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Abstract: This paper discusses the features and applications of interface tracking techniques for modeling 

deroplet-based microfluidics. The paper reviews the state of the art of methods for tracking and capturing 

the interface. These methods are categorized as the implicit and the explicit methods. The implicit methods 

need to reconstruct the interface by reconnecting the markers on the interface. The implicit techniques 

implicitly describe the interface as a simple function. Thus, complicated topological changes of interface 

can be handled naturally and automatically. The implicit methods reviewed in this paper are the volume-of-

fluid method, the phase-field method, the Lattice-Boltzmann method and the level-set method. The explicit 

methods mainly include the boundary-integral methods and the tracking methods. 

Keywords: droplet-based microfluidics, boundary-integral method, tracking methods, volume-of-fluid 
method, level-set method 
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1. INTRODUCTION  

Over the last few decades, modeling immiscible fluids such as oil and water has been a classical research 

topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of 

drops and numerous other functions [1-4]. Droplet-based microfluidics is of great interest for biological 

research, chemical synthesis, drug delivery and medical diagnostics. Droplet-based microfluidics refers to 

devices and methods for controlling the fluid flows in length scales smaller than one millimeter. 

Monodisperse droplets in microfluidic devices have been generated using different microchannel 

configurations such as T-junction [5-6], flow focusing [7], or co-flowing [8]. The droplet size and the 

generation frequency can be accurately controlled by adjusting the flow rate ratio of the two phases, their 

viscosities and interfacial tension. In a microfluidics system, the effects of volume-based inertia and gravity 

do not play an important role as compared to the macroscale case. The surface-based interfacial tension and 

the viscosity dominate the behavior of multiphase flow in microscale. Numerical simulation is a powerful 

tool for understanding these complex multiphysics phenomena and the dynamics of a microfluidic system,  

In general, the Navier-Stokes equations are solved numerically to obtain the velocity and pressure of  fluid 

based on the established discretisation schemes such as the finite difference method (FDM), the finite 

volume method (FVM), or the finite element method (FEM). Recently, the Lattice Boltzmann method 

(LBM) is developed to solve the Navier-Stokes equations. However, the challenge in solving multiphase 

fluid flow problems is handling the interface separating the fluids involved and its evolution over time. The 

interface shape deforms continuously as two phases significantly affect each other as well as the boundary 

conditions on them. Nevertheless, special treatments need to deal with the property jump (or gradient) 

across the interface. A precise interface location needs to be determined.   

Recently, different techniques were proposed for interface prediction. Traditionally, the interface that 

separates the two phases can be solved using volume-tracking method, front-tracking method, fractional 

volume of fluid (VOF), phase-field method, lattice Boltzmann method, the level-set method (LSM), and 

others. Slavov and Dimova categorized these methods into two types: explicit tracking methods and 

implicit tracking methods [9]. Explicit methods include boundary integral method, front tracking method 

and immersed interface method. Implicit ones include phase-field method and level-set method. The 

present review will be conducted to these categories. Cristini and Tan (2004) classified the methods into 

interface tracking methods and interface capturing methods based on whether the computational mesh or 

massless markers is attached on the interface [10]. The former includes boundary-integral methods, finite-

element methods and immersed boundary methods. The latter includes lattice Boltzmann method, 

constrained-interpolation-profile, level-set, volume-of-fluid, coupled level-set, volume-of-fluid and partial-

miscibility-model and phase-field methods. Garrioch and Baligo proposed to categorize these techniques as 

the moving font mesh to tack the interface and the fixed mesh to capture the interface location [11]. Each 
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categorization approach summarizes one of characters of the numerical methods of the interface prediction. 

For example, the level set method is an implicit, interface capturing and employing the fixed grid method.  

 

2. PROBLEMS WITH MULTIPHASE  SYSTEMS  

Droplets Formation 

Menech applied the phase-field method to model the breakup of a big droplet in a T-shaped junction [12]. 

