B. To accommodate the Convert relation to the
algorithms, we denote with R® the set of belief rules with non-empty body that can be
used for a conversion to mode <. Furthermore, for each literal /, /g is the set (initially
empty) such that +0 € g iff D+ +dnl. Given a modal defeasible theory D, a set of
rules R, and a rule € R7|[[], we expand > by incorporating the Conflict relation into
it; this will ease the computation. Then, we define: (i.) ry,, = {s € R: (s,r) €>} and
Fing = {s € R : (r,s) €>} for any r € R; (ii.) HBp as the set of literals such that the
literal or its complement appears in D, where ‘appears’ means that it is a sub-formula
of a modal literal occurring in D; (iii.) the modal Herbrand Base of D as HB={0I| O €
MOD,! € HBp}. Accordingly, the extension of a defeasible theory is defined as follows.

Definition 6. Given a modal defeasible theory D, the defeasible extension of D is de-
fined as E(D) = (+0a, —0dn) where £dn = {l € HBp : D& £0gl} with O € MOD. Two
defeasible theories D and D' are equivalent whenever E(D) = E(D').

The next definition extends the concept of complement presented in Section 2 for
modal literals and establishes the logical connection among proved and refuted literals.

Definition 7. The complement of a given modal literal I, denoted by I, is:

1. if 1 = Dm, then [ = {~Dm};
2. ifl=0m, then | = {=0Om,0~m}, with 0 € {O,G,1,SI};
3. ifl = —Om, then [ = {Om}.

Truncation and removal are two syntactical operations on the consequent of rules.

Definition 8. Letci =a; ®---®aj—| and co = aj+1 © - O ay, be two (possibly empty)
O-expressions such that a; does not occur in them, and ¢ = c1 ©a; ® ¢y is an O-
expression. Let r be a rule with form A(r) =x c. We define the

— truncation of the consequent c at a; as A(r) =x cla; = A(r) =x c1 O a;;
— removal of a; from the consequent ¢ as A(r) =x cOa; = A(r) =x c1 ©ca.

Given O € MOD, the sets +dg denote the global sets of defeasible conclusions
(i.e., the set of literals for which condition +dp holds), while 9= are the corresponding
temporary sets. Moreover, to simplify the calculus we do not operate on outcome rules:
for each rule r € RY we create instead a new rule for all the other goal-like modes (resp.
P, 1S, ', and r°'). Accordingly, we will use expressions like “the intention rule” as a
shortcut for “the clone of outcome rule used to derive intentions”.

The idea of all algorithms is to use the operations of truncation and elimination in
order to obtain, step after step, a simpler but equivalent theory. Indeed, proving a literal



does not give just local information about the element itself, but reveals which rules will
be applicable, discarded, or reduced in their head or tail.

Observation 2 Assume that, at a given step, the algorithm proves l. At the next step,

1. the applicability of any rule r with l in its antecedent A(r) does not depend on | any
longer. Accordingly, we can safely remove [ from A(r).

2. Any rule s where 1 is in its antecedent A(s) is discarded. Consequently, any supe-
riority tuple involving this rule is now meaningless and can be removed from the
superiority relation as well.

3. We can shorten chains by exploiting conditions of Definition 3. For example, if
[ = Om, we can truncate chains for obligations at ~m and eliminate ~m.

Algorithm 1 DEFEASIBLEEXTENSION
: +0m,0g < 0; —Om,0g + 0
: R+ RU{rP :A(r) =0 C(r)|r € RY}\RY, with O € {D,G,1,SI}
RBC « {r®: Cay,...,Ca, =¢ C(r)|r € RB,A(r) #0,A(r) C Lit,a; € A(r)}
D >e>U{(r%,s%) 0,5 € RBC r > s}U{(r,5)|r € R®,s € R® URB® Conflict(M, ©)}
for [ € F do
if / = Om then PROVED(m, O)
if /| = -0Om A O # D then REFUTED(m, O)
. end for
D +om < +omUdyg; —Om < —dmUdg
10: R,',,fd «—0
11: repeat
12: Og < 0; 0g <0
13: for O/ € HB do

14: if RP[[JURB-C 1] = 0 then REFUTED(/, )

15: end for

16:  for r€ RPURBEC do

17: if A(r) = 0 then

18: Ting < {r€R:(rs) €>,s ER}Y; roup < {sER: (s,r) €>}
19: Rinfd — Rin_ aY Tinf

20: Let / be the first literal of C(r) in HB

21: if 75, = 0 then

22: if O = D then

23: PROVED(m, D)

24: else

25: REFUTED(~/, O)

26: REFUTED(~, ©) for < s.t. Conflict(O, <)

27: if RO [~1]URBD [~1] URM[~I]\ Rinfa C Fins, for W s.t. Conflict(M,0) then
28: PROVED(m, O)