The numerical results demonstrated that the droplet breakup region depends on the Capillary number (Ca), 

viscosity ratio ( cd / μμλ = ), and the initial drop dimension. Menech demonstrated that the numerical 

method can accurately describe the dynamics of a droplet. The same numerical method was used to 

investigate the different droplet formation regimes: squeezing, dripping and jetting. The regimes are 

distinguished by the capillary number Ca and the viscosity ratio λ.  The results show that the droplet 

volume is strongly affected by the viscosity ratio. In a similar T-junction channel, lattice Boltzmann 

method was used to study the behavior of the droplet formation process [13-14]. Sang et al. (2009) 

employed the three-dimensional (3D) volume of fluid model (VOF) to study the impact of the viscosity of 

continuous phase on the droplet size and the frequency of the drop formation [15]. The numerical results 

agree well with the analytical results. The dynamics of droplet formation in the cross-junction configuration 

was numerically investigated by Wu et al. [16]using lattice Boltzmann method. The interfacial tension 

between two immiscible phases is calculated using the continuum surface force model (CSF). The 

simulation results of flow pattern, droplet size and velocity vectors agree well with the experimental results. 

 

Droplets Behavior  

The transport, merging, rupture, separating and colliding of droplets have also been modeled numerically 

[17-23]. Zheng and Zhang (2000) used level-set method to simulate the droplet spreading problems on the 

solid surface with solidification, which also involves a phase change process [24]. Recently, Takada et al. 

(2006) calculated the phenomenon of a droplet falling on the liquid film with the phase field method [25]. 

A ring-shaped vortex was captured during the droplet merging. Yap et al. employed the level set method to 

solve three coupling phases i.e. particle encapsulated droplets [26]. 

 

Actuated Droplets  

The numerical methods also play an import role in the problems of droplet actuated by external forces. For 

example, the droplet can be controlled by a magnetic field or a temperature field described by the Maxwell 

equation or the energy equation, respectively. The droplet can also be squeezed or stretched by optical 

radiation pressure[46]. In the presence of a magnetic field, Korlie used a VOF model to simulate the 

bubbles rising in a ferrofluid and magnetic droplet falling down in a non-magnetic fluid [27]. Asimilar 

problems were solved by  Ki et al. using level-set method[28]. Boundary element method and the finite 

element method were used to determine the equilibrium surface shapes of the ferrofluid drop[29].  Afkhami 

3 
 



et al. utilized the volume of fluid method to catch the shape of a droplet which was driven by an external 

permanent magnet in a cylindrical computational domain[30]. Among thermally mediated actuation 

problems, Tryggvason et al. considered the rising process of multiple bubbles in an initially quiescent fluid 

and under the influence of thermocapillary force [31].  Yap et al. solved the droplet breakup into two 

daughter droplets in the T-junction microchanel with the thermal mediated actuation [32].  

 

Moving Contact Line Problems  

The droplet evolution on a solid surface involving a triple phase line (gas, liquid and solid contact line) 

problems can also be solved numerically. Under a shear flow, Spelt numerically investigated a droplet 

rolling on a solid surface by adding the contact line velocity in the redistance function of level-set approach 

[33-34]. The level-set method coupled with the immersed interface method [35] or the volume-of-fluid 

method [36]can describe the motion of a sessile droplet on a planar surface. Ding and Spelt reported a good 

agreement between the level-set method and the diffuse interface method to solve the drop spreading 

problem [37].  

 

3. EXPLICIT INTERFACE TRACKING METHOD 

The interface is explicitly tracked either with a moving grid or massless markers seeded at the interface. 

Either a moving grid or a moving grid coupled the fixed grid is employed. Thus, the explicit method 

includes boundary integral method and front tracking method. 

Boundary-Integral Method 

 

In the boundary integral method, the evolution of a deformed droplet is calculated by time integrating the 

fluid velocity of a set of marker points on the interface [18].  The marker velocities are obtained by solving 

a boundary-integral equation instead of solving the velocity field. Thus, the interface is explicitly tracked. 