29: end if

30: end if

31: end if

32: end if

33: end for

34:  Og <+ Og \+0m; Og < Jg \—Om
35: +om + +omUdg; —Om + —dmUdg
36: until gg =0 and og =0

37: return (+Jm,—0m)




Algorithm 1 DEFEASIBLEEXTENSION is the core to compute the extension of a
defeasible theory. The first part (lines 1-4) sets up the data structure needed for the
computation. Lines 5-8 are to handle facts as immediately provable literals. The main
idea of the algorithm is to check whether there are rules whose body is empty. Since
defeasible rules can have ®-expressions as their head, the literal we are interested in
is the first element of the ®-expression (loop for at lines 16-33 and if condition at
line 17). Such rules are clearly applicable and they can produce conclusions with the
right modality. However, before asserting that the first element of the conclusion is
provable, we have to check whether there are no rules for the complement (again with
the appropriate mode), otherwise such rules for the complement must be weaker than
the applicable rules. This information is stored in R;,r, inspired by the technique of
[14]. If no rule stronger than the current one exists, the complementary conclusion
must be refuted by condition (2.3) of —dg (line 25). A straightforward consequence of
D —dgl is that literal [ is also refutable in D with any modality conflicting with O (line
26). Notice that this reasoning does not hold for desires: since the logic allows to have
DI and D~/ at the same time, when O = D the algorithm directly invokes procedure 2
PROVED (line 23).

The next step is to check whether there exist rules for the complement of the lit-
eral with the same (or conflicting) mode. The rules for the complement should not be
defeated by an applicable rule, i.e., they should not be in R;,¢4. If all these rules are
defeated by r (line 27), then conditions for deriving +dg are satisfied. If a literal is
assessed to be provable (with the appropriate modality) the algorithm calls procedure 2
PROVED, otherwise the procedure 3 REFUTED is invoked. The algorithm finally returns
the extension of the input theory when no modifications are done on sets 8:[ .

Algorithm 2 PROVED is invoked when literal / is proved with modality O. The
computation starts by updating the relative positive extension set for modality O and the
local information on literal / (line 2); [ is then removed from H B at line 3. Proposition 1
Part 3. defines the modes with which literal ~/ can be refuted (if condition at line
4). Lines 5 to 7 modifies the sets of rules R and R®", and the superiority relation
accordingly to ideas of Observation 2.

Depending on the modality O of /, we have to perform some specific operations on
chains (condition switch at lines 8-27). Entering into the detail of each case would be
redundant without giving more information than conditions of a rule being applicable or
discarded in Section 2. Therefore, we propose one significative example by considering
the scenario where / has been proved as a belief (case at lines 9-13). Here, chains
of obligation (resp. intention) rules can be truncated after / since are discarded for all
following elements (line 10). Analogously, condition (4.1.2) of Definition 3 allows to
eliminate ~/ from intention and social intention rules (line 11). If +dg~I has been
already proved, then we eliminate ~/ since it represents a violated obligation. Vice
versa, if —dg~I is the case, then each element after [ cannot be a social intention (if
conditions at lines 12 and 13, respectively).

Algorithm 3 REFUTED performs all necessary operations in case literal / is refuted
with mode O. The initialisation steps at lines 2—6 follow the same schema exploited at
lines 2—7 of Algorithm 2 PROVED. Again, the operations to be performed on chains vary
according to the current mode O (switch at lines 7-19). For example, if 0 = B (lines 8-



Algorithm 2 PROVED

1: procedure PROVED(/ € Lit, O € MOD)

2: o + ag U{l}; l.(—l.U{+E\}

3 HB <+ HB\ {0}

4 if O # D then REFUTED(~/, O)

50 R {r:A(n)\{BL,-0~1} = C(r)| r €R, A(r)N Ol = 0}
6:  RBO « {r:A(r)\{OI} < C(r)|r e RBD, A(r)N DI = 0}
7o s> \{(ns),(s,r) €> | A(r)N DI #£ 0}

8

9

switch (O)

: case B:
10: RX « {A(r) =x C(r)!l| r € RX[l,n]} with X € {O,1}
11: RX + {A(r) =x C(r)©~I| r € RX[~1,n]} with X € {I,SI}
12: if +O € ~Ig then RO « {A(r) =0 C(r) & ~I| r € RO[~I,n]}
13: if —O € ~Im then RS' « {A(r) =5 C()!I| r € RS'[,n]}
14: case O:
15: RO « {A(r) =0 C(r)!~ & ~I| r € RO[~1,n]}
16: RS« {A(r) =5 C(r) O ~I| r € RS'[~,n]}
17: if —B € I then R® « {A(r) =0 C(r)©I| r € RO[l,n]}
18: if —B € ~Im then RS « {A(r) =5, C(r)!I| r € RS'[1,n]}
19: case D:
20: if +D € ~Ig then
21: RC «— {A(r) =c C(N O] r € R°[l,n]}
22: R® « {A(r) =6 C(r)!~l©~I| r € RS[~I,n]}
23: end if
24: otherwise:
25: R7 + {A(r) =0 C(r)l| r € RP[I,n]}
26: RY «— {A(r) =0 C(r)o~I| r € RP[~L,n]}