The flow solution is deduced from the information of the discrete points along the interface. The details of 

boundary integral method were reviewed by Pozrikidis [38]. The application and development of the 

method in multiphase fluid flow was reviewed by Hou et al. [39].  This review also discussed the numerical 

instability and the limited accuracy due to the involvement of the interfacial tension. However,  the 

presented theory only based on a two-dimensional (2D) model. Actually, the previous 3D boundary integral 

method relying on fixed grid with uniform marker point density and cannot resolve the extreme changes of 

the interface during droplet breakup. To address this problem, an alternative method employing remeshing 

algorithms was proposed. These algorithms involve local mesh refinement and reconnection. Cristini et al. 

developed the adaptive dicretization algorithm to resolve the interface to fit the deformed drop shape [18]. 

The method was later refined by Cristini et al. based on the minimization of the mesh configurational 
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energy as the surface evolves[40]. The method was validated as accurate for test cases of drop breakup and 

coalescence. This work is followed by many papers with more 3D problems. The limit of numerical 

instability was overcome by the method proposed by Zinchenko et al. [41].  A special mesh stabilization 

method was utilized to solve the 3D extremely deformed interface. Further developments showed that this 

method is very successful in solving single droplet breakup [42], droplet squeezing among spheres [43], 

and optical stretching and squeezing of a sessile droplet [44]. 

 

Front Tracking Methods 

 

The front tracking method was developed by Glimm’s group and Tryggvason’s group. Glimm presented a 

3D front tracking algorithm to solve Rayleigh-Taylor instability problems [45]. Unverdi  and Tryggvason 

investigated the rising of one and two bubbles[46]. This method needs connected markers to reconstruct the 

interface grid dynamically in the calculation process. The front grid moves through the fixed grid giving the 

precise location and the geometry of the interface. The interfacial tension is computed on the front and 

transfer to the fixed global grid. As discussed in [46], a separate unstructured triangular grid was introduced 

to mark the interface position while the computational domain is discretized by a regular fixed rectangular 

grid, Fig. (1). Naturally, the Navier-Stokes equations are solved on the fixed grid to control the motion of 

the multiphase system. It assumed that the fluid properties are constant in each phase. The interfacial jump 

condition is added to the momentum equations via a discrete delta function along the smooth interface. This 

multi-grid method shows that the front-tracking method is complex.  Furthermore, this method can not 

solve thin film resulting from the droplet rupture. A topological change algorithm near the interface needs 

to be considered. Problems with topological changes involving breakup of drops and jet were investigated 

by Agresar et al. [47]. A pressure driven cell was modeled as a Newtonian micro droplet with constant 

surface tension. The topological change of the interface was added by Torres and Brackbill (2000) to solve 

the problem of coalescence of two spherical drops [22]. Esmaeeli and Tryggvason extended this approach 

to cases with phase change [48-49]. 

Recently, Mao showed with 2D conservative front-tracking method that the 2D discontinuity curves can be 

tracked in a 1D fashion [50]. Liu et al. presented a front tracking algorithm which can be applied uniformly 

to N dimensions [51]. Gois et al. proposed a new front-tracking method by advecting the unconnected 

points set [52]. The point set was used to mark the interface. The three-dimensional deformation of a 

spherical drop was modeled as the test case with topological changes. The improvement of the front 

tracking method was studied by Dijkhuizen et al. in the volume conservation and multiphase problems [53].   
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Fig. (1). The computational mesh. The 3D rectangu ar domain uses the uniform structure grid, and the 
interface uses a separate unstructured 2D grid. 

l

 

 

4. IMPLICIT INTERFACE CAPTURING METHOD 

The explicit method needs the stored points on the interface in order to reconstruct the interface. The 

interface resolution depends on the number of points. In the implicit method, a simple function is defined 

on a fixed grid to capture the interface. The interface location is approximated by the indicator function.  

Thus, both methods can not tell us where the exact interface location is.  For n-dimensional problems, the 

explicit method use n-1 dimensional grid to reconstruct the interface, while the implicit method need 

resolve n-dimensional equation on the whole domain. The advantage of the implicit method is that it can 

solve more completed problems with topological changes. They include volume of fluid method, phase 

field method, lattice Boltzmann method, and level set method.  

Volume of Fluid Method 

 

A review of volume of fluid method (VOF) is given by Scardovelli and Zaleski [54]. Hirt and Nichols 

detailed the VOF techniques for interface capturing in non-uniform mesh [55]. In the VOF method, the 

volume fraction function is introduced and defined in a volume fraction field throughout the whole 

computational domain. The volume fraction function is 0=∇•+
∂
∂ αα u

t
r

 can be solved on a fixed-grid. 

Where α represents the volume fraction and has a value between 0 and 1. Figure (2a) shows a typical 

distribution of the volume fraction values.  The values are reconstructed to find the interface location as 

shown in Fig. (2b). The interface lies within computational cell with a volume fraction function of 0< α <1, 

and the location of interface is 0.5. For a volume fraction function of unity, the computational cell is 
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completely filled with the primary phase. The computational cell is completely filled with the secondary 

phase in the case of volume fraction function of zero. To solve the function, the initial approximate 

interface position needs to be found. In addition, interface reconstruction should be carried out to determine 

the weighted density and viscosity for the computational cells and compute the volume flux for the 

convective terms in the governing equations. The crude reconstruction can generate a large error even with 

a simple velocity field such as translation or solid body rotation. The reconstruction methods include 

Simple Line Interface Construction (SLIC) reported by Noh and Woodward [56], Piecewise Linear 

Interface Construction (PLIC) with Lagrangian advection of the interface pieces by Gueyffier et al. [57], 

least-square fit with split Eulerian-Lagrangian advection by Scardovelli and Zaleski [58]  and Parabolic 

Reconstruction of Surface Tension (PROST) employing piecewise parabolic curves by Renardy [59]. 

Rudman introduced flux-corrected transport (FCT) method for volume capturing and did not use interface 

reconstruction [60].  

 

 

(b)(a)

1  1  1  1 

0  0  0  0 

0.2 

0.4 0.6 0.5 

 

Fig. (2). (a) Volume fraction values; (b) Contour of volume fraction. α=0.01, α=0.21, α=0.5, and α=0.88. 

 

After the interface reconstruction, the interface motion by the underlying flow field must be modeled by a 

suitable advection algorithm. The discretization of advection term is the main difficulty to guarantee the 

physical volume fraction distribution and the sharpness of the interface. The lower order scheme can smear 

the interface due to the numerical diffusion. A higher order scheme can result in numerical oscillations. 

Gopala et al. reviewed and discussed the advantages and limitations of several volume advection 

techniques [61] such as flux-corrected transport (FCT) algorithm [62], compressive interface capturing 

scheme (CICSAM)[63], gamma differencing scheme [64] and Lagrangian piecewise-linear interface 

reconstruction (L-PLIC) method [65].  The comparison was based on two practical test cases of sloshing of 

a liquid wave and the Rayleigh–Taylor instability problem. Recently, Park et al. employed a high resolution 

differencing schemes, Normalized Variable Diagram (NDV), to preserve the sharpness of interface and the 

boundedness of volume fraction [66].  
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The advantage of the VOF method is its superior volume or mass conservation of each fluid over other 

methods such as the level-set method. The interface could be captured implicitly, thus topological changes 

can be handled automatically. Problems with interfacial geometrical quantities such as the unit normal and 

the curvature can be encountered. These quantities are calculated from the volume fraction function which 

is nearly discontinuously distributed, and are important in the calculation of surface tension. It is not 

straight forward to calculate these quantities accurately. Fortunately, the level set method can fix this 

problem.  As results, a number of researchers recently proposed a hybrid algorithm of coupling the level-set 

function with the VOF methods (CLSVOF) [67-69]. The VOF was used to reconstruct the interface, while 

the level-set function is used to calculate the interface and curvature. However, these methods are not easy 

to extend to three dimensions. Park et al. used NDV for the advection of the volume fraction function, and 

extended the CLSVOF method to multi-dimensional unstructured grid although the method is relatively 

complex [66]. The three-dimensional shape of a rising bubble in a liquid was tested.  