27:  end switch
28: end procedure

Algorithm 3 REFUTED

1: procedure REFUTED(/ € Lit, O € MOD)

2: dg + dg U{l}; l.el.U{ o}

3:  HB« HB\{OI}

4: R« {r:A(r)\{—-0Ol} = C(r)|reR, Ol € A(r)}
5:  RBU RBO\{recRBO .0/ cA(r)}

6: >>\{(ns),(s,r) e> Ol € A(r)}

7

8

9

switch (O)
case B:
: R« {A(r) = C(r)!~l|r € R'[~I,n]}

10: if +O < /g then R® < {A(r) =0 C(r)©1|r € RO[/,n]}
11: if —O € Im then RS < {A(r) =5, C(r)!~I|r € RS'[~I,n]}
12: case O:
13: RC « {A(r) =0 C(r)!1©1|r € RO[1,n]}
14: if —B ¢ /m then RS < {A(r) =) C(r)!~I|r € RS'[~1,n]}
15: case D:
16: RX + {A(r) =x C(r)ol|r € RX[l,n]} with X € {D,G}
17: otherwise:
18: RP +— {A(r) = C(r)Ol|lr € R"[I,n]}

19:  end switch
20: end procedure




11), then applicability condition (4.1.2) for +d, cannot be satisfied for any literal after
~I[ in chains for intentions, and such chains can be truncated at ~[. Furthermore, if the
algorithm has already proven +dol, then [ represents a violated obligation. Thus, [ can
be removed from all chains for obligations. If instead —do! holds, then the elements
after ~/ in chains for social intentions do not satisfy applicability condition (4.1.2) of
=+0s for ~I, and the algorithm removes them.

We conclude by showing the computational properties of the algorithms proposed.

Theorem 1. Algorithm 1 DEFEASIBLEEXTENSION terminates and its computational
complexity is O(|R| * |HB).

Proof Sketch. Termination is ensured since at every iteration either no modification
occurs and line 36 ends the computation, or a literal is removed from HB. This set is
finite, since the sets of facts and rules are finite, thus eventually the process empties HB.
This bounds also the complexity to the number of rules and literals in HB, since each
modal literal is processed once and every time we scan the set of rules.

Theorem 2. Algorithm I DEFEASIBLEEXTENSION is sound and complete.

5 Conclusions and Related Work

We provided a fresh characterisation for motivational states as the concept of goals,
intentions, and social intentions obtained through a deliberative process based on var-
ious types of preferences among desired outcomes. In this sense, this contribution has
strong connections with [6, 11, 9] but presents significant improvements in at least two
respects. First, while in those works the agent deliberation is the result of the deriva-
tion of mental states from precisely the corresponding rules of the logic, here the proof
theory is more aligned with the BDI intuition, according to which intentions and goals
are the results of the manipulation of desires. This allow us to encode this idea within
a logical language and a proof theory, by exploiting the different interaction patterns
between the basic mental states, as well as the derived ones. Hence, our framework is
more expressive than BOID [5], which uses different rules to derive the corresponding
mental states and proposes simple criteria to solve conflicts between rule types.
Second, the framework proposes a rich language expressing two orthogonal con-
cepts of preference among motivational attitudes. One is encoded within © sequences,
which state reparative orders among homogeneous mental states or motivations, and
which are contextual. The second type of preference is encoded via the superiority re-
lation between rules which can work locally, as well as via the Conflict relation. The
interplay between these mechanisms can help us to isolate complex ways for deriving
mental states, but the resulting logical machinery is still computationally tractable.
Finally, since the preferences allow us to determine what preferred outcomes can
be chosen by an agent (in a specific scenario) when previous goals in (®-sequences are
not (or no longer) feasible, our logic in fact provides an abstract semantics for several
types of goal and intention reconsideration. Intention reconsideration was expected to
play a crucial role in the BDI paradigm since intentions obey the law of inertia and re-
sist retraction or revision, but they can be reconsidered when new relevant information



comes in [3]. Despite that, the problem of revising intentions in BDI frameworks has
received little attention. A very sophisticated exception is [20], where revisiting inten-
tions mainly depends on the dynamics of beliefs but the process is incorporated in a
very complex framework for reasoning about mental states. Recently, [17] discussed
how to revise the commitments to planned activities because of mutually conflicting in-
tentions, which interestingly has connections with our work. How to employ our logic
to give a semantics for intention reconsideration is not the main goal of the paper and
is left to future work.
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