The VOF method can exhibit the high accuracy in the calculation of three dimensional flows. Gueyffier et 

al. modeled a pinching pendant drop and found a good agreement with the experimental results [57]. Van 

der Pijl [70] and Sussman [69] calculated the problem of bubble rising in the liquid. Park et al. modeled 

droplets adhering to a vertical wall [66]. Wang et al.[71] modeled a water drop impact onto a deep water 

pool, wave breaking of a steep Stokes wave and plunging wave. The commercial software Fluent also 

employed VOF method to calculate multi-phase flow.  

 

   
Phase-Field Method 

 

One of the implicit methods for capturing the interface is phase-field method, which is also called the 

diffuse-interface method. In phase field method, a phase function ),( txφ  is introduced to represent the 

interface 0=φ . Away from the interface, the function values of two phases are 1+=φ and 1−=φ , 

respectively. The evolution of the phase-field function is governed by the Cahn-Hilliard equation [72], a 

fourth order nonlinear parabolic diffusion equation, it is ( ) [ ])(φφσφφ f−Δut Δ−=⋅+
r

. The 

fnction )(φf  is a polynomial of φ  [73]. Liu et al. used a Cahn-Hilliard equation to model coalescent of 

two bubbles [73]. Another alternative governing equation of the phase function is the Allen-Cahn type [74-

75]. Because the phase-field method is a first order approximation to the sharp interface model, a fine grid 

is required around the interface.   

The advantages and disadvantages of phase-field method are discussed by Slavov and Dimova [9]. This 

method can be easily extended to a three-dimensional problem, and has a straight-forward extension to 

arbitrary multi-phase systems [76]. Moreover, the method can handle the topological changes of the 

interface automatically. Adaptive moving mesh algorithm can be use to increase the efficiency and 

accuracy of the method [75]. This method requires an asymptotic analysis to be performed in order to 

obtain a mapping between the parameters of the phase field equations and the sharp interface equations. As 
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a result, the phase field model only reproduces the dynamics of the sharp interface equations with the 

limitation that the density difference is sufficiently small. Also a refined grid is needed to resolve the 

interface. In contrast, the level-set approach can be used to exactly locate the interface in a simple fashion.  

Recently, application of the method include multiple pinch-offs of a long cylindrical thread at small 

Reynolds number [77], droplet pinch-off in liquid/liquid jet configuration [78], and two drops coalescence 

evolving four phases [79]. 

 

Lattice Boltzmann Method 

The lattice Boltzmann method (LBM) is a relatively new simulation technique. According to Takada et al. 

[25], the difference between phase field method and LBM only lies in the discretization to the Navier-

Stokes equations. The method is successful in dealing with the interface tension and the complex 

boundaries with a large density ratio between the two phases. The lattice Boltzmann method constructs the 

kinetic equation of the discrete-velocity distribution function utilizing discrete lattice and discrete time. 

Thus, it is viewed as a special finite difference scheme for the kinetic equation. But LBM distinguishes 

itself from the conventional numerical schemes which are based on the discritization of the continuum 

equations. The LBM is a derivative of the lattice gas theory. A lattice gas theory consists of a regular lattice 

with particles residing on the nodes.  As a result, the N-S equation can be derived from the lattice 

Boltzmann equation. The macroscopic dynamics of fluid is the behavior of the particles in the system. 

 

An overview of the LBM was presented and discussed by Chen and Doolen [80].  This review discussed 

the different methods for modeling interfacial tension in a multiphase fluid flow: the free energy model and 

the interparticle interaction potential model. Lamura employed the first approach to simulate oil-water-

surfactant mixtures [81]. The latter method was first proposed by Shan and Chen [82]. The third method, 

the He-Shan-Doolen method, was discussed by Nourgaliev et al. [83]. Nourgaliev et al also compared these 

three models, and their advantages and limitations. Sankaranarayanan et al. compared the simulation results 

of LBM and front tracking method based on the 2D bubble rising model [84]. The results showed that the 

BLM is not appropriate for low Mach number. Recently, LBM method becomes a popular modeling 

platform for droplet-based microfluidics. Van Der Graaf et al. (2006) [14] and Gupta and Kumar [13] used 

LBM to investigate the droplet formation process at a microfluidic T-junction. Wu et al. [16] used LBM to 

study the droplet formation process at the microfluidic cross-junction.  

 

Level-Set Method 

 

Osher and Sethian demonstrated a new algorithm of level set method to track the moving interface on the 

fixed-grid system [85]. The level set function ),( txrφ  was introduced over the whole domain or near the 

interface and was defined as a signed shortest normal distance from the interface. The interface is implicitly 

represented by the zero level-set, 0),( =txrφ . The values of ),( txrφ  are positive inside the interface, and 
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negative outside the interface. The different signs distinguish the two different fluids.  Figure (3) shows the 

typical contour of the level-set function. The values on the curves are the distance from the interface. By 

taking the time derivative of 0),( =txrφ , the convection equation (level set equation)  0=∇⋅+ φφ ut
r

 is 

used for calculating the motion of the interface. Fluid properties can be calculated from the level-set 

function through a smoothed Heaviside function.  

 

Fig. (3). The contour of level set function. 

 

Currently, LSM has been used successfully for handling moving interface and free boundary problems in 

microfluidics [86]. Topological changes can be captured in a straightforward fashion, and thus the methods 

are readily implemented in both two and three spatial dimensions. We can conclude that LSM is a powerful 

tool to solve the complicated deformation and to construction of implicit surfaces on a fixed rectangular 

grid. The challenging problems such as coalescence/rupture of droplet and droplet falling down under 

difficult conditions can be simulated easily with the level set method.  

Numerically, it is desirable to keep the level set function close to a signed distance function to the interface. 

However, the fact is the level set function will generally deviate from a signed distance function. Moreover, 

the discretization of the level set equation can cause numerical dissipation and inaccurate identification of 

interfaces. Flat or steep regions often occur near the interface. Generally, a reinitialization procedure is 

needed to reset the level set function to be a signed distance function to the interface with some degree of 

accuracy [20]. 

 

Normally, the level set and the reinitialization equations are evolved numerically by higher order advection 

schemes. They are two examples of a general Hamilton-Jacobi (HJ) equation H 0)( =∇φ + φt . The 

detailed solution of this equation is well documented in the book by Osher and Fedkiw [87], which also 

include other higher order numerical discretiztion methods such as essentially non-oscillatory (ENO) and 
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weighted essentially nonoscillatory (WENO).  The gain in accuracy of on the higher order schemes is 

compromised by the long time integration, which is not desirable. Therefore, new techniques need to be 

developed to reduce the computational time. Solving the level set function in the global domain wastes 

computing resources and times, because only the domain near the interface is of interest. Peng et al. 

introduced an approach that only solves the level-set function within a band γφ <)(xr  near the interface, 

where γ is width of the interface [88]. This method does not compromise the accuracy since the level-set 

value is important only around the interface. Figure (4) shows the marked region of the interface, the 

computational domain of the level set function and the reinitialize function. This tremendous time saving 

can reduce one order of computational effort.  Peng et al. successfully solved the problems of vortex sheet 

and bubble separation.  

 

 
 

Phase 2 

Interface

Phase 1 

 
 

Fig. (4). The band of computational domain for level set equation and reinitialization equation. 

 

Even using the higher-order advection schemes to evolve the level-set equation, the mass error still cannot 

be avoided. Figure (5) depicts the typical examples of mass error. The error is caused because the sharpness 

of the interface is destroyed by under-resolved regions during the discretisation process. This mass 

conservation problem can be solved by many methods. One method employs the re-initialization equation 

as mentioned above. The details of this method are discussed by Sussman et al.  Another different 

reinitialization procedure was introduced by Chang et al. [89] who solved the 

equation ( ) 0t A Pφ κ+ Δ − + ∇ =φ
to the steady state, where ΔA is the difference of the mass between 

initial mass and the mass in the droplet deforming process. P is constant, and κ is curvature.  Unfortunately, 

this improvement in the mass conservation cannot solve the mass imbalance problem of the level set 

method [89].  Therefore, a global mass correction technique is needed [26, 90]. A correction is added to the 

level-set equation in order to preserve the initial mass. Mass is conserved in a global sense. Actually, most 

researchers agree that employing the particle level-set method can improve mass conservation. A number 

of particles are seeded into the grid cell to track the characteristic information, and thus can accurately 

reconstruct the interface where the level set method failed to preserve mass.  Traditionally, the particles are 
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placed throughout the fluid domain and move with the local velocity [91-92]. This method is successful in 

solving the free surface problems i.e. falling free surface, splashing of water, and water sloshing in a tank. 

Enright et al. proposed a new numerical method [93] that seeds Lagrangian marker particles within a 

narrow band around the interface. First, the initial particles seeded randomly into the cells. Then these 

particles are attracted to its corresponding region after a simple attraction procedure. While the negative 

particles are attracted to the  0<φ region, the positive particles are attracted to the 0>φ region as shown 

in the example of Fig. (6).  Enright et al. (2002)[93], Wang et al. (2009) [94] and Tran et al. (2004) [95] 

proposed particle correction strategies to guarantee that the particles do not escape across the interface. The 

last procedure to be carried out is particle reseeding, when there are not enough particles in some region to 

resolve the interface well after few iterations [94]. Fig. (7) shows one case of the particle poor distribution 

around the interface. However, reseeding algorithm is not a perfect method to smooth the interface. It is 

necessary to randomly seed and attract the particles repeatedly when the reseeding algorithm failed to 

maintain the smoothness of the interface.   

   

Phase 2  Phase 2 

Phase 1 Phase 1 

(a)  (b)

Interface with mass error  Correct  interface 
 

Fig. (5). Mass error in the level set method: (a) mass loss; (b) mass surplus. 
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 Interface 

Phase 1

Positive particle

Negetive particle

j+1 

i i+1

 j 

Fig. (6). Some of the particles with radius assigned after attraction procedure. 

Phase 2

  

No enough particles region 

(b)After reseeding (a)Before reseeding  
 

Fig. (7). Particle reseeding. Red ones are positive particles, and blue ones are negative particles. 
 

 

Recently, level-set methods have been used quite successfully in moving interface as well as multiphase 

flow in two- or three-dimensional problems: particle-encapsulated droplet transporting in the fluid flow 

[86], droplet spreading and solidification [24], bubble rising and growth in a stationary fluid [96], droplet 

falling down[97], and bubble adhering to the solid surface in the fluid [98], topological changes of the 

interface such as droplet pinching and connection [99], droplet collision and membrane break [100],  

breakup into smaller droplets [101]. In the field of the droplet based microfluidics, numerical simulation 

with level-set method has the potential to play an important role. 

 

5. CONCLUSION 

This paper reviews the theory and applications of the different interface tracking and capturing methods for 

droplet-based microfluidics.  In a multipase fluid flow, it is difficult to numerically simulate the interface 
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because of the jump of properties and the moving interface. Moreover, the capillary force, shear stress, 

interfacial tension, or other external forces are strongly coupled. Thus, the interface movement needs to be 

linked with the discretization of the velocity field and the properties of fluids to model challenging 

problems such as droplet breakup and coalescence. We reviewed here the successful methods in handling 

the complicated interface deformation.  The review would help the readers to have an overview on the 

available techniques for modeling droplet-based microfluidics. 
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